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ABSTRACT

This paper further explores our previous wake word spotting sys-
tem ranked 2-nd in Track 1 of the MISP Challenge 2021. First,
we investigate a robust unimodal approach based on 3D and 2D
convolution and adopt the simple attention module (SimAM) for
our system to improve performance. Second, we explore different
combinations of data augmentation methods for better performance.
Finally, we study the fusion strategies, including score-level, cas-
caded and neural fusion. Our proposed multimodal system leverages
multimodal features and uses the complementary visual informa-
tion to mitigate the performance degradation of audio-only sys-
tems in complex acoustic scenarios. Our system obtains a false
reject rate of 2.15% and a false alarm rate of 3.44% in the eval-
uation set of the competition database, which achieves the new
state-of-the-art performance by 21% relative improvement com-
pared to previous systems. Related resource can be found at:
https://github.com/Mashiro009/DKU_WWS_MISP.

Index Terms— audio-visual wake-up word spotting, simple at-
tention module, multimodal system, complex acoustic scenarios

1. INTRODUCTION

With the rapid application of hand-free devices such as mobile phones
and voice assistants, Wake Word Spotting (WWS), also known as a
specific case of Keyword Spotting (KWS), is increasingly attractive.
WWS system is designed to detect a predefined wake word or a set of
wake words in the streaming audio.

Recently, many works for WWS based on deep neural network
are proposed, including deep neural networks (DNN) [1], convo-
lutional neural networks (CNN) [2], temporal convolutional neural
networks [3] and Transformer [4]. These works show good per-
formance under clean and close-talking scenarios. However, it is
observed that the probability of the false alarm becomes higher under
complex acoustic environments such as background noises (cheers,
TV or screams), reverberations, and conversational multi-speaker
interactions with a significant portion of speech overlaps, which will
harm the user experience in practical applications.

Although there has been a great deal of multi-modal works in
the field of audio-visual speech recognition (AVSR) [5, 6], previous
works mainly focus on the audio-only WWS system, which ignores
the use of visual information. Inspired by human perception, comple-
mentary visual information (e.g., lip movements) can help understand
the semantics of speech in complex acoustic scenarios since the visual
modal is not affected by acoustic noise. [7] uses conformer [8] archi-
tecture in AVSR, and [9] investigates an audio enhancement module
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Fig. 1. Framework of our audio-visual wake word spotting system.

called V-CAFE for AVSR. In [10], the authors investigate a simple
CNN-based audio-visual KWS system and demonstrate good perfor-
mance for noisy audio environments. Along with the 1st Multimodal
Information based Speech Processing Challenge (MISP Challenge
2021 [11]) and its data release [12], some new works are proposed for
Audio-Visual Wake Word Spotting (AVWWS) including CNN-3D-
based model [13] and transformer-based end-to-end model [14].

In this paper, we extend our previous work [13] to an effective
AVWWS system. We design the robust unimodal system by replac-
ing previous 3D CNN with a mixture of 2D and 3D CNNs. We also
adopt the simple attention module (SimAM) [15] to our WWS system
without extra parameters, which has been used in automatic speaker
verification (ASV) [16, 17]. To further improve the performance of
our WWS system, we do experiments to explore better combination of
the data augmentation methods. Finally, we study the fusion strategies
for the two unimodal systems and obtain a 21% relative improvement
on top of our previous second-place work. Also, we achieve the state-
of-the-art (SOTA) result (5.59% WWS score) on the MISP dataset.

2. SYSTEM DESCRIPTION

As shown in Figure 1, we first investigate a robust model for single-
modality and then study the fusion strategies for the two solid uni-
modal systems to get an effective audio-visual WWS system. We
also investigate the data augmentation strategies and find a better
combination than the baseline.



2.1. Unimodal Models

2.1.1. 3D-ResNet34

Our previous work [13] constructs a ResNet34-liked neural network
based on 3D CNNs (ResNet-3D) to cope with the unimodal WWS
task. The two modalities have the same network architecture, except
that the dimensions of the inputs are different. The video inputs are
raw image sequences with the shape of (T,H,W,3), in which T rep-
resents the number of frames, H,W represents the height and width
of the image, and 3 represents the RGB channel. For the audio inputs,

we first extract the 2D acoustic features Xspec∈RT
′
×D(e.g. FBank,

MFCC) from the 1D waveform, and then we use a sliding window
with the shape of (D,D) to slice the 2D acoustic features along the
time axis with the stride of T ′

T
because of the difference of the fps of

audio and video, so we organize the audio inputXaudio with the shape
of (T,D,D,1). Hence, we can make the decision using the unimodal
model with inputs that have the same shape of (T,H,W,C).

