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ABSTRACT
This paper proposes to pretrain Conformer with automatic
speech recognition (ASR) task for speaker verification. Con-
former combines convolution neural network (CNN) and
Transformer model for modeling local and global features,
respectively. Recently, multi-scale feature aggregation Con-
former (MFA-Conformer) has been proposed for automatic
speaker verification. MFA-Conformer concatenates frame-
level outputs from all Conformer blocks for further pooling.
However, our experiments show that Conformer can be eas-
ily overfitted with limited speaker recognition training data.
To avoid overfitting, we propose to transfer the knowledge
learned from ASR to speaker verification. Specifically, an
ASR pretrained Conformer is used to initialize the training of
MFA-Conformer for speaker verification. Our experiments
show that pretraining Conformer with ASR leads to signifi-
cant performance gains across model sizes. The best model
achieves 0.48%, 0.71% and 1.54% EER on Voxceleb1-O,
Voxceleb1-E, and Voxceleb1-H, respectively.

Index Terms— speaker verification, Transformer, Con-
former, pretraining, speaker recognition

1. INTRODUCTION

Speaker verification analyzes the voice pattern of the speech
signal to verify the speakers identity. Over the past five years,
the performance of speaker verification systems has signifi-
cantly improved thanks to the application of deep neural net-
works (DNN) [1, 2]. Various network architecture [3, 4, 5,
6], training objectives [7, 8, 9], and training strategies [10,
11] are proposed for speaker verification systems. In terms
of network architecture, convolution neural networks (CNN)
and time delay neural networks (TDNN) have been the de
facto choice for speaker verification tasks as their abilities to
model local feature patterns and extract speaker characteris-
tics. Variants of CNN and TDNN with residual connection
[12], squeeze and excitation operation [13, 6], Res2Net block
[14, 5, 6], and ResNeXt block [15, 5] further push the limit of
speaker verification performance.
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While CNNs and TDNNs are good at modeling local in-
formation, they are less effective for long-range global con-
text extraction without deeper layers. In contrast, Transform-
ers are more capable of capturing longer context with less
fine-grained local patterns [16]. To better model both local
and global feature patterns, Conformer combines the convo-
lution module with Transformer and shows promising results
on end-to-end speech recognition [17] and speech separation
[18]. Recently, Zhang et al. proposed a multi-scale feature
aggregation Conformer (MFA-Conformer) for speaker veri-
fication. MFA-Conformer concatenates frame-level outputs
from all Conformer blocks to aggregate multi-scale represen-
tations [19]. However, as shown in [19] and our experiments,
MFA-Conformer can be easily overfitted to the training set
when the model size is increased. In this paper, we propose
to use ASR pretrained Conformer for speaker verification to
avoid overfitting for large models.

An ASR Conformer is trained to transcribe text from a
speech signal and is thus equipped to model phonetic infor-
mation. As shown in several studies, phonetic information
helps to learn speaker information in speaker embedding net-
work [20] as well as the statistical model of i-vector [21, 22].
Thus, an ASR pretrained Conformer may help model speaker
characteristics in different phonetic units and extract robust
speaker representations.

Several studies have explored using self-supervised pre-
trained Transformers for speaker verification. Fan et al. [23]
and Vaessen et al. [24] directly fine-tune speaker verifica-
tion model on the pretrained model with additional pooling
layer. However, this method does not outperform the CNN- or
TDNN-based model, which typically has smaller parameters
than the pretrained Transformer. Another method substitutes
the handcrafted feature with the pretrained frame-level feature
to train speaker embedding networks [25, 26]. This method
obtains satisfactory performance with large pretrained param-
eters and requires an additional speaker embedding network.
In this paper, instead of self-supervised pretrained Transform-
ers, ASR pretrained Conformer is used as the network back-
bone for the speaker embedding network. Fine-tuning is di-
rectly applied on the pretrained Conformer, and no additional



speaker network is required. This transfer learning strategy of
fine-tuning a pre-trained ASR Conformer transfer the knowl-
edge learned from ASR to speaker verification.

