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Abstract. This paper introduces a real-time technique for simulating
automotive engine sounds based on revolutions per minute (RPM) and
pedal pressure data. We present a hybrid approach combining both
sample-based and procedural methods. In the sample-based technique,
the sound of an idle engine undergoes pitch-shifting proportional to the
ratio of current RPM to idle RPM. For the procedural technique, deep
neural networks fine-tune the amplitude of the engine’s pulse frequency
derived from the sample-based sound. To ensure the synthesized sound
does not have any clicks between the frames, we utilize a modified griffin-
lim algorithm at the frame level, which, with our proposed overlap-and-
add feature, can bridge the phase gap between two frames. Experimental
evaluations on our self-collected database validate the efficacy of the in-
troduced approach.

Keywords: Engine Sound Simulation; Engine Sound Synthesis; Real
Time Synthesis

1 Introduction

The engine sound is one of the most overlooked aspects in driving simulation
as it gives an indication of the state of the vehicle. For the in-car environment,
it affects speed judgment, operator performance, alertness, and fatigue [1–4]. In
addition, it can provide auditory feedback to the driver. Drivers can make deci-
sions according to the engine sound, e.g., changing gears using the pitch of the
engine sound or maintaining a steady vehicle speed. Drivers often underestimate
the vehicle speed and have difficulty in maintaining a target speed if no engine
sound is provided [4–9]. Leading automakers, including BMW, Audi, Ford, and
Jaguar, are actively engaged in research focused on stimulating drivers’ emotions
and conveying distinct brand identities through vehicle sounds [10]. For the out-
car noise, it can inform pedestrians and cyclists of the vehicle’s approaching,
avoiding many traffic accidents [11, 12].

Nowadays, electric motor-driven vehicles (EVs) are emerging due to their en-
vironmental friendliness, and fuel-efficient performance [13]. However, the elec-
tric motor usually cannot generate the sounds as an internal combustion engine.
Therefore, simulation of the combustion engine sound is important in this kind
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of vehicle, and the vehicle sound quality is important to improve ride comfort
[14–18].

In general, there are sample-based and procedural methods for engine sound
synthesis [19]. The sample-based method is the most common approach, where
the sound samples are looped and then resampled or pitch-shifted based on the
revolutions per minute (RPM) or other signals [20–22]. Heitbrink et al. [1] use
the wavetable approach to synthesize the engine sound, where crossfading is ap-
plied during playback to shift the frequencies between two sound samples.Lee et
al. [23] also employ the wavetable approach that can maintain the shape of string
sound waveforms and vary the pitch during acceleration. Scott et al. [24] use the
deterministic-stochastic signal decomposition approach to synthesize the auto-
motive engine sound. The deterministic component is first extracted from the
original sound using the synchronous discrete Fourier transform (SDFT). Then
they use a multi-pulse excited time-series method to model the stochastic com-
ponent. They find that the audio quality can be improved using weighted error
minimization. Van et al. [25] propose a phase vocoder-based method to simulate
the engine sound for a driving simulator. They extract the acoustic features and
modify these features to change the speed of the signal. Then they estimate the
representation of the modified signal and finally resample the generated signal.
Jan et al. [26] propose a real-time algorithm for engine sound synthesis. They
extract the sound samples from a recorded engine sound within the entire engine
speed range. Then they employ an extension of the pitch-synchronous overlap-
and-add (PSOLA) method to locate the extraction instants of the sound samples
and finally produce the engine sound. Recently, Dongki et al. [27] propose an
engine sound synthesis method. They first generate a mechanical sound by sum-
ming harmonic components representing sounds from rotating engine cranks.
And then they simulate a combustion noise using random sounds with similar
spectral characteristics to the measured value. Finally, the mechanical sound and
the combustion noise are combined to produce the engine sound.