2.1.2. 2D-ResNet34

In previous approaches for audio-only WWS tasks [2, 3, 4], the 2D
spectrum Xspec is usually considered as a single channel image, we
also design the 2D-ResNet34 network for such input. The experi-
ments in [18] and Sec. 4.2 show that 3D-ResNet is more suitable for
the temporal-spatial features compared with 2D-ResNet, and the con-
structed Xaudio contains local short-time spatial information which
3D-ResNet can better utilize.

2.1.3. 3D-ResNet18+2D-Resnet18

[18] indicates that 3D CNNs at low-level layers focus on short-term
spatial modeling, and 2D CNNs help extract semantic and tempo-
ral information at high-level layers in the Action Recognition task.
Hence, we split the 3D-ResNet34 into two cascaded networks, which
are 3D-ResNet18 and 2D-ResNet18. The design of converting 3D
CNN to 2D CNN can reduce the number of parameters of the model.
At the same time, the network with a mixture of 3D CNN and 2D
CNN can collaborate on the modeling, allowing different modules
to focus on different perspectives. The inputs of this network are the
same as those of the 3D-ResNet34, but the feature map is averaged
along the spatial axis after the 3D-ResNet18 to the shape of (C,T ).
Then we consider this as a one-channel latent image with the shape
of (1,T,C) and send it to the 2D-ResNet18.

2.1.4. 3D-ResNet18+2D-Resnet18+SimAM

The attention modules for CNN have been widely used and have
achieved great performance in computer vision and speech process-
ing. Previous channel-wise squeeze-excitation (SE) [19] obtains
1D channel-level weights and has been used in WWS [20]. Con-
volutional block attention module (CBAM) calculates 2D and 1D
attention weights separately [21]. All of these attention modules need
extra parameters.

[15] proposes SimAM based on the phenomenon of spatial
suppression [22] in neuroscience. The 3D weights estimate the im-
portance of individual neurons, and spatial suppression shows that
the most informative neurons usually show distinctive firing patterns
from surrounding neurons. So the energy function for each target
neuron output t in the 3D feature map X∈RC×H×W is defined as:

et(wt,bt,y,xi)=(yt− t̂)2+ 1
M−1

∑M−1
i=1 (yo−x̂i)

2 (1)

where t̂=wtt+bt and x̂i =wtxi+bt are the linear transforms of t
and xi, xi represents the output of neurons other than t in the same

channel of the feature map. i is the index along the spatial dimension
M =H×W . The energy function attains the minimal value when
t̂= yt and x̂i = yo, and yt should be larger than yo since the spatial
suppression. For simplicity, [15] uses the binary label to set the yt=1
and yo=−1, and also adds a regularizer into Equation 1:

et(wt,bt,y,xi)=
1

M−1

∑M−1
i=1 (−1−(wtxi+bt))

2+

(1−(wtt+bt))
2+λw2

t

(2)

It is computationally expensive to solve the above function.
Luckily, Equation 2 has a fast closed-form solution with respect towt

and bt according to [15]. Then we can get the final minimal energy
by putting wt and bt back to equation 2:

e∗t =
4(σ̂2+λ)

(t−µ̂)2+2σ̂2+2λ
(3)

where µ̂ = 1
M

∑M
i=1 xi and σ̂2 = 1

M

∑M
i=1 (xi−µ̂2). The impor-

tance of each neuron can be obtained by 1
e∗t

based on the spatial
suppression. The final SimAM is defined as:

X̃=σ( 1
E
)
⊗

X (4)

where
⊗

represents the element-wise multiplication, E groups all
e∗t across channel and spatial dimensions for the 3D feature map X,
and σ(·) represents the sigmoid function. SimAM calculates the 3D
attention weights based on the energy function without extra param-
eters. Moreover, it is easy to apply the SimAM to the 4D feature map
X4D ∈RC×T×H×W of the 3D CNN, we calculate the energy value
for each neuron along the temporal and spatial dimension and set
M=T×H×W .

