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ABSTRACT

Despite the great performance of language identification (LID),
there is a lack of large-scale singing LID databases to support the
research of singing language identification (SLID). This paper
proposed a over 3200 hours dataset used for singing language
identification, called Slingua. As the baseline, we explore two
self-supervised learning (SSL) models, WavLM and Wav2vec2, as
the feature extractors for both SLID and universal singing speech
language identification (ULID), compared with the traditional hand-
craft feature. Moreover, by training with speech language corpus, we
compare the performance difference of the universal singing speech
language identification. The final results show that the SSL-based
features exhibit more robust generalization, especially for low-
resource and open-set scenarios. The database can be downloaded
following this repository: https://github.com/Doctor-Do/Slingua.

Index Terms— Singing Language Identification (SLID), Univer-
sal singing speech Language Identification (ULID), Music Database

1. INTRODUCTION

Knowing the singing language information of a song is beneficial
for tasks such as lyrics transcription and music information retrieval.
Assuming that the song’s metadata, such as lyrics and song title,
is available, it may be easily extracted using a text-based classifier.
Unfortunately, the song’s metadata is generally unavailable in many
applications. Thus we need to determine the language information
of the songs based on the audio signal.

There have been a few works on singing language identification
(SLID) in the past few years. Renault et al. [1] use a phonotactic
approach for SLID based on the DALI dataset [2] and achieved
good performance. Choi et al. [3] achieve great performance on the
Music4all [4] dataset using both the audio signal and the metadata
of the song. However, none of the datasets mentioned before were
initially designed for the SLID task and thus have some issues,
such as uneven distribution of language tags and very limited data
scale. In recent years, many corpora have been built in the form
of Youtube crawls, e.g., Voxceleb [5], Jtubespeech [6]. Therefore,
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we propose the SLingua dataset based on Youtube, a dataset that
focuses on the SLID task, covering 13 languages with a total of
over 3200 hours of songs. This corpus is an aggregation of music
playlists created by youtube users, all of which can be downloaded
from youtube. In addition, for each audio, we also provide the
corresponding results of voice activity detection (VAD). More
specifically, this corpus is limited to non-commercial research only.

Recently, large scale self-supervised pre-trained models has been
widely used for audio downstream tasks such as language identi-
fication (LID)[7], automatic speaker verification (ASV) [8], and
emotion recognition [9], etc. Tjandra et al. [7] compared the per-
formance of different transformer layer outputs using Wav2vec2
based model. The outstanding results demonstrate the suitability
of the SSL model for LID. However, there is a lack of works on
the task of SLID. Therefore, we compare the performance of two
self-supervised learning based pre-trained models, Wav2vec2 based
XLSR [10] and Hubert [11] based WavLM [12], with the traditional
handcraft feature Fbank for SLID tasks as the benchmark of Slin-
gua. Meanwhile, we compare the performance between traditional
feature based systems and systems trained on SSL features with
different training data scales. Moreover, we analyze the impact of
different hidden layers of the self-supervised models regarding the
final performance using integrated gradient attribution analysis [13].
To the best of our knowledge, this paper is the first large-scale open-
source corpus and benchmark focusing on SLID in recent years.

Different from speech utterances in the LID task, polyphonic
songs are characterized by significant overlapping between speech
and background music, wide pitch variations, and longer vowel
duration [14], making the SLID task more challenging. In addition,
by introducing a speech language corpus Voxlingua107 [15], this
paper also explores building a universal language recognition model
for both speech and singing utterances.

The main contributions of this paper are summarized as follows.

• Releasing a large-scale corpus focusing on the SLID task.
• Comparing the performance of mainstream self-supervised

pre-trained models for the SLID task as the benchmark on
the Slingua dataset.

• Building a universal language identification system for both
speech and singing input utterances.



Fig. 1. The data collection pipeline of the Slingua dataset.

2. THE SLINGUA DATASET

2.1. Dataset Description

Due to the absence of a large-scale audio corpus for SLID, we
collected the Slingua1 dataset based on Youtube audios, which is
designed for the SLID task. Since the VideoIDs are available, much
other valuable information, such as singer information or channel
information, can be found on the website. The Slingua dataset
provides both the Youtube VideoID and the language label for each
video. The whole audio dataset can be automatically downloaded
and divided using given scripts.