2. METHODS

2.1. MFA-Conformer

This section describes the architecture of the MFA-Conformer
speaker embedding network [19]. Conformer is adopted as
the network backbone for speaker embedding network. It
consists of a convolution subsampling layer and several Con-
former blocks. Outputs of all Conformer layers are concate-
nated before an attentive statistics pooling layer is used to
generate utterance-level representation. Fully connected lay-
ers are employed afterward to extract the speaker embedding
and classify training speakers.

2.1.1. Conformer block

The conformer block combines CNN and Transformer to cap-
ture global and local information from the spectral feature.
Figure 1 shows a Conformer building block [17]. It con-
tains two feed forward networks (FFN) that sandwich a multi-
head self-attention (MHSA) module followed by a convolu-
tion (Conv) module. The MHSA employs the relative si-
nusoidal positional encoding scheme from Transformer XL
[27], which encodes the relative distance between input fea-
tures. Unlike absolute positional encoding, relative positional
encoding can generalize to sequences of unseen lengths, as
it only encodes the relative pairwise distance between two
frames theoretically. Therefore, the encoders trained with rel-
ative positional encoding are more robust to the variance of
the utterance length [17]. The subsequent convolution mod-
ule contains a point-wise convolution and a gated linear unit
(GLU) followed by a single 1-D depth-wise convolution layer.
Batch normalization is then employed to aid training deep
models, followed by a swish activation and point-wise con-
volution with dropout. Residual connections are employed
between blocks, except that the feed-forward layers have half-
step residual connections. Layer normalization is applied on
top of the Conformer block before output. Mathematically,
given an input hi−1 ∈ Rd×T , the output hi ∈ Rd×T of the
i-th Conformer block is:

h̃i = hi−1 +
1

2
FFN(hi−1)

h′
i = h̃i + MHSA(h̃i)

h′′
i = h′

i + Conv(h′
i)

hi = LayerNorm(x′′
i +

1

2
FFN(x′′

i ))

(1)

where d denotes the Conformer dimension, T denotes the
frame length.
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Fig. 1: A conformer building block.

2.1.2. Multi-scale feature aggregation

Multi-scale feature aggregation (MFA) concatenates frame-
level outputs from all Conformer blocks:

H′ = Concat(h1,h2, · · · ,hL)

H = LayerNorm(H′)
(2)

where L is the number of Conformer blocks, and H′ ∈ RD×T

with D = L × d. This aggregation of different-level rep-
resentations contributes towards robust speaker embeddings
and improves the performance of speaker verification [6].

Attentive statistics pooling is then applied to the concate-
nated outputs H to produce an utterance-level representation
with fixed dimension.

2.2. Fine-tuning on ASR Conformer

Generally, deeper Transformers obtain better results with
more training data [26, 28]. However, it is widely believed
in the literature that large datasets are required for training
deep Transformers from scratch [29]. Experiments in [19]
show that increasing the number of layers of Conformer de-
creases the speaker verification performance, which indicates
overfitting of the Conformer model. To avoid overfitting dur-
ing training, we propose to use ASR pretrained Conformer
for MFA-Conformer based speaker embedding network. This
transfer learning strategy transfer the knowledge learned from
ASR to speaker verification. ASR pretrained Conformers,
which have the ability ZASLZto model phonetic information,
may help model speaker characteristics in different phonetic
units and extract robust speaker representations.



Table 1: Three ASR Conformer encoders

Model #layers #dim #heads hidden units

Small1 16 176 4 704
Medium2 18 256 4 1024
Large3 18 512 8 2048

Specifically, the parameter of the ASR pretrained Con-
former encoder is used to initialize the MFA-Conformer
speaker embedding network. We first fix the parameters of
the Conformer encoder and only update the parameters of the
pooling and speaker classification layers for several training
epochs. Then, all the parameters of the MFA-Conformer are
jointly fine-tuned.

3. EXPERIMENTAL SETUP

3.1. Dataset

The experiments are conducted on VoxCeleb [30, 31]. For
model training, the development set of VoxCeleb 2 is used.
Training data contains 1,092,009 audio files from 5,994
speakers.

