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Abstract. In the advancing domain of EEG-based speech envelope de-
coding, this paper presents a novel architecture that strategically in-
tegrates a structured state space model (S4) with a subsequent U-Net
denoising block. The S4 layer is a specialized decoder that is particularly
adept at handling long-sequence modeling tasks. Following this, the U-
Net denoising block functions to further refine the decoded output. The
proposed architecture also includes a subject embedding layer with an
embedding strength modulator (ESM), to enhance within subject per-
formance. Experimental evaluations indicate that our hybrid model sur-
passes the existing top-performing model from the ICASSP 2023 Au-
ditory EEG Challenge Task 2. Specific performance metrics, such as
Pearson correlation coefficients for within subjects and held-out-subjects
tests, demonstrate the effectiveness of the proposed approach.
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1 Introduction

In the field of auditory neuroscience, while invasive techniques offer high spatial
resolution and signal-to-noise ratio, non-invasive methods, notably the electroen-
cephalogram (EEG), are gaining prominence due to their broader applicability
and cost-effectiveness, particularly in clinical contexts [2]. These non-invasive
methods enrich a methodological framework reflecting the complex nature of
auditory perception and neural responses. Central to this investigation is the
mechanism of auditory-evoked EEG responses, a pivotal measure capturing the
brain’s electrical activity following auditory stimulation. According to seminal
research, these responses not only delineate the challenges of distinguishing spon-
taneous brain activities from those induced by auditory stimuli but also empha-
size the influence of background spectral activity on the observed waveform [15].
The utility of EEG extends beyond foundational research to the diagnosis of
hearing impairments, particularly in challenging cohorts like children or individ-
uals with cognitive impairments. However, in the current landscape, the scope of
EEG extends beyond simple diagnostic applications. A burgeoning field focuses
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on decoding auditory attention from the brain, a pursuit with transformative
implications for developing intelligent hearing aids. The challenge lies in estab-
lishing a correlation between an individual’s EEG and the natural speech signals
they perceive, with traditional linear regression approaches facing complexities
due to the characteristic low signal-to-noise ratio of EEG. Recent advances pro-
pose a shift towards non-linear methods, particularly incorporating deep neural
networks (DNNs), to surmount these challenges. Specifically, Thornton et al.
employ a straightforward Convolutional Neural Network (CNN) architecture to
decode the speech envelope [16]; however, it is reported that increasing the num-
ber of weights does not necessarily increase the decoding performance [2], while
Piao et al. use a transformer-like architecture [13], which may not be ideal for
modeling long sequences [7] and shows a significant performance gap between
seen and unseen subjects.

In this paper, we aim to make three key explorations into electroencephalo-
gram (EEG) based speech envelope decoding. First, we introduce the Structured
State Space model (S4) layer, designed to capture long-term dependencies in
EEG data, thereby addressing a crucial limitation of existing methods. Second,
we incorporate a U-Net denoising block following the S4 blocks to improve signal
fidelity and reduce noise. Third, we introduce a subject conditioner with an em-
bedding strength modulator (ESM) to enhance within subject performance. Our
experimental evaluations indicate that the proposed hybrid architecture outper-
forms the current leading model from the ICASSP 2023 EEG Challenge Task 2,
as evidenced by superior Pearson correlation coefficients for both within subjects
and held-out subjects tests. Consequently, the proposed research holds the po-
tential for advancing both theoretical understanding and practical applications
in decoding auditory attention from brain signals.

2 Methods

2.1 Formulation of the Task

The Auditory EEG Challenge Task 2 [1] aims to develop a computational model
that reconstructs auditory stimulus features based solely on EEG recordings.
Given an auditory stimulus, denoted as S (e.g., an audiobook or podcast), the
subject listens to S while their electrical brain activities E are recorded using
a 64-channel EEG system with a sampling rate of 8192 Hz. Despite the high
temporal resolution, the spatial resolution is limited by the 64-electrode config-
uration, which is positioned according to the international 10-20 system. The
primary objective is to identify a model, represented as M , such that it can
predict the stimulus features Fpred from E as Fpred = M(E).