Table 1. The data distribution of the Slingua training set.
Language Num. Hours Language Num. Hours

Chinese 6659 617 Japanese 3927 305
English 2258 140 Korean 4377 322
French 3314 285 Portuguese 2068 163
German 2692 175 Russian 1796 156
Hindi 2301 187 Spanish 2403 222

Indonesian 3789 284 Thai 1806 162
Italian 2098 191 Total 39488 3209

2.2. Dataset Collection

Fig. 1 summarizes the collection process for the entire Slingua
dataset. The construction detail adopt the following steps:

Step.1 Candidate singing language list. Taking into account the
number and distribution of users, we made the Slingua
dataset include a total of 13 languages. The corresponding
languages are listed in Table 1.

Step.2 Audio searching and downloading. In brief, we first de-
termine the keywords. Then we search playlists on Youtube
by given keywords. Finally, all the downloadable audios in
the selected playlists form the Slingua dataset. For example,
for the target language French, we firstly set the keyword as
french. By searching french songs on Youtube, the top
20 playlists are filtered according to four Youtube official
sort methods: relevance, time, number of views, and rating.
Eventually, there will be 50-80 playlists corresponding to

1https://github.com/Doctor-Do/Slingua

each language. All audios in playlists are downloaded and
resampled to 16000 Hz using yt-dlp2.

Step.3 Manual detection of text. After downloading, we de-
duplicate and manually retrieve the playlists according to
the playlists text and video titles. We first tried to use
the fastText [16] tool to identify text language. However,
considering that many playlists’ text and video titles are
composed of English, while the actual audio content contains
the target language, we made a rough manual correction
based on the text. Therefore some mislabeled audios was
removed. Note that we have only checked the text, so
we cannot guarantee that the labels of audios are 100%
accurate. Eventually, over 3200 hours of singing data
for 13 languages are collected, making up the Slingua
dataset.

2.3. Dataset Post-processing

After data collection, we make all audios go through an inter-
nal VAD model to remove the non-vocal part of the audios.
The corresponding VAD result for each audio can be found
in our repository. One hundred singing clips per language
were sliced into 60-second segments and set as the evaluation
set. Part of the evaluation set (about 20%) has been manu-
ally labeled by listening to the original audios. The remaining
singing clips make up the Slingua training set, as shown in Table
1.

3. BENCHMARK SETTING

3.1. Front-end Feature extractor

For SSL models, we utilize and compare two start-of-the-art
architectures, Wav2vec-based models and WavLM-based mod-
els. Specially, we have used XLS-R model[22] and WavLM-
large model[12] as feature extractors. Both models consist of
a CNN-based feature encoder and a transformer based context
encoder, using raw waveform as input. More detailed information
about these two SSL models can be found in Table 2. Both
models are trained on cross-lingua corpus and have a similar

2https://github.com/yt-dlp/yt-dlp



Fig. 2. The illustration of the SSL-based language identification
system. The left denotes using the last transformer output only. The
right denotes the weighted feature using all hidden layer outputs.

Table 2. Details of the adopted self-supervised models.
SSL Model Training data Parameters Output dim.

W2V-XLSR LibriSpeech [17], CommonVoice
[18], BABEL

317 M 1024

WavLM large Libri-Light [19], GigaSpeech [20],
Voxpopuli [21]

315 M 1024

number of parameters. Thus, we consider them as compara-
ble front-end feature extractors. We compare the feature using
the last transformer layer’s output only and the weighted fea-
ture using all hidden layer outputs for each model. As seen
from Fig. 2, the left denotes using the last transformer layer’s
output only, while the right denotes using the weighted fea-
ture.

3.2. Downstream architecture

ECAPA-TDNN[23] has recently achieved great success in speaker
verification by introducing the channel attention mechanism. The
squeeze-excitation (SE) [24] module is also used in ECAPA-TDNN.
The backbone feature extractor is followed by an attentive statistic
pooling (ASP) layer[25] in order to extract utterance-level represen-
tation. The pooling layer is followed by a linear layer and softmax
as a classifier for language classification.