2.2. Fusion Strategy

2.2.1. Score-Level Fusion

To fusing the audio-visual systems together, the official baseline
makes the final decision just by weighted summation from the sepa-
rate unimodal system.

Pav=α×Pa+β×Pv (5)

where Pa and Pv are the posterior probabilities generated by the
audio- and video-only systems. However, the posterior probability
distributions of the audio- and video-only systems are pretty different.
Hence, we need to investigate a more suitable fusion strategy.

2.2.2. Cascaded Fusion

Since there is a performance gap between the two systems, we can use
a cascade scheme to let one system with poorer performance detect
the wake-up words samples with low confidence thl first and then let
the other system with better performance give the final result with a
higher threshold thh. Here we choose the video-only system as the
first stage and the audio-only system as the second stage.

2.2.3. Neural Fusion

The latent features extracted from the unimodal system are rich in
terms of semantic information and can be used to determine whether
they are wake-up word samples. Hence, we train a simple neural
network to use these latent features further.

We use the Hierarchical Modality Aggregation (HMA) approach
in our previous work [13]. We apply global average pooling to the
latent feature maps from the hierarchical residual CNN blocks in each



unimodal neural network at different layer levels. We concatenate the
obtained embedding vectors at the same level from two modalities
to get multimodal embedding vectors cl, where l represents layer
level. Then we use the HMA to aggregate all the cl and give the final
multimodal results.

2.3. Data Augmentation

2.3.1. Audio Stream

For the audio stream, we have tried some audio-base data aug-
mentation methods according to [9, 13, 11], including offline noise
/reverberation adding, beamforming enhancement, negative sub-
segmentation, speed perturbation, volume perturbation, trimming
slightly and SpecAugment [23].

• Offline noise/reverberation adding (NR): We generate room
impulse response to the original near-field data to simulate
mid and far-field data by using the pyroomacoustic tool and
mix noises provided by the officials with a random SNR from
-15 to 15 dB referring to the official codes.

• Beamforming enhancement (BE): We implement beamform-
ing (MVDR [24]) to multi-channel audio signals to exhaust
the potential of microphone arrays and incorporate these
beamforming-enhanced audios into the training data.

• Negative Sub-segmentation (NS): It is possible for the model
to detect the wake-up word only according to the length of the
audio with low accuracy since the duration distribution of the
positive and negative samples are quite different. Hence, we
refer to [25] sub-segment the negative samples during training.

• Volume perturbation (VP): Each audio is randomly selected to
change its volume. The volume changes in the range [0.125,2].

• Speed perturbation (SP): The speed of the audio is randomly
changed to be faster or slower, with the ratio in the range
[0.9,1.1].

• Trimming slightly (TS): Each audio is randomly selected to be
trimmed slightly at the beginning or end, with the ratio of 0.95.

• SpecAugment (SA): we use the frequency masking and the
time masking for each randomly selected audio.

2.3.2. Video Stream

For the visual stream, we adopt multiple video-based data augmen-
tation methods, including speed perturbation, frame-wise rotation,
horizontal flip, frame-level cropping, color jitters and gray scaling.
Exact details can be found in [13].

3. EXPERIMENTAL SETUP

3.1. Dataset and Evaluation Metrics

We use the dataset provided by the MISP Challenge 2021. The target
of the challenge is to detect the wake word ’Xiao T, Xiao T’ spoken
by the participants in the far-field smart-home scenarios.

The released database has two subsets: the training set (47k+
negative samples and 5K+ positive samples) and the development set
(dev: 2k+ negative samples and 600+ positive samples), which are
in the near, middle and far fields. Moreover, an evaluation set (eval:
8K+) without annotations is provided to competition participants,
which is only in the far field. After the competition, we get the anno-
tations from the MISP committee to compare our results with other
teams fairly.