To evaluate the model’s performance, the Pearson correlation coefficient r is
employed. It is calculated for individual segments of the stimuli as follows:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(1)
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where xi and yi correspond to the actual and reconstructed feature values of a
stimulus segment, respectively. The terms x̄ and ȳ represent the means of the
respective sequences x and y.

The model’s performance is summarized using Cs, the average Pearson cor-
relation across all segments for a given subject. Two separate test sets are con-
sidered: one where the subject is known to the model (within subject), and one
where the subject is not (held-out). These yield mean correlation scores across
subjects in a given dataset S1 and S2, respectively. The final ranking score is a
weighted combination of S1 and S2:

Score = α× S1 + (1− α)× S2 = α× 1

N1

N1∑
i=1

Ci1 + (1− α)× 1

N2

N2∑
j=1

Cj2 (2)

where α is the weight of S1 in the final score, N1 and N2 represent the number
of subjects in the within subject and held-out test sets, respectively.

2.2 Model Overview
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Fig. 1. Model Overview.

× N

Layer Norm

S4 Layer

GELU &
Dropout

Linear & GLU

S4 Block

Input

Output

Fig. 2. S4 block Illustration.

Fig. 1 illustrates the architecture of the proposed model. Our EEG-based
speech envelope decoding model synergistically combines the S4 model with a
U-Net denoising block for refined output processing. Given an EEG signal as
input, the model first extracts features via a Pre-Net convolutional layer. A
dynamic subject embedding, influenced by an ESM, contextualizes the features
for subjects within the test dataset to optimize the performance. These features
are then passed through the S4 block for long-sequence modeling, a process that
is iteratively repeated N times. The U-Net denoising block further refines the
decoded output and forwards it to a single Fully Connected (FC) layer, serving
as the post-net. Subsequent sections will offer a detailed explanation of each
component of the model.
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2.3 Embedding Strength Modulator

To generate the speech envelope specifically tailored for within subject applica-
tions, Piao et al. leverage an auxiliary global conditioner, aiming to retain more
contextual information [13]. It is imperative to acknowledge that the effective-
ness of the subject embedding should not remain static, considering the inher-
ent transferability of diverse subjects’ EEG signals [8] and their generalizability
for classification tasks [11]. Drawing inspiration from advances in bilingual TTS
tasks, as seen in [19] and [20], where an ESM dynamically modulates the strength
of language and phonology embeddings, our model integrates an ESM layer fol-
lowing the subject embedding. Yang et al. detail the ESM’s mechanism [19],
where it is described as an attention-based modulator resembling the framework
in [18]. The ESM comprises two primary sub-networks: multi-head attention and
a feed-forward network, both of which leverage layer normalization and resid-
ual connections. Formally, our ESM processes the Pre-Net outputs with scaled
positional encoding, PNo, alongside subject embedding, SE. This mechanism
allows the post-Pre-Net EEG signal data to be modulated by dynamic weights,
which are influenced by both the data and the subject embedding. The equations
governing the output Fo in our ESM are as follows:

Mo = MH(PNo,LN(SE),LN(SE)) + SE (3)

Fo = FFN(LN(Mo)) +Mo (4)

where MH(query, key, value), FFN(·) and LN(·) are multi-head attention, feed-
forward network and layer normalization, respectively.

2.4 Structured State Space Decoding

The S4 block is pivotal in enhancing speech envelope estimation. Originally
conceived as an innovative sequence model, the S4 represents an evolution of the
continuous-time state space model. It distinguishes itself by adeptly modeling
long-term dependencies and maintaining computational efficiency. A primary
feature of the S4 is its utilization of linear state space transformations to depict
relationships among latent state spaces [7], expressed by the equations

ẋ = Ax+Bu (5)

y = Cx+Du (6)

where A,B,C,D are trainable matrices that map the input u, hidden state x,
and output y.