Speed perturbation-based augmentation is applied by
speeding up or down with the factor of 1.1 and 0.9, respec-
tively. This produces two times extra copies of the original
training data, resulting in an enlarged dataset with 17,982
speakers and 3,276,027 utterances.

For the enlarged training data, we use additive back-
ground noise or convolutional reverberation noise for data
augmentation. MUSAN dataset [32] is used as the noise
source. Addictive noises include ambient noise, music, and
babble noise. To create babble noise, three to eight speech
files are mixed. We randomly set signal-to-noise ratios (SNR)
between 0 to 20 dB. The convolution operation is performed
for the reverberation noise with 40,000 simulated room im-
pulse responses (RIR) in [33]. We only use RIRs from small
and medium rooms. We apply on-the-fly data augmentation
with a probability of 0.6 during training.

3.2. ASR Conformer pretraining

We use the pretrained ASR model in NEMO toolkit [34]. The
ASR Conformer has same encoder as in [17] but uses lin-
ear decoder and connectionist temporal classification (CTC)
for decoding. Three ASR conformers with different hyper-
parameters are used in our experiments. All models have the
same convolution subsampling rate of 1

4 . And the kernel size

1https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_small

2https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_medium

3https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_large

for the convolution module is 31. Table 1 shows the differ-
ences between the three models regarding the number of con-
former layers, the encoder dimension, attention heads, linear
hidden units, and convolution kernel size.

All Conformer-CTC models are trained with English
corpora from 10 different datasets, which add up to around
34,000 hours of speech data.

3.3. Network configuration

Speech utterances are randomly cropped to 2 seconds for
speaker embedding network training. Logarithmical Mel-
spectrogram with 80 frequency bins is extracted as the acous-
tic feature. Mel-spectrograms are computed over Hamming
windows of 20ms shifted by 10ms.

During training, Additive angular margin (AAM) loss [7]
with a re-scaling factor of 32, and angular margin of 0.2 is
used to learn discriminative representations. The dimension
of speaker embedding is 256. AdamW is used as the opti-
mizer with an initial learning rate of 0.001. Cosine annealing
learning rate scheduler and 4000 steps warming up are ap-
plied. The batch size is set to 512, and weight decay is set to
1e-7.

We applied large margin fine-tuning [11] on the converged
model. The speech is cropped to 6 seconds, and the angular
margin of AAM loss is increased to 0.6. Data augmentation of
speed perturbation is disabled, so the training data falls back
to the original set.

3.4. Evaluation

For evaluation, the development and test sets of Voxceleb 1
are used. We report the speaker verification results on three
trial lists of VoxCeleb 1-O, Voxceleb 1-E and Voxceleb 1-H
as defined in [31]. System performance is reported as equal
error rate (EER) and minimum detection cost (minDCF). The
parameters of the detection cost function are set as: CMiss =
1, CFA = 1, PTarget = 0.01.

Adapted s-norm [35] is applied after cosine similarity
scoring. 30,000 utterances are randomly selected from train-
ing data and used as the imposter cohort for score normaliza-
tion. The adapted cohort size is set to 700.

4. EXPERIMENTAL RESULTS

Table 2 shows the speaker verification results. We first train
three MFA-Conformer speaker embedding networks with
different model sizes without ASR pretraining. The three
models follow the network architecture of ASR Conform-
ers as described in section 3.2. From the table, we can see
that the speaker verification performance of MFA-Conformer
does not improve with more trainable parameters. This indi-
cates that Conformer can be easily overfitted to the training
data without large-scale dataset.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_medium
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_large


Table 2: Speaker verification results on VoxCeleb 1. The results of WavLM use quality-aware score calibration, while other
reported results in the table do not use this method. Comparisons between WavLM and other systems may not be fair.