In the AVWWS task, the positive class represents the existence
of the wake word in a given sample, and the negative class indicates
the opposite. Following the requirements of the evaluation plan, we
use False Reject Rate (FRR), False Alarm Rate (FAR), and the Score
of WWS as the evaluation criteria. Let Nwake denote the number
of samples that contain the wake word, and Nnon wake represent the
number of samples without the wake word. The FRR and FAR are
defined as follows:

FRR=
NFR

Nwake
, FAR=

NFA

Nnon wake
(6)

where NFR denotes the number of samples containing the wake
word while not recognized by the system. NFA denotes the number
of samples containing no wake words while predicted to be positive
by the system. Hence, the final score of Wake Word Spotting (WWS)
is defined as:

ScoreWWS =FRR+FAR (7)

3.2. Data Preprocess

For the visual steam, we only use the RGB lip region images of the
video. We employ a face detector (RetinaFace [26]) to get the face
images and facial landmarks from the video. And then, we deploy
a face recognizer (ArcFace [27]) to select the target speaker in the
far-field video. Finally, we crop the lip regions of the target speaker
based on the detected facial landmarks. The details can be found in
[13]. Each extracted lip-region video is resized to have a resolution
of 112× 112 with 3 RGB channels. The dimension T is set to 64,
which means each video is sampled to contain 64 frames. Therefore,
the shape of the video sample becomes (64,112,112,3).

For the audio stream, we extract the 80-dim log-mel filterbank
features(FBank) from the waveform with 25ms long and 10ms shift.
The dimensionT

′
is set to 256, which means each audio is sampled to

contain 64 frames. Therefore, the shape of the audio sample becomes
(256,80). For 3D-ResNet input, we use a sliding window with the
shape of (80,80) to slice the features with the stride of 4. Hence, we
organize the audio samples with the shape of (64,80,80,1).

3.3. Model Details

For SimAM, the hyper-parameter λ is set to 0.001. For Score-Level
Fusion. α and β are set to 0.5. thl is set to 0.1 and thh is set to 0.4
for Cascaded Fusion. All models are trained on 1 GPU 3090, and
the batch size is 64. The learning rate is set to 0.001 while training
unimodal model and 0.0001 while training HMA fusion model by the
Adam optimizer. And we adopt the weighted BinaryCrossEntropy
(BCE) Loss (negative:positive=5:1) to tackle the imbalance between
positive and negative samples.

4. RESULTS AND DISCUSSION

4.1. Ablation experiments for data augmentation

We do the ablation experiments for the audio-based data augmenta-
tion to find the best combination of these methods. Table 1 reports
the details results on the far-field development and evaluation set. For
convenience, we use 2D-ResNet34 for our experiments here. We find
that the performance of the system degrades without any data aug-
mentation. We first apply NR and BE to the audio-only system, and
there was some improvement because of increase in the number of
training samples. Based on this, SP, TS and SA bring more significant
boosts. We find that VP and NS will slightly degrade the performance
of the model. However, the combination of NS and other methods



Table 1. Performance of different data augmentation methods based on audio-only 2D-ResNet34 for the far-field data. NR, BE, NS, VP, SP,
TS and SA represent offline noise/reverberation adding, beamforming enhancement, negative sub-segmentation, volume perturbation, speed
perturbation, trimming slightly and specaugment in Sec. 2.3.1.

ID DA Dev[%] Eval[%]

NR+BE NS VP SP TS SA FRR FAR WWS FRR FAR WWS

D1 - - - - - - 12.5 3.42 15.92 16.62 4.75 21.36
D2 ✓ - - - - - 10.42 5.68 16.09 13.24 6.77 20.01
D3 ✓ ✓ - - - - 9.78 5.44 15.21 12.08 8.12 20.2
D4 ✓ ✓ ✓ - - - 8.33 6.35 14.68 13.12 7.42 20.54
D5 ✓ ✓ - ✓ - - 7.53 4.62 12.15 7.66 8.59 16.25
D6 ✓ ✓ - - ✓ - 8.65 4.71 13.37 10.79 6.35 17.14
D7 ✓ ✓ - - - ✓ 5.45 7.12 12.57 7.05 10.15 17.2

D8 ✓ ✓ - ✓ ✓ ✓ 5.45 4.76 10.21 5.64 6.05 11.69
D9 ✓ - - ✓ ✓ ✓ 6.09 4.43 10.51 4.97 7.33 12.3

Table 2. Comparison of different audio-only systems. 3D-18+2D-18
means 3D-ResNet18+2D-ResNet18.