In the procedural method, the sound is generated from some attributes of the
engine sound. Stefano [19] proposes a procedural method based on the mechanics
of the actual four-stroke engines. Fu et al. [28] simulate the engine motion sense
sound by reading the vehicle running state data on the CAN bus of pure electric
vehicles.

In this paper, a hybrid method for engine sound simulation is proposed, where
both sample-based and procedural methods are employed. For the sample-based
method, the pitch of the signal is shifted from the sounds of the idle engine
according to the frame-level RPM, where the griffin-lim algorithm (GLA) [29]
is employed. To remove the clicking between each frame, we propose the griffin-
lim overlap-and-add (GLOLA) method and generate the sound given different
RPM. For the procedural methods, we generate the spectrum of the engine
sound with only RPM and pressure on the pedal (POP) using the deep neural
network (DNN). These two spectrums generated by these two methods are finally
summed up and converted to the engine sound by GLOLA.
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The rest of this paper is organized as follows: Section 2 introduce the sample-
based method with GLOLA; Section 3 present the DNN-based procedural method;
Section 4 is the experiments and results; Section 5 concludes this paper.

2 Sample-based Method with Griffin-lim Algorithm

The most common sample-based approach in the most driving simulator is the
wavetable approach [1]. In this technique, a collection of sound samples are
mixed or manipulated to generate the engine sound. To be more specific, the
sound samples between different speeds are recorded during a real-world drive.
Next, the sounds are cross-faded depending on the vehicle’s speed. However,
the onset and offset of each sound will be audibly identifiable when the sounds
are played in a loop, which results in repeated clicking. Therefore, the sound
snippets should be faded in / out slowly to hide the repeated clicking or apply
some cancellation methods to remove the repeated clicking [30].

Unlike the wavetable approach, we directly generate the engine sound at a
different speed from the idle engine sound. Therefore, only a very short sound
sample of the idle engine is needed (usually less than 1 second). The sound is first
pitch-shifted based on the ratio between the current RPM and the idle RPM,
and then playback in a loop. However, the clicks also exist as the wavetable ap-
proach does. Actually, these clicks are caused by the discontinuity of the phase
between the boundaries of two sound samples. To remove such a click, we em-
ploy the griffin-lim algorithm to recover the phase near the boundaries. More
specifically, we propose the griffin-lim with overlap-and-add (GLOLA) in frame-
level to generate the engine sound without clicks as the traditional GLA is not
originally designed for frame-level synthesis.

2.1 Griffin-lim algorithm

Griffin-lim algorithm (GLA) is a phase recovery algorithm that can recover a
complex-valued spectrogram [29]. Given a real-valued amplitude A, GLA gen-
erates the complex-valued spectrogram C in the following iterative projection
procedure [31]:

C[i+1] = PC

(
PA(C

[i])
)
, (1)

where PS is the metric projection on a set S, i is the iteration index, and
C[0] = A. C is the set of consistent complex-valued spectrograms and A is
the corresponding spectrogram set with the same amplitude. The projection is
given by:

PC(C) = GG−1C, (2)
PA(C) = A⊙C⊘ |C|, (3)

where G represent short-time Fourier transform (STFT), G−1 is the pseudo in-
verse of STFT (iSTFT), ⊙ denotes the element-wise multiplicatio, and ⊘ de-
notes the element-wise division. The goal of GLA is to reduce the distance
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D(C, PC(C)) [32]:

min
C
||C− PC(C)||2F , (4)

where || · || is the Frobenius norm.
One limitation of applying GLA for engine sound simulation is that GLA is

not designed for real-time synthesis at frame-level since it employs the STFT,
which takes several frames of a signal as input. In addition, the phase disconti-
nuity is not resolved yet. Actually, overlap-and-add has been inherently imple-
mented in the STFT/iSTFT calculation, which results in a continuous signal.
This motivates us to incorporate the GLA into the STFT/iSTFT process, which
is the griffin-lim overlap-and-add (GLOLA) algorithm.

