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Abstract. In this paper, we focus on improving the performance of
the text-dependent speaker verification system in the scenario of limited
training data. The deep learning based text-dependent speaker verifica-
tion system generally needs a large-scale text-dependent training data set
which could be both labor and cost expensive, especially for customized
new wake-up words. In recent studies, voice conversion systems that can
generate high quality synthesized speech of seen and unseen speakers
have been proposed. Inspired by those works, we adopt two different
voice conversion methods as well as the very simple re-sampling approach
to generate new text-dependent speech samples for data augmentation
purposes. Experimental results show that the proposed method signifi-
cantly improves the Equal Error Rate performance from 6.51% to 4.48%
in the scenario of limited training data. In addition, we also explore the
out-of-set and unseen speaker voice conversion based data augmentation.

Keywords: speaker verification · voices conversion · text-dependent ·
data augmentation

1 Introduction

Speaker verification technology aims to determine whether the test utterance is
indeed spoken by the enrollment speaker. In recent years, x-vectors [23] demon-
strate state-of-the-art results in the speaker verification field. Multiple different
backbone architectures, e.g. TDNN [23], ResNet [2], and their variants [18], etc.
are proposed for the front-end feature extraction.

Futhermore, the research works of deep learning based speaker verification
also enjoy those publicly open and free speech databases, e.g., AISHELL2 [7],
Librispeech [17], Voxceleb1&2 [16, 4] in the text-independent field, and RSR2015
[15], HIMIA [19], MobvoiHotwords in the text-dependent field, etc. Methods in
[10, 24] achieve a good performance in the text-dependent speaker verification
task if a large amount of text-dependent training data are available. However,
it is both labor expensive and time consuming to collect the database. With the
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rise of smart home and Internet of Things applications, there are great demands
for text-dependent speaker verification, with customized wake-up words. It is
almost impossible to collect the corresponding text-dependent speech data for
each customized wake-up word.

In recent studies, the speech signals generated by the multi-speaker Text-to-
Speech (TTS) and one-to-many or many-to-many voice conversion (VC) systems
are getting harder to be distinguished between real-person voice and synthesized
voice [29, 27, 5]. So, it is natural to adopt TTS or VC as a data augmentation
strategy for speaker verification under the limited training data scenario [12].
The multi-speaker TTS system could create a large amount of speech data from
multiple target speakers with different lexical contents. However, in the context
of text-dependent cases, since the input text is the same, the synthesized speech
data are very similar even for different target speakers. Moreover, different from
multi-speaker TTS, the VC system can generate data with various kinds of
styles all with the same text-dependent content. Therefore, the VC approaches
are more appropriate than TTS as the data augmentation method for text-
dependent speaker verification.

This paper aims to improve the text-dependent speaker verification system’s
performance with a limited number of speakers and training data.

– Limited training data for each speaker. The number of text-dependent ut-
terances of each speaker is less than 10.

– Limited speakers for training. The number of speakers is less than 500.

Targeting the aforementioned scenarios, we propose to train a voice con-
version model with limited existing text-dependent data to generate more new
text-dependent data. We use two different voice conversion methods as our data
augmentation systems. The first one is a Mel-to-Mel voice conversion system [26]
using the conditional Seq-to-Seq neural network framework with dual speaker
embeddings as the inputs while the other one is a PPP-to-Mel system that con-
verts the phoneme posterior probability(PPP) features [11] with target speaker
embedding into Mel-spectrograms [28]. Furthermore, in the limited speaker num-
ber case, we adopt the pitch shift(speed perturbation with re-sampling) strategy
to augment more speakers. Besides, we also attempt to use the out-of-set un-
seen speakers’ embeddings to generate the text-dependent data from out-of-set
speakers. In order to compare TTS and VC based data augmentation methods
in the text-dependent speaker verification task, we also train a popular one-hot
multi-speaker TTS framework. The ResNet34-GSP [2] model is adopted as the
speaker verification system to evaluate different systems.

