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Abstract. This paper describes the DKU-MSXF submission to track 4
of the VoxCeleb Speaker Recognition Challenge 2023 (VoxSRC-23). Our
system pipeline contains voice activity detection, clustering-based di-
arization, overlapped speech detection, and target-speaker voice activity
detection, where each procedure has a fused output from 3 sub-models.
Finally, we fuse different clustering-based and TSVAD-based diarization
systems using DOVER-Lap and achieve the 4.30% diarization error rate
(DER), which ranks first place on track 4 of the challenge leaderboard.

Keywords: Speaker diarization · Target-speaker voice activity detec-
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1 Introduction

Speaker diarization is the task of breaking up multi-party conversational audio
into speaker-homogeneous segments, which aims to solve the problem of "Who
spoke when." In this paper, we focus on the speaker diarization task and present
the details of our submitted system to track 4 of the VoxCeleb Speaker Recog-
nition Challenge 2023.

Fig. 1 depicts the framework of our developed system. First, the voice activity
detection (VAD) module removes non-speech regions from the input audio. The
remaining is split into multiple short segments, followed by speaker embedding
extraction. Then, the initial clustering-based diarization results can be obtained
by agglomerative hierarchical clustering (AHC) with overlapped speech detection
(OSD) as the post-processing. We replace speaker embedding models trained
under different conditions to repeat the above process three times and obtain
the fused clustering-based results by Dover-Lap [14]. Next, target-speaker voice
activity detection (TSVAD) models with different speaker embedding models
are adopted to refine the clustering-based results. In the end, clustering-based
and TSVAD-based results are fused again to obtain the final prediction.
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Fig. 1. Framework of The Developed System.

In general, the framework integrates the advantages of clustering-based and
TSVAD-based methods, which is similar to our previous submissions in VoxSRC-
21 [18] and VoxSRC-22 [20]. The main differences are improved speaker embed-
ding models and Seq2Seq-TSVAD models from our recent works [2, 1].

2 Dataset Description

According to challenge rules, any data except the test set is allowed in this task.
The datasets used to train each model in our system are described as follows.

– Voice activity detection (VAD) and overlapped speech detection (OSD): Vox-
Celeb 1&2 [11, 4] for data simulation and VoxConverse [3] for adaptation and
validation.

– Speaker embedding: VoxCeleb 1&2 [11, 4] and VoxBlink-Clean [10] for train-
ing and evaluation.

– Clustering-based diarization: VoxConverse [3] for hyper-parameter tuning.
– TSVAD-based diarization: VoxCeleb 1&2 [11, 4] for online data simulation

and VoxConverse [3] for adaptation and validation.
– Data augmentation: MUSAN [15] and RIRs[9] corpora.

3 Model Configuration

This section describes each model in our submitted system. If not specified, the
input acoustic features of all models are 80-dim log Mel-filterbank energies with
a frame length of 25 ms and a frameshift of 10 ms. MUSAN [15] and RIRs [9]
are applied as the data augmentation.

3.1 VAD & OSD

As the implementations of voice activity detection (VAD) and overlapped speech
detection (OSD) tasks are very similar, we utilize the same neural networks to
train these two tasks. Adopted model architectures are described as follows.
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Table 1. False alarm (FA) and miss detection (MISS) rates of different VAD and OSD
models on the VoxConverse test set.

Task Model FA (%) MI (%) Total (%)

VAD

Conformer 2.84 1.09 3.93
ResNet34 3.20 1.02 4.22
ECAPA-TDNN 2.70 1.51 4.21
Fusion 2.83 1.14 3.97

OSD

Conformer 0.59 1.41 2.00
ResNet34 0.54 1.51 2.05
ECAPA-TDNN 0.52 1.45 1.97
Fusion 0.44 1.45 1.89

Conformer [7] is the first backbone network. All encoder layers share the same
settings: 256-dim attentions with 4 heads and 1024-dim feed-forward layers with
a dropout rate of 0.1. The kernel size of convolutions in Conformer blocks is
15. Finally, a linear layer with sigmoid activation is adopted to transform the
dimension of Conformer outputs into one, representing the frame-level posterior
probability of VAD or OSD.