To synthesize the engine sound in real-time, the input of GLA becomes a
frame of signal. We also perform the overlap-and-add [33] operation at the end
of each frame-level iteration so that the phases are continuous between two
successive frames. In the phase estimation step, we only calculate the phase of
each harmonic component, which dramatically reduces the computational cost
in each frame-level iteration.

2.2 Griffin-lim algorithm in frame-level

STFT/iSTFT is the process of several fast Fourier transform (FFT)/ pseudo
inverse of FFT (iFFT) calculation with overlap-and-add in the frame-level. Given
an amplitude A and let C[0] = A, the traditional GLA can be composed in four
steps:

1. Projecting the spectorgram C in A as Eq. 1 shows;
2. iFFT calculation on each frame of spectrogram with overlap-and-add, pro-

ducing the continuous signal;
3. FFT calculation on each frame of the continuous signal, producing the spec-

trogram C;
4. Assessing the distance D(C, PC(C)); if it is small enough, stop iteration and

return the signal; otherwise, go back to step 1.

As we split the GLA step by step, it is obvious that GLA performs several
FFT/iFFT calculations with overlap-and-add in one iteration since it accepts
several frames as input.

To simulate the engine sound at frame-level, the GLA must take only one
frame as input and iteratively estimate the phase for each frame. Therefore,
we iteratively perform the FFT/iFFT, and the overlap-and-add will be applied
after the distance is converged for this frame. Give an amplitude a of a frame,
previous simulated signal y and let c = a, the GLOLA contains five steps:

1. Projecting the spectorgram frame c in A as Eq. 1 shows;
2. iFFT calculation on the frame, producing a frame of signal ŷ
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Algorithm 1 The GLOLA algorithm
Require: l > o > 0 \\ l is the frame length and o is the frame overlap as required by

STFT
Require: Pre−recorded sample sound x ∈ Rn at a stable idle RPM
Ensure: y = 0 ∈ Ro, ŷ = 0 ∈ Rl, L = o
1: while simulation process does not stop do
2: x̂← Resample(x, current RPM

idle RPM )
3: a = |fft(x̂)|
4: while D(c, PC(c)) is not small enough do
5: c = fft(ŷ)
6: PA(c)← a⊙ exp(Angle(c)× i)
7: ŷ← ifft(PA(c))
8: ŷ[0 : o]← ŷ[0 : o] + y[L− o : L]
9: D(c, PC(c))← ||C− PC(C)||2F

10: end while
11: y← Append([y, ŷ[0 : (l − o)]])
12: L← L+ (l − o)
13: end while

3. Adding this signal ŷ to the previous simulated signal y with overlap: ŷ0∼o ←
ŷ0∼o+y(L−o)∼L, where o is the frame overlap of the STFT and L is the total
length of y. This means that we only add the overlapping part of these two
signals.

4. FFT calculation on ŷ, producing the spectrogram c;
5. Assessing the distance D(c, PC(c)); if it is small enough, stop iteration and

append this signal ŷ to the end of y; otherwise go back to step 1.

Algorithm 1 shows a more detailed process of our engine sound simulation
with GLOLA. Note that this algorithm does not exactly start from step 1 as
mentioned above, but the iterative process is similar.

3 Procedural Method with Deep Neural Network

Although we obtain a simulated engine sound by GLOLA, the characteristics of
the engine are not carefully considered. As mentioned in [24], the engine pulse
frequency F0 is equal to:

F0 =
RPM

60
× p

2
, (5)

where p is the number of cylinders. Figure 1 also shows the relationship between
the RPM and the engine pulse frequency F0. In addition, F0 and its multiples
have a higher amplitude than others. These harmonic components at multiples
of F0 have a significance at low-frequency band, which can also represent the
characteristics of the engine [27]. However, even F0 can be easily calculated from
RPM, the relationships between the RPM and the amplitude on these multiples
of F0 are less obvious than the engine pulse frequency does, as shown in Figure
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Fig. 1. The RPM, POP, and the spectrum of the original engine sound

2. But we can still notice that the amplitude is higher when the RPM goes much
higher. This motivates us to use deep learning to predict the RPM.