The paper is organized as follows. Section 2 describes the related works about
voice conversion and speaker verification we adopted in this paper. The proposed
methods and strategies are described in section 3. Section 4 shows the experi-
mental results. Finally, the conclusion is provided in section 5.
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Fig. 1. The architectures of two voice conversion systems used in this work

2 Related Works

2.1 Speaker Verification System

In this paper, we adopt the same structure as [2]. The network structure contains
three main components: a front-end pattern extractor, an encoder layer, and a
back-end classifier. The ResNet34 [9] structure is employed as the front-end pat-
tern extractor, which learns a frame-level representation from the input acoustic
feature. The global statistic pooling (GSP) layer, which computes the mean and
standard deviation of the output feature maps, can project the variable length
input to the fixed-length vector. The output of a fully connected layer following
after the pooling layer is adopted as the speaker embedding layer. The ArcFace
[6] (s=32,m=0.2) which could increase intra-speaker distances while ensuring
inter-speaker compactness is used as a classifier . The detailed configuration of
the neural network is the same with [21]. The cosine similarity serves as the
back-end scoring method.

2.2 Voice Conversion System

Mel-to-Mel VC System Firstly, we introduce a many-to-many voice conver-
sion model using the conditional sequence-to-sequence neural network frame-
work with dual speaker embedding [26]. The model is trained on many different
source-target speaker pairs, which requires the speaker embeddings from both
the source speaker and the target speaker as the auxiliary inputs. To improve
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speaker similarity between reference speech and converted speech, we use a feed-
back constraint mechanism [3], which adds an auxiliary speaker identity loss
in the network. This model is named as the Mel-to-Mel VC system because
the model directly maps the source speaker Mel-spectrogram to target speaker
Mel-spectrogram.

Fig. 2. The pipeline of Data Augmentation based on Voice Conversion in Text-
Dependent Speaker Verification.

PPP-to-Mel VC System Besides, we also introduced another VC system. The
model is proposed in [28]. First, we use a DNN based auto-speech recognition
(ASR) acoustic model, trained on the AISHELL-2 database, to obtain the target
speaker phoneme posterior probabilities(PPP) features as the voice conversion

Table 1. The dataset usage of training VC and TTS systems.

Model Dataset. Training Spk/Utt Num
ASV HIMIA 340/3060
VC (PPP-to-Mel) HIMIA 340/3060
VC (Mel-to-Mel) HIMIA 340/3060
TTS DIDI-speech 500/53425
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model’s input. The model’s output is the target Mel-spectrogram feature. In
the testing, the source PPP will be assumed to be exactly the same as the
target PPP to generate the results. This system is named as the PPP-to-Mel
VC system in this paper. The PPP-to-Mel VC system architecture is similar to
the Mel-to-Mel VC system expect that there is no feedback constraint. Besides,
since the system’s input is the target speaker feature rather than the source
speaker feature, the input PPP feature is selected randomly from the limited
training data.

Fig.1 shows the architectures of two voice conversion systems. The speaker
encoder component is the same as the aforementioned ResNet34-GSP model.
The vocoder MelGAN [14] is used to reconstruct the time-domain waveform
from the predicted Mel-spectrogram.

3 Methods

In this section, the VC data augmentation strategies and the speed perturbation
method are introduced in detail. The pipeline of our proposed data augmentation
strategy is shown in Fig.2. Those methods are all focused on the limited text-
dependent data scenario. In this experiment, we adopt the HIMIA database
with 340 speakers [19]. 9 utterances of each speaker in the HIMIA database are
randomly chosen as the limited text-dependent data to train the baseline system.
Therefore, only 3060 utterances (total have 340*9=3060 utterances) are used to
train the VC conversion and fine-tune speaker verification models. The close-talk
text-dependent data of the FFSVC20 challenge [21] are chosen as the test data.
The trial file can be download from trial_file3. Since 3060 sentences with only
’ni hao,mi ya’ text are not enough to train a TTS system, we use DiDi-speech
[8] with 500 speaker to train a multi-speaker TTS system. The dataset usage of
training VC and TTS system show in the Table.1