ID Model Field Dev[%] Eval[%]

FRR FAR WWS FRR FAR WWS

A1 2D-ResNet34 Far 5.45 4.76 10.21 5.64 6.05 11.69
A2 3D-ResNet34 Far 5.77 4.28 10.05 5.46 5.88 11.34
A3 3D-18+2D-18 Far 6.76 2.98 9.71 7.05 4.19 11.24

A4 A3+SimAM Far 5.93 3.61 9.54 6.38 4.65 11.03

Table 3. Comparison of different video-only systems. 3D-18+2D-18
means 3D-ResNet18+2D-ResNet18.

ID Model Field Dev[%] Eval[%]

FRR FAR WWS FRR FAR WWS

V1 3D-ResNet34 Far 8.81 8.03 16.85 18.52 9.03 27.54
V2 3D-18+2D-18 Far 9.78 6.64 16.41 14.41 9.62 24.03
V3 V2+Pretrain Far 10.1 6.3 16.3 11.83 9.51 21.34

V4 V3+SimAM Far 6.89 9.09 15.98 9.56 13.37 22.93
V5 V4+Pretrain Far 9.13 6.25 15.39 8.03 11.1 19.13

will assist in performance improvement. We finally conclude the set
of data augmentation methods, achieving a performance of 11.69%
WWS on the eval set.

4.2. Results for different systems

Table 2 shows the results for audio-only systems of different architec-
tures. 3D-ResNet34 performance is better than 2D-ResNet34 because
of the modeling of the short temporal feature. 3D-ResNet18+2D-
ResNet18 achieves better results according to the mixture of 3D
and 2D CNN. Finally, the 3D-ResNet18+2D-ResNet18+SimAM
achieves the best result (11.03% WWS) without introducing extra
parameters.

Table 3 shows the results for video-only systems of different
architectures. 3D-ResNet18+2D-ResNet18 achieves better results
according to the mixture of 3D and 2D CNN. The 3D-ResNet18+2D-
ResNet18+SimAM achieves (22.93% WWS) without introducing
extra parameters. In addition, we follow [13] to pretrain the backbone
model on a lip-reading database named CAS-VSR-W1k database
[28], then have it fine-tuned on the MISP database. Finally, the 3D-
ResNet18+2D-ResNet18+SimAM+Pretrain achieves the best result
(19.13% WWS).

The results for the audio-visual fusion systems are shown in table
4. Moreover, we also compare our system with the previous SOTA
result. We combine the best models from the respective modalities

Table 4. Comparison of different audio-visual systems.

ID Model Field Dev[%] Eval[%]

FRR FAR WWS FRR FAR WWS

VA1 Official [12] Far 7.3 6.8 14.1 10.1 15 25.1
VA2 Xu et al. [14] Far - - - - - 9.1
VA3 Cheng et al. [13] Far 3.85 3.42 7.27 - - 7.1
VA4 MISP 2021 1st [11] Far - - 4.1 - - 5.8

VA5 Score-Level Far 1.92 3.37 5.29 1.54 4.82 6.36
VA6 Cascaded Fusion Far 5.29 2.3 7.59 7.29 3.5 10.79

VA7 HMA Far 3.04 2.55 5.59 2.15 3.44 5.59

(A4+V5) and test multiple fusion strategies. The cascade system is
not good enough compared to the score-level fusion because the dis-
tribution of scores of the two modalities is inconsistent, which plays
a limited screening effect and requires fine threshold adjustment. We
find that Score-Level fusion and Cascaded fusion do not fully utilize
the information of the visual modality. In contrast, HMA can further
utilize the features of the respective modality to give multimodal
results finally. And, we obtain our final model by averaging the top-3
best models which have a lower loss on the dev set. Finally, we obtain
a 21% relative reduction WSS compared with our previous work [13]
and achieve the SOTA audio-visual result (5.59% WWS).

5. CONCLUSION

In this paper, we extend our previous work [13] to investigate robust
audio-visual WWS system. We use a hybrid 3D and 2D convolu-
tion network to model the low-level spatial and high-level semantic
information, respectively, while introducing the SimAM without ad-
ditional parameters to improve the performance of the unimodal net-
work further. We also explore different multimodal fusion schemes
and find that HMA can take full advantage of the information from
both modalities to give the best results. The performance of the
system has been significantly improved compared with our previous
work and achieved SOTA result (5.59 % WWS) on the MISP dataset.
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