Considering the requirement of real-time simulation, we cannot use a complex
network architecture since it needs to be set on an embedded system. Therefore,
we employ the deep neural network with only two fully-connected layers.

This network takes the RPM, pressure on the pedal (POP), and the first-
order delta of RPM and POP as input. The first-order delta of RPM and POP
can reflect the acceleration of the vehicle, which is also related to the engine
sound, e.g., the engine sounds of driving at 80 MPH and accelerating to 80 MPH
are different. The features are split into several frames with a sliding window size
of 11, resulting in a 44-dim feature, including consecutive RPMs, POPs, and the
delta of PRMs and POPs. The output is the amplitude value at the end of the
sliding window on F0 and its multiples. We train three networks with the same
architecture, which predict the amplitude on F0, 2F0, and 3F0, respectively.

After the amplitude of each multiple of F0 is predicted, we add this amplitude
to the amplitude generated by the sample-based method. Next, we employ the
GLOLA to produce a new engine sound whose amplitude on the multiples of F0

is more accurate.

4 Experiments and Results

4.1 Dataset and pre-processing

We evaluate the proposed method on several indoor recordings of engine sound
from a sedan car of model MG3 manufactured by SAIC Motor that contains a
four-stroke engine. The dataset contains four recordings, and the corresponding
PRM and POP signals are also recorded from the system on the vehicle every
10ms. A driver presses or releases the pedal frequently to make sure that each
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recording contains as much diverse information as possible. Table 1 shows some
metadata of each recording. The sample rate is 44100 Hz, and the duration of
each recording is about 10 to 15 minutes. In our experiments, we take the last
50-second audio of the 4-th recording as the testing data for synthesis, and the
remaining recordings are used for training the deep neural network.

Table 1. Metadata of the dataset

ID Duration (s) range of RPM range of POP

1 548.76 719.14∼4296.59 0∼37
2 964.91 690.68∼3218.65 0∼36
3 911.35 713.99∼4925.18 0∼55
4 902.14 696.22∼6283.91 0∼228

Total 3327.16 690.68∼6283.91 0∼228

We first downsample the recordings to 4000 Hz. In addition, we compute
the STFT with frame length of 100ms and frame shift of 10ms, which means
l = (4000× 0.1) = 400 and o = (4000× 0.09) = 360 as metioned in algorithm 1.

4.2 Sample-based method

For the sample-based method, we choose the continuous sound samples whose
pressure on the pedal (POP) is zero. Since we simulate the engine sound in frame-
level and the frame length is 400, we only need no more than 400× 6283.91

690.68 ≈ 4000
idle engine sound samples, which is a 1-second signal.
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Fig. 3. The specturm of the original engine sound and the simulated engine sound from
sample-based method

For a coming frame with an RPM, the idle engine sound samples are first
pitch-shifted (resampled) by the ratio between the RPM of the current frame
and the idle RPM, which is the ŷ in the algorithm 1. Each time a frame of
400 sound samples is simulated, and only the first 40 samples are played as the
frame shift is 40 (10ms). The distance D(c, PC(c)) usually becomes stable after
40 iterations, so we stop the iteration after 40 iterations.

Figure 3 shows the spectrograms of the original engine sound and the engine
sound simulated by our sample-based method. Although they look similar, the
amplitude on the engine pulse frequency F0 and its multiples cannot match
the original amplitude, as shown in figure 4. The energies on the engine pulse
frequency are too high to keep the characteristics of the engine.

4.3 Procedural method

As the amplitude of the engine sound simulated by the sample-based method
is not entirely accurate, we have explored the use of deep neural networks to
predict the amplitude at the engine pulse frequency F0 and its multiples.

