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Abstract—Most multi-channel speaker extraction schemes use
the target speaker’s location information as a reference, which
must be known in advance or derived from visual cues. In
addition, memory and computation costs are enormous when
the model deals with the fusion input. In this paper, we propose
Speaker-extraction-and-filter Network (SeafNet), which is a low-
complexity multi-channel speaker extraction network with only
speech cues. Specifically, the SeafNet separates the mixture by
utilizing the correlation between an estimation of target speaker
on reference channel and the mixed input on rest channels.
Experimental results show that compared with the baseline, the
SeafNet model achieves 6.4% relative SISNRi improvement on
the fixed geometry array and 8.9% average relative SISNRi
improvement on the ad-hoc array. Meanwhile, the SeafNet
achieves 60% relative reduction in the number of parameters
and 42% relative reduction in the computational cost.

I. INTRODUCTION

The cocktail party problem [1] shows the fact that the
performance of the speech applications, such as speech recog-
nition, is significantly affected by noise and reverberation in
the real world. Speech separation is widely used to deal with
this problem by improving the noise robustness of the back-
end speech systems. Although most methods work well in
the single-channel scenario [2]–[5], the performance declines
significantly when the separation system faces a reverberation
background. The multi-channel speech separation model with
a beamformer is designed to address this issue. Conventional
beamforming algorithms can be broadly classified as fixed
and adaptive. The fixed beamformer [6] first calculates the
time difference of arrival (TDOA) between the reference
microphone and the remaining microphones to derive a time-
shifted signal for each microphone and then sums up the
time-shifted signals to obtain the final beamformer output.
The adaptive beamforming algorithms determine the optimal
weights of the beamformer through different criteria [7]–[9],
the main one of which is the minimum variance distortionless
response [8]. In recent years, multi-channel speech separation
adopting a learning-based beamformer has become dominant.
There are two main routes for these multi-channel speech
separation schemes. One class [10]–[12] uses deep neural
networks (DNNs) to pre-separate the signals of each channel
first, and then estimates the beamformer coefficients based on
the pre-separated outputs, or filters the pre-separated outputs
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Fig. 1. The tranditional way to use the speaker embedding in target speaker
extraction.

directly with a conventional beamformer. The other class [13]–
[16], which implicitly employs beamforming in DNN, directly
models the mapping relationship between multi-channel in-
puts and target outputs. Among the aforementioned methods,
Filter-and-Sum Network with Transform-Average-Concatenate
(FaSNet-TAC) [16] belongs to the latter, and achieves good
performance. FaSNet-TAC is a microphone permutation and
number invariant model due to the use of pair-wise features.
Moreover, in order to overcome the shortcomings of using
pair-wise features, FaSNet-TAC adopts TAC operation to fully
utilizes the information from all microphones. Experimental
results in [16] shows that FaSNet-TAC works well in both
fixed geometry array and ad-hoc array. However, the unknown
number of speakers and the global permutation problem are
still the main obstacles for multi-channel blind speech separa-
tion algorithms.

Speaker extraction [17], [18], also known as target speech
separation, can extract a specific speaker’s speech from the
mixture with reference information. The speaker’s location is
commonly used as auxiliary reference information in multi-
channel scenarios [19], [20]. However, the speaker’s location
must be known in advance or extracted from the visual
features [21]. Using the speaker embedding from the target
speaker’s enrollment speech can deal with this issue, yet this
will lead to another problem of bigger model size and computa-
tional costs due to the relatively high dimensionality of fusion
features as shown in Figure 1. This problem is even more
serious on multi-channel tasks. In this paper, we extend the
FaSNet-TAC [16] model to the multi-channel speaker extrac-
tion task. Moreover, to resolve the aforementioned limitations,
we propose a relatively low-complexity speaker extraction
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Fig. 2. System flowchart of the origin FaSNet-TAC models. (A) The FaSNet-TAC first splits the input into center segments and context segments. (B) The
single-stage FaSNet-TAC model. (C) The two-stage FaSNet-TAC model

network only using speech cues, called Speaker-extraction-
and-filter Network (SeafNet). Specifically, the SeafNet first
extracts the target speaker’s wave of the reference microphone
signal by utilizing a reference speech. Then, the SeafNet model
computes the Normalized Cross-Correlation (NCC) of this
estimation and mixed waveform. The NCC feature contains the
content difference between the reference microphone’s target
speaker estimation and the multi-channel mixed input. Finally,
the SeafNet derives the separation result in the same way
as the FaSNet-TAC model. In this way, the speaker features
only need to be concatenated with the time-domain features
of the reference microphone, rather than with the ones of
all microphones’ signal, significantly reducing the number of
parameters and computational costs of the model.