3.1 Pre-training and Fine-tuning

According to our previous works[20, 19], fine-tuning is an effective transfer learn-
ing approach to improve the speaker verification system performance in the
limited training data scenario. In this work, we pre-trained the deep speaker
verification network with a large-scale text-independent mix-dataset. There are
in total 3742 speakers in the pre-training dataset, including AISHELL-2 [7],
SLR684 and SLR625 from openslr.org. These three databases are also consid-
ered as out-of-set unseen speaker data for the VC augmentation system. The
model was trained for 200 epochs in the pre-training stage, with an initial learn-
ing rate of 0.1. The network was optimized by stochastic gradient descent(SGD).
All weights in the network remain trainable with an initial learning rate of 0.01
during the fine-tuning stage.
3 https://github.com/qinxiaoyi/VCaug_ASV
4 https://openslr.org/68/
5 https://openslr.org/62/
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Fig. 3. Speaker embedding visualization by t-SNE for the in-set data. The voice con-
version data is generate by PPP-to-Mel VC system. The ∗ stands for the original data
and the • stands for voice conversion data

3.2 Data augmentation based on the VC system

The training data of both VC systems is only 3060 utterances with ’ni hao, mi
ya’ text.

Data augmentation using the Mel-to-Mel VC system For training the
Mel-to-Mel VC system, the loss function of the many-to-many voice conversion
model is

Ltotal = Lmel_before + Lmel_after + Lstop_token_loss

+ 5 ∗ Lembedding_loss + Lregular_loss

(1)

The loss function is also described in detail in[3]. To make the speaker embedding
of the voice generated by the voice conversion model close to the target speaker
embedding, we increased the weight of embedding loss and set it to 5.

After that, we generated 200 utterances for each target speaker based on
a trained Mel-to-Mel VC system. For every target speaker, the source speech
of VC’s input was random chosen from the other 339 speaker utterances. The
embeddings generated by the VC system were computed the cosine similarity
with target speaker embedding to handle the outlier. The data with similarity
greater than 0.6 are retained.

The limited text-dependent training data (3060 utts) are adopted as source
speech for the out-of-set unseen speaker augmentation. Each out-of-set unseen
speaker has 20 VC generated text-dependent utterances. After that, the gener-
ated data with cosine similarity less than 0.3 are filtered out. Since the out-of-set
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Table 2. The performance of the text dependent speaker verification systems under
different data augmentation methods. the 9utt denotes the limited training data sce-
nario, each speaker only has 9 utterances; the VC AUGin and the VC AUGout denotes
the voice conversion data from in-set and out-of-set speakers respectively; the Pitch
shift AUG denotes the SoX speed function based pitch shift augmentation method.

Model Training data Spk / Utt Num. EER[%] mDCF0.1

Pre-train
model AISHELL2 +SLR62 +SLR68 3472 / 518864 6.51 0.265

Fine-tune
model

9 Utts per spk (baseline system) 340 / 3060 7.63 0.331
+ Pitch shift AUG 1020 / 9180 5.76 0.248
+ VC AUGin (Mel-to-Mel) 340 / 26160 6.36 0.304
+ VC AUGin (PPP-to-Mel) 340 / 29089 5.16 0.249
+ VC AUGout (Mel-to-Mel) 3210 / 48890 6.08 0.295
+ VC AUGin (Mel-to-Mel) + Pitch shift AUG 1020 / 76978 5.19 0.241
+ VC AUGin(PPP-to-Mel) + Pitch shift AUG 1020 / 87267 4.48 0.212
+ TTS (DiDi) 792 / 7323 6.01 0.292

voice conversion is a challenging task, the threshold is not very strict (the most
out of set embedding similarity is less than 0.5).

Fig. 4. Histogram of cosine similarity score on the in-set experiment.

Data augmentation using the PPP-to-Mel VC system The procedure
the PPP-to-Mel VC augmentation method is the same as the Mel-to-Mel VC
system, and the loss function is the same as [22].

For the in-set speaker augmentation scenario, the word error rate (WER)
and Cosine similarity are adopted as objective metrics to measure the VC and
TTS systems. Fig. 4 and Table.3 shows the quality of synthesized speech from
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Table 3. The WER[%] and cosine similarity for different system on the in-set experi-
ment.