ResNet34 [8] is the second backbone network, where the widths (number of
channels) of the residual blocks are {64, 128, 256, 512}. At the end of convolu-
tional blocks, the spatial average pooling extracts frame-level features from the
convolutional outputs. Finally, a linear layer with sigmoid activation predicts
the frame-level posterior probability of VAD or OSD.

ECAPA-TDNN [6] is the third backbone network. The number of filters in
the convolutional layers is set to 1024. The scale dimension in the Res2Block
is set to 8. The dimension of the bottleneck in the SE-Block and the attention
module is set to 128. Finally, a linear layer with sigmoid activation predicts the
frame-level posterior probability of VAD or OSD.

VAD or OSD models with different network architectures are fused by av-
eraging their predictions at the score level. Table 1 shows the VAD and OSD
models’ performance on the VoxConverse test set, respectively. We adopt the
fused results as the final predictions in this part.

3.2 Speaker Embedding

To ensemble learning, we train three speaker embedding models with diverse
network architectures and training data. The first one is SimAM-ResNet34 [13]
with statistics pooling (SP) [16]. The second one is ResNet101 [8] with attentive
statistics pooling (ASP) [12]. The third one is SimAM-ResNet100 with ASP. The
first two models are trained on the VoxCeleb2 [4] dataset. For the last model,
we additionally mix the VoxBlink-Clean [10] dataset into the training.

All speaker embedding models utilize the same back-end part. After the
pooling layer projects the variable-length input audio to the fixed-length vector,
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Table 2. Equal error rates (EERs) of different speaker embedding models on the Vox-O
trial.

# Model Training Data EER (%)

Spk1 SimAM-ResNet34+SP Vox2 0.81
Spk2 ResNet101+ASP Vox2 0.49
Spk3 SimAM-ResNet100+ASP Vox2+VoxBlink 0.44

Table 3. Thresholds (THRs) of different AHC-based diarization systems.

# Segment THR Stop THR Speaker THR

Ahc1 0.54 0.60 0.20
Ahc2 0.62 0.62 0.20
Ahc3 0.66 0.68 0.30

a 256-dim fully connected layer is adopted as the speaker embedding layer, and
the ArcFace (s=32,m=0.2) [5] is used as a classifier. The detailed configuration of
model training is the same as [13]. The performance of different trained speaker
embedding models is shown in Table 2.

3.3 Clustering-based Diarization

We adopt agglomerative hierarchical clustering (AHC) to implement the clustering-
based diarization system, which is the same as we used in previous years [18, 20].
First, speaker embeddings are extracted from the uniformly segmented speech
with a length of 1.28s and a shift of 0.32s, pairwisely measured by cosine similar-
ity. Two consecutive segments are merged into a longer segment if their similarity
exceeds a segment threshold. Then, we perform a plain AHC on the similarity
matrix with a relatively high stop threshold to obtain clusters with high confi-
dence. These clusters are split into "long clusters" and "short clusters" by the
total duration in each cluster, and the central embedding of each cluster is the
mean of all speaker embeddings within the cluster. Finally, each short cluster is
assigned to the closest long cluster by the similarity between their central em-
beddings. If a short cluster is too different from all long clusters, the similarity
between them is lower than a speaker threshold, and then we treat it as a new
speaker. As post-processing based on the OSD model, overlapped speech regions
are assigned to the two closest speaker labels.

Based on speaker embedding models in Table 2, we develop three AHC-based
diarization systems following the above approach. All the hyper-parameters are
directly tuned on the VoxConverse test set by grid search. The duration for
classifying long and short clusters is 6s for all models. The other thresholds are
shown in Table 3.
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3.4 TSVAD-based Diarization

Given speaker profiles (e.g., x-vector [16]), the TSVAD method can estimate
each speaker’s frame-level voice activities and perform robustly even in complex
acoustic environments. We adopt the Seq2Seq-TSVAD [2] consisting of the front-
end extractor with segmental pooling [19], Conformer [7] encoder, and proposed
speaker-wise decoder. The front-end extractor is initialized by the pre-trained
speaker embedding model, the same as the one for extracting speaker profiles.