We specifically predict the amplitude at F0, 2F0, and 3F0. For each of these
multiples of F0, a separate neural network is trained to predict the amplitude.
Consequently, three networks with identical architecture have been trained. Each
network consists of two fully connected layers, with both the first and second
layers containing 128 neurons each. The input dimension is set at 44, encom-
passing 11 continuous samples of RPM, POP, and the delta of RPM and POP.
The output dimension is 1, representing the amplitude at one of the multiples of
F0, corresponding to the last sample of the input RPM features. Each model un-
dergoes optimization using the Adam optimizer with mean square error (MSE)
loss over 100 epochs. The batch size is 128, with a learning rate of 0.001.
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Fig. 4. The amplitude of the original engine sound and the simulated engine sound
from sample-based method

Figure 5 displays the spectrograms of the original engine sound alongside the
sound simulated by our procedural method. Additionally, Figure 6 presents a
comparison of the amplitude between the original engine sound and the sound
simulated by the procedural method.

4.4 Hybrid process of synthesis

In the sample-based method, whenever an RPM signal is received every 10ms,
the idle engine sound is resampled according to this RPM and then converted
to a using FFT.

These are then combined with the preceding 10 samples of RPM and POP,
and the delta of these samples is computed. These features are subsequently
concatenated to form the input for the neural network. Three distinct neural
networks then predict three amplitude values separately. These predicted am-
plitude values are added to a to enhance the accuracy of the amplitude on the
multiples of F0.

The overall simulation process remains consistent with the algorithm outlined
in 1, with the exception that the three predicted amplitude values are now added
to a.

Figure 7 illustrates the spectrograms of both the original engine sound and
the engine sound synthesized by this hybrid process. The result is notably more
similar to the original when compared with the sample-based method alone. The
synthesized samples are available on GitHub1.

1 https://github.com/karfim/EngineSound



10 H. Li et al.

0

64

128

256

512

1024

Hz

Simulated engine sound from procedure method

0 6 12 18 24 30 36 42 48
Time

0

64

128

256

512

1024

Hz

Original engine sound
-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

Fig. 5. The specturm of the original engine sound and the simulated engine sound from
procedure method
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Fig. 6. The amplitude of the original engine sound and the simulated engine sound
from procedure method

4.5 Time cost

During the simulation process, all experiments are conducted on an Inter Xeon
Silver CPU with a single core of 2.2GHz. The pitch shift process and deep neural
network prediction take 0.4ms and 0.8ms. The GLOLA takes 6∼7ms for a frame
after 40 iterations. Therefore, the total time cost is about 8ms, and it is smaller
than the frame shift of 10ms. This means that it is possible to simulate the engine
sound in real-time. In practice, we can use a large frame shift, e.g., 50∼100ms,
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hybrid process

as engine sound does not need such a high resolution as the speech does. Thus
the time cost will be more negligible.

5 Conclusions

In this paper, a hybrid method for engine sound synthesis is proposed, which con-
sists of the sample-based and procedure methods. For the sample-based method,
the engine sound can be synthesized in frame-level only given RPM and a 1-
second idel engine sound. Next, the amplitude on the engine pulse frequency F0

and its multiples can be refined by the DNN-based procedure methods. In this
procedure method, several deep neural networks predicts the amplitude on the
multiples of F0, and these amplitude values will be added to the spectrum of
the resampled signal. Finally, we propose the GLOLA to synthesize the signal in
frame-level without any clicks since we incorporate the GLA into the process of
STFT/iSTFT. Therefore, no further action is needed to perform clicking cancel-
lation. Also, this method is very fast, which has good potential to synthesize the
engine sound with a neural network on the vehicles in real-time. In the future,
we are going to collect more data to train a better network. Besides, some tech-
niques, such as quantization and network pruning, can be used to compress the
model to further reduce the model size. We will also investigate how to predict
the RPM signal from other captured information, e.g., vehicle speed, and then
perform the engine sound synthesis using the estimated RPM signal, which is
more suitable to the real applications.
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