This framework of linear transformations facilitates a more precise and effi-
cient estimation of latent variables, crucial for tasks such as the auditory EEG
Challenge Task 2. Compared to conventional sequential models like Recurrent
Neural Networks (RNNs) and Transformers, the S4 provides notable advantages.
The S4 mitigates issues related to computational complexity and positional in-
formation, often encountered in Transformers, thus showcasing superior perfor-
mance in modeling long sequences [7].
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The S4’s versatility is evidenced by its effective application in various tasks,
including autoregressive inference tasks like waveform generation [6] and lan-
guage modeling [7]. Studies have underscored the S4 decoder’s capability in
enhancing the naturalness of synthetic speech, especially when compared with
Transformer-TTS [12]. Additionally, it is noteworthy that S4-based speech en-
hancement models are highly efficient and achieve commendable results even
with a reduced model size [10]. A distinguishing hallmark of the S4 is its capabil-
ity for parallel training and recurrent generation, characterized by sub-quadratic
complexity. This leads to significantly faster generation speeds; for instance,
the S4 model demonstrates a performance that is 60 times faster than conven-
tional autoregressive models in language modeling tasks on the WikiText-103
dataset [7]. Additionally, S4-based world models have demonstrated superior-
ity over Transformer-based models in terms of long-term memory and training
efficiency [5].

Turning our attention to design specifics, the S4 block’s structure (as il-
lustrated in Fig. 2) adapts from the Pre-LN FFT block architecture, previously
presented in [13]. Modifications include the elimination of the position-wise feed-
forward layer and the replacement of the multi-head self-attention layer with the
S4 layer1. This is because the S4 model implicitly incorporates positional infor-
mation within its architecture [7]. In summary, the integration of the S4 block
enhances the robustness of our proposed model in handling long-form scenarios.

2.5 U-Net Denoising Block

The integration of the U-Net denoising block into our EEG-based speech enve-
lope decoding architecture is informed by the intrinsic characteristics of U-Net
models. These models are particularly adept at denoising and feature integra-
tion, which aligns with the objectives of denoising diffusion probabilistic models
(DDPMs) [9]. DDPMs operate within the latent variable models and Markov
chains framework to generate data resembling real-world distributions. U-Net
architectures, known for their encoder-decoder structure with skip connections,
are capable of capturing detailed contextual information at multiple scales, which
is beneficial for EEG signal processing.

In the realm of EEG, U-Net models have proven effective for artifact removal,
enhancing the clarity of brain signals for interfaces and decoding tasks. The
IC-U-Net, utilizing a U-Net architecture, has shown promise in removing EEG
artifacts and reconstructing signals, a capability that aligns with our U-Net
block’s objectives [4]. This advancement supports our approach, leveraging U-
Net’s architecture for improved EEG signal decoding, essential for the high-
dimensional and noisy data characteristic of EEG [17].

The U-Net block in our design is grounded in the forward process of DDPMs,
accepting and conditioning the output from the S4 blocks. We utilize the U-
Net architecture to refine and predict the signal from the S4 blocks, following
progressive dilation training strategies to improve training efficiency [14]. Figure
3 illustrates the integration of the U-Net denoising block within our architecture.

1A detailed implementation of the S4 model is accessible at https://github.com/
espnet/espnet/blob/master/espnet2/asr/state_spaces/s4.py.

https://github.com/espnet/espnet/blob/master/espnet2/asr/state_spaces/s4.py
https://github.com/espnet/espnet/blob/master/espnet2/asr/state_spaces/s4.py
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Fig. 3. U-Net Denoising Block Illustration.