Each model training starts from BCE loss & Adam optimizer with a learning
rate of 1e − 4 and a linear warm-up of 2,000 iterations. The whole process is
described as follows.

– First, the model with a frozen front-end extractor is trained on simulated
data until back-end convergence.

– Second, all model parameters are unfrozen to train on both simulated (Vox-
Celeb 1&2) and real data (VoxConverse dev set) at the ratio of 0.8/0.2. Also,
the learning rate decreases to 1e− 5 in the second half of this phase.

– Third, all data simulation and augmentation are removed, inspired by the
large margin finetuning (LMFT) [17] in speaker verification. Meanwhile, to
use much training data as possible, we mix the first 186 samples of the Vox-
Converse test set into finetuning and leave the last 46 samples as validation,
namely the VoxConverse test46 set.

During inference, a clustering-based diarization is required first to extract
speaker profiles from each speaker’s speech segments. Then, each test audio is
cut into fixed-length chunks with a stride of 1s and fed into the TSVAD model
with extracted speaker profiles. Chunked predictions are stitched by averaging
the overlapped predicted regions, which can also be viewed as a score-level fusion.

Using speaker embedding models in Table 2 as different profile extractors,
we develop three TSVAD-based diarization systems. The first one equipped with
SimAM-ResNet34 is trained and inferred under audio chunks of 64s. The last two
equipped with ResNet101 and SimAM-ResNet100 are trained and inferred under
audio chunks of 16s, limited by higher GPU memory costs of the deeper networks.
The other configurations share the same settings: 512-dim attentions with 8
heads, convolutions with a kernel size of 15, and 1024-dim feed-forward layers
with a dropout rate of 0.1. The speaker capacity and output VAD resolution are
set to 30 and 0.08s, respectively.

4 Experimental Results

Table 4 illustrates the performance of our developed diarization systems on the
VoxConverse test set, VoxConverse test46 set, and VoxSRC-23 challenge test set.
As the TSVAD models utilize part of the VoxConverse test set in training, their
performance is only evaluated on the other two datasets.

Systems #1-3 represent the AHC-based diarization with different speaker
embedding models, obtaining the DERs of 5.51%, 5.32%, and 5.36% on the
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Table 4. Diarization error rates (DERs) of different systems on the VoxConverse test
set, VoxConverse test46 set, and VoxSRC-23 challenge test set.

# Method
DER (%)

VoxConverse
Test

VoxConverse
Test46

VoxSRC-23
Challenge Test

1 Ahc1 4.83 4.14 5.51
2 Ahc2 4.49 3.92 5.32
3 Ahc3 4.55 3.92 5.36

4 Dover-Lap (#1-3) - 3.81 5.19
5 + TSVAD with Spk1 - 2.85 4.49
6 + TSVAD with Spk2 - 2.93 4.57
7 + TSVAD with Spk3 - 2.91 4.53

8 Dover-Lap (#4-7) - 2.73 4.30

challenge test set. Then, we adopt the Dover-Lap method to fuse them and
obtain system #4 to achieve a 5.19% DER on the challenge test set.

Systems #5-7 represent the TSVAD-based diarization with different speaker
embedding models. Using the fused clustering-based results to extract speaker
profiles, these three models have very close DERs varying from 4.49% to 4.57%
on the challenge test set. Finally, systems #4-7 are fused by the Dover-Lap again
to obtain system #8, achieving the best 4.30% DER on the challenge test set.

5 Conclusions

This paper describes our system development for track 4 of the VoxSRC-23.
This year, we mainly focus on improving the speaker embedding, AHC-based
diarization, and TSVAD-based diarization models. To achieve the best perfor-
mance, we also train diverse sub-models for each part of the whole framework.
The finally fused method shows significant improvement, obtaining the DERs
of 2.73% on the VoxConverse test46 set and 4.30% on the VoxSRC-23 challenge
test set, respectively.
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