II. METHODS

A. Original FaSNet with TAC

FaSNet-TAC is an effective multi-channel blind speech
separation solution. Figure 2 (B) and (C) shows the two-
stage [15] and single-stage [16] FaSNet-TAC models. As
shown in Figure 2 (A), FaSNet-TAC first split the input into
center segments with the length of W:

xc,s = xc[sH : sH +W − 1] (1)

where xc,s is the center segments, c ∈ 0, 1, ..., C − 1 is the c-
th microphone of the input, s ∈ Z is the index of the segments,
and H ∈ [0,W −1] is the hop size. Then, xc,s is concatenated
with a context window with the length of L on both sides and
results chunkc,s:

chunkc,s = xc[sH − L : sH +W + L− 1] (2)

The two-stage FaSNet-TAC first calculates the Normalized
Cross-Correlation (NCC) feature, defined as the cosine simi-
larity between the reference microphone signal and the signal
of each remaining microphones. The NCC feature can be
formulated as:{
chunkc,s,m = xc,s[m : m+W − 1]

qc,s,m =
x0,s(chunkc,s,m)T

||x0,s||2||chunkc,s,m||2

,m = 1, ..., 2L+ 1

(3)

where qc,s,m is the NCC feature between x0,s and
chunkc,s,m. x0,s and chunkc,s,m is the center segments of
the reference microphone and the context segments of the c-th
microphone, respectively. The mean of the obtained NCC fea-
tures M(q(0,...,C−1),s,m) is then concatenated with the context
segments’ encoding of reference microphone E(chunk0,s,m).
Then, the results are fed into N1 Dual-Path RNN (DPRNN) [5]
blocks F (∗) to calculate the beamformer coefficients of the
reference microphone h0,s,k where k = 0, 1, ...,K − 1. K is
the number of the speakers. The estimation of the reference
microphone y0,s,k is then obtained by filtering chunk0,s,m

with the beamformer coefficients h0,s,k:

hc,s,k = FTAC([E(chunkc,s,m),gc,s,m]) (4)

ys,k = y0,s,k +

C−1∑
c=1

chunkc,s,m ⊛ hc,s,k (5)

Unlike the above two-stage architecture, the single-stage
FaSNet-TAC model jointly estimates the beamformer coef-
ficients for all input channels and applies the TAC module
between all DPRNN blocks.

B. FaSNet-TAC for Speaker Extraction

We propose two main options for using the FaSNet-TAC
to extract the target source. The first solution, called FaSNet-
TAC+Sim, is to use the original FaSNet-TAC to obtain the
separation results of multiple speakers and then filter the target
source through the cosine similarity in the inference stage.
The second solution, called Tar-FaSNet-TAC, is to utilize the
target speaker embedding during the training stage to obtain
a speaker extraction model based on FaSNet-TAC, which can
directly extract the target source.

Figure 3 (A) shows the structure schematic Tar-FaSNet-
TAC model, which consists of a speaker embedding extraction
module and a speaker extraction module. The ResNet34 used
as the speaker embedding extraction module in this work is
based on [22]. The speaker extraction model consists of N
DPRNN blocks with TAC. The speaker embedding extraction
module first extract the target speaker embedding e ∈ R1×D,
where D is the dimension of the frequency bins. Then the
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Fig. 3. System flowchart of the SeafNet models. (A) Multi-channel speaker extraction model based on FaSNet-TAC. (B) The SeafNet-S model applies speaker
extraction on each microphone. (C) The SeafNet-A model only applies speaker extraction on reference microphone.

speaker extraction module calculates the NCC feature gc,s,m

between the reference signal and multi-channel inputs. The
obtained e and gc,s,m are then concatenated with the encoder
of the context segments chunkc,s,m to derive the target
speaker’s filter coefficients hc,s, where c ∈ 0, ..., C − 1:

hc,s = FTAC([E(chunkc,s,m),gc,s,m, e]) (6)

Finally, the model generate the estimated target source by
filtering multi-channel inputs with hc,s.

C. SeafNet

Although the solutions in Section II-B work well, the
model’s size and computation costs are significantly increased
when processing fusion features. In order to address this
problem, we further propose the SeafNet framework. Figure 3
shows the two different structures of SeafNet, named SeafNet-
A and SeafNet-S, respectively.