4. EXPERIMENTS SETUP

4.1. Data Usage

4.1.1. Singing dataset

The collected Slingua dataset mentioned in section 2 was used for
training and evaluation in our experiments. More details about the
distribution of the Slingua training set can be found in Table 1. We
also use another internal proprietary evaluation set from Bytedance,
called Saro in this paper. The Saro evaluation set contains over four
thousand labeled songs and can be defined as an out-of-domain
(OOD) test set. The Saro dataset contains only seven languages: En-
glish, Spanish, Hindi, Korean, Japanese, Indonesian and Portuguese.
All these seven languages are included in the Slingua dataset.

4.1.2. Speech dataset

We use voxlingua107 [15], a large corpus used for spoken language
recognition, as an auxiliary dataset for universal singing speech
language identification. The official voxlingua107 development
set is used for evaluation. For utterances in the Voxlingua107, we
use the utterances only if those language tag is included in the
13 languages of the Slingua dataset. Therefore, the training and
evaluation sets are both subsets of the official Voxlingua107 dataset.

4.2. Model configurations

4.2.1. Front-end Feature Extractor

For SSL models, we followed the official configuration. We com-
pared both fixed front-end and fine-tuning front-end. Fine-tuning
denotes training the SSL model with the downstream model. For
Fbank, the logarithmical Mel-spectrogram is extracted by apply-
ing 80 Mel filters on the spectrogram computed over Hamming
windows of 20ms shifted by 10ms.

4.2.2. Downstream Model

For ECAPA-TDNN, the number of feature channels was set as
1024 to scale up the network. The dimension of the bottleneck
in the SE-Block is set to 256. The backbone feature extractor is
followed by an ASP layer to extract utterance-level representation.
A cross-entropy loss function is used for training the model given
the one-hot language labels.

4.2.3. Training configurations

During training, all audios were split into 3-second chunks based
on VAD results. The learning rate is set as 1e-4 during the training
of the SSL-based model while 1e-3 during the training of the Fbank
based model. All models are trained using the Adam optimizer.

5. RESULTS AND DISCUSSION

5.1. Singing language identification

For SLID, we compare different configurations of the SSL model
and analyze weighted features using integrated gradient attribution



for weighted features. In addition, we compare the performance
of traditional feature based system with systems trained on SSL
features with different training data scales.

Table 3. Results of different front-end feature extractors for SLID,
the downstream models are all ECAPA-TDNN.

Front-end Slingua eval Saro

F1 ACC F1 ACC

80d Mel(Baseline) 0.892 0.893 0.714 0.687

wavlm-last layer-fixed 0.922 0.912 0.785 0.782
wavlm-last layer-finetuned 0.921 0.914 0.737 0.73

w2v2-last layer-fixed 0.031 0.071 0.05 0.02
w2v2-last layer-finetuned 0.921 0.915 0.731 0.693

wavlm-weighted-fixed 0.913 0.908 0.716 0.709
wavlm-weighted-finetuned 0.936 0.932 0.732 0.725

w2v2-weighted-fixed 0.915 0.910 0.681 0.701
w2v2-weighted-finetuned 0.915 0.908 0.696 0.688

5.1.1. SSL model selection

As shown in Table 3, systems with different SSL models show
significant differences on the performance of the SLID task.
Even for the same model, adopting the weighted scheme or
using the output of the last transformer layer as features also
achieve different results. Overall, the SSL-based model out-
performs the traditional handcraft feature based model except
for the w2v2-last layer-fixed based model. The WavLM-last
layer-fixed achieves outstanding performance, especially on the
Saro evaluation set. This demonstrates the generalizability of
the SSL front-end for OOD data compared with the traditional
handcraft feature. The final results on the Saro evaluation set
also show that compared to the Wav2vec2-based model, the
WavLM-based model achieved better performance generally.
this finding is similar to [12] that WavLM based pre-trained
features are more robust in downstream audio classification
tasks.

Fig. 3. The integrated gradient attributions for four weighted models.
The y-axis represents different models, while the x-axis indicates
different transformer layers.

Inspired by [26], we use the Integrated Gradient (IG) attribution
analysis approach to study the weight values. The IG considers
the gradient distribution, thus indicating a better model contri-
bution. Fig. 3 presents the IG attributions for four weighted
models. Before model fine-tuning, the weight of the last layer of
w2v2-weighted-fixed occupies a smaller percentage, indicating why
w2v2-last layer-fixed has poor performance in the SLID task. After
fine-tuning, we can observe that the high weights are distributed
across various layers on both models. This weights distribution

presents that shallow and deep features contain language-related
information, not just the last layer.