Model Cosine/Utt Num. Utt Num. WER[%](average/all) (> 0.6)
PPP-to-Mel(9utt) 0.555/68000 26029 9.11
Mel-to-Mel(9utt) 0.510/68000 23100 10.28
TTS (DiDi) 0.475/10000 4263(> 0.5) -

different VC systems on in-set speakers’ data. Each VC system generates 68000
text-dependent utterances (340*200=68000, each speaker generate 200 utter-
ances). Comparing with the Mel-to-Mel system, the PPP-to-Mel system’s av-
erage speaker similarity is higher. Moreover, as shown in Table.3, the WER of
the PPP-to-Mel VC system is less than Mel-to-Mel in retained utterances data.
Therefore, the speech quality of the PPP-to-Mel system is higher in terms of
these objective metrics.

3.3 Data augmentation based on the TTS system

We also train a one-hot multi-speaker TTS system to generate the augmented
data. The system is based on Tacotron-2 [22] with GMMv2 [1] attention. For
the multi-speaker modeling, a naive embedding-table based strategy is employed,
where 128 dimensional embeddings learned through model optimization are con-
catenated to the encoder’s output sequence, guiding the attention mechanism
and the decoder with target speaker’s information.

The model is trained from the DiDi-speech [8] database with 500 speakers.
For each pair of target speaker and desired keyword, we synthesize 20 speech
samples with identical voice and lexical content.

3.4 Speaker augmentation based on speed perturbation

We use speed perturbation based on the SoX speed function that modifies the
pitch and tempo of speech by resampling. This strategy has been successfully
used in the speech and speaker recognition tasks [25, 13]. The limited text-
dependent dataset is expanded by creating data created two versions of the
original signal with speed factors of 0.9 and 1.1. The new classifier labels are
generated at the same time since speech samples after pitch shift are considered
to be from new speakers.

4 Experimental results

Table.2 shows the results of different data augmentation strategies. The evalua-
tion metrics are Equal Error Rate (EER) and minimum Detection Cost Function
(mDCF) with Ptarget = 0.1. The baseline system employs the original limited
text-dependent dataset (9 utts per speaker) to fine tune the pre-trained model.



Title Suppressed Due to Excessive Length 9

Since the size of in-set speaker dataset is too small, the system performance is
degraded significantly. On the other hand, since the pitch shift AUG expand the
number of speakers, the EER of the system has been improved by 10% relatively.
The VC AUG with the PPP-to-Mel system also reduces the EER by relatively
20%. Moreover, it is observed that the system with both pitch shift AUG and
VC AUG achieves the best performance. Experimental results show that, in the
scenario of limited training data, the proposed method significantly reduces the
EER from 6.51% to 4.48%, and the performance of the mDCF0.1 also improves
from 0.265 to 0.212.

Without the Pitch shift Aug, the VC AUGin (PPP-to-Mel) have the lower
EER and mDCF0.1 than TTS Aug under the less speakers. Since all the synthe-
sized speech sentences have the similar tone regarding the TTS Aug system, the
VC Aug is more suitable than TTS Aug in the text-dependent speaker verifica-
tion task.

Furthermore, since the speech quality and speaker similarity of synthesized
speech from the PPP-to-Mel VC system are better than the Mel-to-Mel VC
system, a better result is achieved by using the PPP-to-Mel VC system for data
augmentation. Nevertheless, the Mel-to-Mel VC system explores the direction
of out-of-set unseen speaker augmentation and achieves some improvement. The
results obtained show that the VC Augin method is feasible, while the VC Augout
method still needs to be explored in the future.

5 Conclusion

This paper proposes two voice conversion based data augmentation methods to
improve the performance of text-dependent speaker verification systems under
the limited training data scenario. The results show that VC-AUG and pitch-shift
strategy are feasible and effective. In the future works, we will further explore
the methods and strategies for voice conversion based data augmentation with
unseen or even artificiality created speakers.
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