1) SeafNet-A: SeafNet-A in Figure 3 (C) first applies
single-channel speaker extraction on the context segments of
all input microphones:

estc,s,m = F ([E(chunkc,s,m), e]), c = 0, ..., C − 1 (7)

where F (∗) indicates the DPRNN blocks, C indicates the
number of microphones, and e is the target speaker embedding.
Next, we obtain the center segments est xc,s and context
segments est chunkc,s,m of the pre-separated output through
overlap-and-add and split operation. Then SeafNet-A calcu-
lates the NCC feature between est x0,s and est chunkc,s,m

and estimates the target speaker’s filter coefficients:

gc,s,m =
est x0,s(est chunkc,s,m)T

||est x0,s||2||est chunkc,s,m||2
(8)

hc,s = FTAC([E(est chunkc,s,m),gc,s,m]) (9)

where FTAC(∗) indicates the DPRNN with TAC blocks.
Finally, hc,s are convolved with est chunkc,s,m and generate
the separation results like the original FaSNet-TAC.

2) SeafNet-S: SeafNet-S in Figure 3 (B) first applies single-
channel speaker extraction only on the reference microphone’s
center segments, not on the context segments of all micro-
phones as in the SeafNet-A model:

est0,s = F ([E(x0,s), e]) (10)

where E(x0,s) indicates the encoder of the reference micro-
phone’s center segments. e is the target speaker embedding.
Then SeafNet-S calculates the NCC feature gc,s,m between
est0,s and all microphones’ context segments chunkc,s,m.
The target speaker’s filter coefficients can be calculated as:

gc,s,m =
est0,s(chunkc,s,m)T

||est0,s||2||chunkc,s,m||2
(11)

hc,s = FTAC([E(chunkc,s,m),gc,s,m]) (12)

At last, hc,s are convolved with chunkc,s,m and generate the
final estimation.

III. EXPERIMENT SETUP

A. Dataset

Datasets for speaker embedding extraction module: We use
the development set of the VoxCeleb2 [23], which contains
over 1 million utterances from 5991 speakers, to train a
ResNet34-based speaker verification model. We use the test
set of the VoxCeleb1 [23] for testing. The test set contains
4715 utterances from 40 celebrities and has no overlap with
the identities in the VoxCeleb2.
Datasets for speaker extraction module: We use the same
dataset in [16], a multi-channel two-speaker noisy reverberant
dataset with both ad-hoc and fixed geometry microphone
arrays. Each class of microphone array includes 20000, 5000,
and 3000 4-second long utterances for training, validation
and test, respectively. The source utterances in these multi-
channel mixed waveform are selected from the 100-hour Lib-
rispeech [24], and we randomly select an additional utterance
as the enrollment waveforms for each source.



TABLE I
RESULTS ON THE 6-MIC FIXED GEOMETRY ARRAY. SV: WITH OR WITHOUT A SPEAKER VERIFICATION MODEL IN THE INFERENCE STAGE. EMB: WITH OR

WITHOUT A LOCAL TARGET SPEAKER EMBEDDING EXTRACTED IN ADVANCE. FASNET-TAC+SIM: ORIGINAL SINGLE-STAGE FASNET-TAC COMBINED
WITH TARGET SOURCE SELECTION THROUGH COSINE SIMILARITY IN THE INFERENCE STAGE. TAR-FASNET-TAC: MULTI-CHANNEL TARGET SPEAKER

EXTRACTION MODEL BASED ON THE SINGLE-STAGE FASNET-TAC AND RESNET34 MODELS DESCRIBED IN SECTION II-B.

Methods SV Emb # of Params(M) FLOPS(G) SISNRi(dB)
Baseline: FaSNet-TAC + Sim w/ w/ 9.0(2.9+6.1) 64.31(55.09 + 2*4.61) 10.92
Proposed: Tar-FaSNet-TAC w/o w/ 6.3 148.10 12.15

Proposed: SeafNet-A w/o w/ 3.6 82.30 11.64
Proposed: SeafNet-S w/o w/ 3.6 37.03 11.62

TABLE II
RESULTS ON THE AD-HOC ARRAY. THE PARAMS, FLOPS, AND SISNRI OF THE METHODS ARRAYS WITH 2 / 4 / 6 MICROPHONES ARE REPORTED.