5.1.2. Training data scaling

Table 4 shows the performance of different training data scales.
The results demonstrate the superiority of SSL front-end features
on limited training data compared to traditional handcraft features.
For 5 hours of training data, the WavLM-based feature improves
performance by nearly 20% over the traditional Mel spectrum in the
unseen Saro scenario. Although there is no significant improvement
on the Slingua test set, there is still a remarkable discrepancy
between the model trained with the full amount of data and those
trained with 50 hours of data on the Saro evaluation set.

Table 4. Results of different training data scale for SLID, the
downstream models are all ECAPA-TDNN.

Data scale Front-end Slingua eval Saro

F1 ACC F1 ACC

5 hours 80d Mel 0.651 0.655 0.474 0.513
5 hours wavlm-last layer-fixed 0.786 0.79 0.588 0.616
50 hours 80d Mel 0.884 0.883 0.669 0.676
50 hours wavlm-last layer-fixed 0.916 0.913 0.734 0.730

3209 hours (ALL) 80d Mel 0.892 0.893 0.714 0.687
3209 hours (ALL) wavlm-last layer-fixed 0.922 0.912 0.785 0.782

5.2. Universal singing speech language identification

Table 5. Results of different front-end feature extractors for ULID,
the Downstream models are all ECAPA-TDNN. The Voxlingua107
training and evaluation sets used here are both subsets as mentioned
in 4.1.2

Front-end Training data Slingua eval Saro Voxlingua107
F1 ACC F1 ACC F1 ACC

wavlm-last layer-fixed Slingua 0.922 0.912 0.785 0.782 - -
80d Mel Slingua 0.892 0.893 0.714 0.687 - -

wavlm-last layer-fixed Slingua+Voxlingua107 0.908 0.894 0.812 0.858 0.982 0.972
80d Mel Slingua+Voxlingua107 0.904 0.901 0.742 0.784 0.934 0.945

As can be seen in Table 5, it is possible to build a ULID system.
By simply using speech and singing data for training, the Saro set’s
performance has dramatically improved relevant 10%. Both models
perform well on the voxlingua107 development subset, probably
due to the fact that the speech evaluation subset is relatively easy.

6. CONCLUSION

This paper proposes a large-scale corpus for singing language identification,
which contains over 3200 hours of singing data, named Slingua. Moreover,
we explore the performance of two different self-supervised learning based
front-end feature extractors for SLID. The WavLM-large model performs
best in our experiments. The results demonstrate that the SSL-based feature
performs better on limited low-resource training data than the traditional
handcraft feature. Moreover, for open-set scenarios, the SSL-based feature
exhibits more robust generalization. In addition, we build an effective
universal singing speech language identification system by combining
singing and speech data during the training phase.
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use of self-supervised pre-trained acoustic and linguistic features for continuous
speech emotion recognition,” in Proc. SLT 2021. IEEE, pp. 373–380.

[10] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael
Auli, “wav2vec 2.0: A framework for self-supervised learning of speech
representations,” Advances in Neural Information Processing Systems, vol.
33, pp. 12449–12460, 2020.

[11] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia,
Ruslan Salakhutdinov, and Abdelrahman Mohamed, “Hubert: Self-supervised
speech representation learning by masked prediction of hidden units,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.
29, pp. 3451–3460, 2021.

[12] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo
Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al., “Wavlm:
Large-scale self-supervised pre-training for full stack speech processing,”
IEEE Journal of Selected Topics in Signal Processing, 2022.

[13] Mukund Sundararajan, Ankur Taly, and Qiqi Yan, “Axiomatic attribution
for deep networks,” in Proc. ICML, 2017, pp. 3319–3328.

[14] Chen Zhang, Jiaxing Yu, LuChin Chang, Xu Tan, Jiawei Chen, Tao
Qin, and Kejun Zhang, “Pdaugment: Data augmentation by pitch and
duration adjustments for automatic lyrics transcription,” arXiv preprint
arXiv:2109.07940, 2021.
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