3 Experiments
3.1 Dataset
We employ a high-quality dataset derived from the Auditory EEG Challenge
at ICASSP 2023 [3], which comprises EEG recordings from 85 normal-hearing,
Dutch-speaking young adults. EEG recordings were obtained using a 64-channel
Biosemi ActiveTwo system, with a sampling rate of 8192 Hz, in a controlled
setting. The training set is composed of 71 subjects and includes 508 trials,
totaling 7,216 minutes. The dataset is partitioned into training and test sets,
the latter being further split into two subsets for a more nuanced evaluation.
Specifically, the test set is divided into two subsets: one for held-out stories and
another for held-out subjects, each designed to assess intra-subject and inter-
subject generalization, respectively. Test Set 1 features the same 71 subjects as
in the training set but exposes them to new auditory stimuli, accounting for a
total of 944 minutes of data. Test Set 2 introduces 14 new subjects, not seen in
the training set, yielding an additional 1,260 minutes of EEG recordings, with
both sets employing the same experimental protocol as the training set.
3.2 Experimental Setup
To verify the performance of our proposed system, we utilize both the same
training and test sets from the challenge and adopt the corresponding evaluation
metrics: the α is set as 1/3 in Eq. 2. We use PyTorch to train the model. The
number of S4 blocks was set to 8, and we used 128 as the dimension of the
state in the S4 model and enabled its bi-directionality (convolution kernel will
be two-sided). For the U-Net denoising block, the U-Net channels at each layer
are [128, 256, 512], downsampling and upsampling factors at each layer are [1,
2, 2], and the number of repeating items at each layer are [2, 2, 2]. We trained
our model for 1000 epochs using the Adam optimizer with an initial learning
rate of 0.0005. We also applied a StepLR scheduler with a learning rate decay
factor of 0.9. During training, we used 5-second segments of signals for stable
training, which was randomly cropped from each EEG/speech envelope segment.
For inference, input signals are divided into multiple 5-second segments, and their
corresponding outputs are concatenated to form the complete envelope. Most of
the settings are the same as those in [13].

3.3 Evaluation

We conduct a comprehensive evaluation of our proposed approach, assessing
the contributions of each incorporated module. The evaluation results are pre-
sented in Table 1. Initially, we assess the efficacy of integrating a single U-Net
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denoising block. This integration yields a mean score increase to 0.1281 for held-
out subjects, significantly outperforming systems from the 2023 Auditory-EEG
Challenge, and a competitive mean score of 0.1835 for within subjects, thereby
validating our hypothesis regarding the denoising and robustness-enhancing at-
tributes of the U-Net denoising block. Subsequently, we incorporate the ESM
layer, as detailed in Section 2.3. The optimal performance reflected in the held-
out subjects’ mean scores substantiates the functionality of the ESM layer in dy-
namically adjusting the strength of the subject embedding, enabling the model
to assimilate more universal information. The notable improvement in both the
within subject mean and the final score for the U-Net + ESM + S4 system un-
derscores the system’s augmented capacity to model long sequences and manage
information over extended temporal spans in continuous time series

Table 1. Pearson correlation values of different systems

Method Within subjects mean ↑ Held-out subjects mean ↑ Score ↑

HappyQuokka (1st in 2023 Auditory-EEG Challenge [1]) 0.1895 0.0976 0.1589
TheBrainwaveBandits (2nd in 2023 Auditory-EEG Challenge [1]) 0.1741 0.1123 0.1535

U-Net 0.1835 0.1281 0.1650
U-Net + ESM 0.1900 0.1295 0.1698
U-Net + ESM + S4 0.2040 0.1258 0.1779

4 Conclusion
In this study, we present an EEG-based model for speech envelope decoding
leveraging the S4 blocks and U-Net model, with a specialized ESM layer that
has been demonstrated to be effective for estimating both within subject and
heldout subject performance. The S4 blocks contribute to the model’s enhanced
performance in learning long-term dependencies and the incorporation of a U-
Net model further enhances the robustness of our proposed system. Experimental
evaluations indicate that our proposed model outperforms the top two models
from the ICASSP 2023 Auditory EEG Challenge Task 2. Therefore, we posit
that future research could benefit from exploring the utility of S4 blocks and
U-Net models in EEG-based studies or other domains involving continuous time
series data to address current challenges.
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