Methods SV Emb # of Params(M) FLOPs(G) SISNRi(dB)
Baseline: FaSNet-TAC + Sim w/ w/ 9.0 29.2 / 46.75 / 64.31 9.72 / 9.67 / 11.74
Proposed: Tar-FaSNet-TAC w/o w/ 6.5 50.98 / 99.54 / 148.10 11.01 / 12.55 / 12.94

Proposed: SeafNet-A w/o w/ 3.6 28.24 / 55.27 / 82.30 10.5 / 11.59 / 12.26
Proposed: SeafNet-S w/o w/ 3.6 19.18 / 28.11 / 37.03 10.10 / 11.55 / 12.15

B. Implementation details

Speaker embedding extraction module: We use the default
ResNet34V21 to extract a 256-dimensional embedding for the
target speaker. Specifically, we use the SAP [25] encoder and
the ge2e [26] loss function in our training.
Speaker extraction module: We have compared the perfor-
mance of four models: 1) FaSNet-TAC2+Sim, 2) Tar-FaSNet-
TAC, 3) proposed SeafNet-A, and 4) proposed SeafNet-S. The
results in 1) are the baseline. We use 4 DPRNN blocks in
all models and the hyperparameters are the same as [16].
Specifically, we apply TAC between all the DPRNN blocks
in 1) and 2), while in 3) and 4) we use it only in the last
two blocks. The length of the center segment W is 4ms
and the length of context segment L is 16ms. The scale-
invariant SNR (SISNR) [27] is used as the training target.
The SISNR improvement (SISNRi) is used as the separation
performance metric. In addition, we evaluate the FLOPs and
Params information of all models.

IV. RESULTS AND DISCUSSIONS

Table I shows the experimental results on the 6-mic fixed ge-
ometry array. Among all schemes, the Tar-FaSNet-TAC model
obtained the maximum SI-SNRi improvement, which achieved
1.23 dB SISNRi improvement over the baseline. However, its
FLOPs’ cost increases significantly because the dimensionality
of the fusion features is much larger than the one of the original
model inputs. The SeafNet-A further reduces the number of
model parameters, but the FLOPs cost is still higher than the
baseline due to the iterative pre-separation of each microphone.
The SeafNet-S model has a comparable separation perfor-
mance to the SeafNet-A model, which achieves a 6.4% relative
improvement over the FaSNet-TAC+Sim baseline model. It can
be noticed that the proposed SeafNet-S method has the lowest
model size and computational cost.

Table II shows the results on ad-hoc array and we only report
the results on 2, 4, and 6 microphones to compare with [16].
The results in Table II shows similar trends as in Table I.

1https://github.com/clovaai/voxceleb trainer
2https://github.com/yluo42/TAC

Specifically, the Tar-FaSNet-TAC model achieves the largest
SISNR improvement, but accompanied with an increase in
FLOPs’ costs. The SeafNet-S model achieves 3.5% relative
SISNRi improvement, 42% relative FLOPs reduction, and
60% relative Params reduction against the baseline (6-mic),
respectively. We note that in the 2-mic scenario, the SeafNet-S
still outperforms the baseline, but there is a slight degradation
in the performance compared to the SeafNet-A model. It may
be because the output of pre-separation account for a notable
contribution to the calculation of the NCC features, which
could greatly affect the separation performance of the model.

Although the SISNRi performance of our proposed SeafNet-
A and SeafNet-S is slightly lower than that of Tar-FaSNet-
TAC, the SeafNet model outperforms the Tar-FaSNet-TAC
model by a large margin in terms of Params’ and FLOPs’
cost. In addition, the results in Table I and Table II show that
SeafNet-S outperforms the baseline on both fixed geometry
array and ad-hoc array with lower Params’ and FLOPs’ cost.
It means that for the speaker extraction task, the improvement
brought by our proposed SeafNet models is quite effective.

V. CONCLUSION

In this work, we extend the FaSNet-TAC model to multi-
channel target speaker extraction task and propose a Speaker
extraction-and-filter Network (SeafNet). SeafNet first extracts
the target source from the signal of the reference microphone
by utilizing auxiliary speech. Then, SeafNet calculates the
NCC feature between the estimated target source and multi-
channel input. Finally, SeafNet derives a set of filter coeffi-
cients using the fusion feature of the input and NCC feature.
The filter result of the input is our final output. Experimental
results show that our proposed SeafNet achieves a favorable
separation performance improvement while maintaining rela-
tively small model size and low computational costs.
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