Model Size Pretrained VoxCeleb 1-O VoxCeleb 1-E VoxCeleb 1-H

EER[%] minDCF EER[%] minDCF EER[%] minDCF

ECAPA-TDNN [11] 46.6M × 0.68 0.0753 0.91 0.1006 1.72 0.1695
HuBERT Large [25] 316.61M+

√
0.72 - 0.70 - 1.32 -

Wav2Vec2.0 Large (XLSR) [25] 317.38M+
√

0.73 - 0.68 - 1.23 -
UniSpeech-SAT Large [25] 316.61M+

√
0.63 - 0.63 - 1.29 -

WavLM Large [26] 316.62M+
√

0.38 - 0.48 - 0.99 -

NEMO small 15.88M × 0.88 0.1367 1.08 0.1342 2.20 0.2245
NEMO medium 35.26M × 0.94 0.1200 1.26 0.1487 2.41 0.2398
NEMO large 130.94M × 0.96 0.1375 1.22 0.1391 2.35 0.2278

NEMO large first 4 layers 35.02M × 0.86 0.1051 1.03 0.1188 1.97 0.1920
NEMO large first 6 layers 48.72M × 0.80 0.1101 1.04 0.1202 2.04 0.2012
NEMO large first 8 layers 62.42M × 0.81 0.1121 1.00 0.1183 1.93 0.1904

NEMO small 15.88M
√

0.74 0.1101 0.90 0.1054 1.90 0.1893
NEMO medium 35.26M

√
0.61 0.0946 0.78 0.0891 1.67 0.1649

NEMO large 130.94M
√

0.48 0.0673 0.71 0.0785 1.54 0.1538

NEMO large first 4 layers 35.02M
√

0.77 0.1065 1.04 0.1159 1.95 0.1862
NEMO large first 6 layers 48.72M

√
0.58 0.0618 0.84 0.0937 1.62 0.1571

NEMO large first 8 layers 62.42M
√

0.64 0.0982 0.86 0.0944 1.77 0.1732

ASR pretrained Conformer is then used to initialize the
MFA-Conformer speaker embedding network training. With
ASR pretrained Conformer, the MFA-Conformer models sig-
nificantly outperform their counterparts without pretraining.
For the small model, the ASR pretrained MFA-Conformer
obtains an EER of 0.74% on VoxCeleb 1-O trails, which is
15.9% relative lower than the small MFA-Conformer with-
out pretraining. When the model size increases eight times to
130.94 million, the ASR pretrained MFA-Conformer obtains
an EER of 0.48% on VoxCeleb 1-O trails, which is 50% rel-
ative lower than the large MFA-Conformer without pretrain-
ing.

Compared to larger self-supervised pretrained models
with more than 300 million parameters (HuBERT Large,
Wav2Vec2.0 Large, UniSpeech-SAT Large), the ASR pre-
trained MFA-Conformers achieve comparable or even better
verification performance on VoxCeleb 1-O. The large ASR
pretrained MFA-Conformer with 130.94 million parameters
obtains an EER of 0.48%. In comparison, the UniSpeech-
SAT large model with more than 316.62 million parameters
achieves an EER of 0.63% on VoxCeleb 1-O trails. We also
observe that the MFA-Conformer models can hardly out-
perform the self-supervised pretrained models in VoxCeleb
1-E and VoxCeleb 1-H trials. The reason may be that self-
supervised models are pretrained with more data (56k - 188k
hours) while MFA-Conformers are pretrained with fewer
data (around 34k hours). Nevertheless, the MFA-Conformer

speaker embedding network is more flexible as it can be
easily trained from an ASR pretrained Conformer by simply
adding an MFA module and a pooling layer.

We also extract the lower layers of the large ASR Con-
former to train MFA-Conformer. Three Conformers with first
4, 6, or 8 layers from the large Conformer model are investi-
gated. We can see that the smaller versions of the large Con-
former model outperform the full large model without ASR
pretraining. With ASR pretraining, the large Conformer out-
performs its smaller versions. This reassures our statement
that ASR pretraining can help prevent overfitting when train-
ing MFA-Conformer.

5. CONCLUSION

This paper proposes an MFA-Conformer framework initial-
ized by ASR pretraining for speaker verification. Conformers
trained from scratch with limited data may be easily over-
fitted, but ASR pretraining can prevent the MFA-Conformer
from overfitting and improve the performance. Experimental
results on Voxceleb data also show that the EERs are signifi-
cantly reduced on Voxceleb1-O, Voxceleb1-E and Voxceleb1-
H with ASR pretraining.
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