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Abstract
Wake-up word detection models are widely used in real life, but
suffer from severe performance degradation when encountering
adversarial samples. In this paper we discuss the concept of
confusing words in adversarial samples. Confusing words are
commonly encountered, which are various kinds of words that
sound similar to the predefined keywords. To enhance the ro-
bustness of the wake-up word detection system against confus-
ing words, we propose several methods to generate the adversar-
ial confusing samples for simulating real confusing words sce-
narios in which we usually do not have any real confusing sam-
ples in the training set. The generated samples include concate-
nated audio, synthesized data, and partially masked keywords.
Moreover, we use a domain embedding concatenated system to
improve the performance. Experimental results show that the
adversarial samples generated in our approach help improve the
system’s robustness in both the common scenario and the con-
fusing words scenario. In addition, we release the confusing
words testing database called HI-MIA-CW for future research.

1. Introduction
In intelligent speech processing applications, the Keyword
Spotting (KWS) system, including wake-up word detection,
plays an important role in human-computer interaction. KWS
aims to detect a predefined keyword or a set of keywords in a
continuous audio stream. Studies have been proposed to deliver
robust approaches with high detection accuracy. The authors of
[1] adopted dynamic time warping (DTW) for keyword spotting
back in 1985, then hidden Markov models (HMM) [2, 3, 4],
deep neural networks (DNN)[5, 6, 7] and other various neu-
ral network structures including convolutional neural networks
(CNN) [8], temporal convolutional neural networks [9, 10], re-
current (RNN) neural networks[11, 12] and Transformer[13]
have also been proposed for this task. However, the probabil-
ity of false alarm becomes higher under complex acoustic envi-
ronments and ambiguous content. Without further adaptation,
KWS system may misclassify fillers as keywords since some of
the filler actually sound close to the keywords. Those are the
adversarial samples, which are called confusing words (CW).
Moreover, it is expensive to acquire human recorded adversarial
samples for training a KWS system that can accurately classify
confusing words, especially when the keywords are customized
by the users.
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In this paper, we discuss the concept of confusing words.
And we will also release a supplemental database called HI-
MIA-CW which was compiled following the same setup of
the HI-MIA[14] database to record.There are about 16k audios
with 12 confusion words patterns in table 1 for the keyword
in HI-MIA database from new 30 speakers. This data is in-
cluded in our evaluation set. Then we propose several methods
to generate some adversarial samples for simulating real con-
fusing words employed on an end-to-end approach to address
the aforementioned issue. The idea is motivated by the maxi-
mum mutual information (MMI) criterion to improve the dis-
criminative power of the model[15]. The first technique is to
concatenate the waveform of the real subword audio. The sec-
ond adversarial samples augmentation is performed by a text-
to-speech (TTS) system. The use of synthesized speech for
data augmentation is also not new[16, 17, 18]. [19, 20] shows
that synthetic data can help train the keyword spotting model.
The third method is applying random masking on speech sig-
nals to simulate confusing words like keyword audio that are
interrupted by mute in the middle. Moreover, we use domain
embeddings extracted from pre-trained LSTM domain classifier
to help overcome the domain shift problems. To the best of our
knowledge, this is the first research where the concept of con-
fusing words in KWS scenarios is discussed and we explore the
augmentation methods to generate adversarial samples of con-
fusing words to improve the performance of the wake-up word
detection system. Both augmentation methods achieve signif-
icant improvement on the end-to-end KWS model. Especially
for TTS augmentation, the false rejects rate drops from 68.60%
to 9.81% at twenty false alarms in one hours compared with the
one that is evaluated with the system trained without the afore-
mentioned confusing words augmentation approaches.

This rest of the paper is organized as follows. Section 2
discusses the confusing words and the released database. Sec-
tion 3 describes the framework of the CNN based KWS system.
Section 4 presents our augmentation methods. Section 5 dis-
cusses the experimental results, and the conclusion is provided
in section 6.

2. Confusing words
The definition of confusion words changes with the applica-
tion scenario. In the natural language processing (NLP) scenar-
ios, some confusing words with similar meanings, but differ-
ent spellings and pronunciations, will appear in similar contexts
and some other confusing words are misspelled. [21] presents



a system named Automatic Confusion words Extraction (ACE),
which takes a Chinese word as input and automatically outputs
its easily misspelled confused words.

Unlike confusion words in the NLP domain, confusion
words in the speech domain are those words that sound sim-
ilar to predefined keywords or are the part of the keywords.
Let’s take the keyword ”ni hao, mi ya”(Hello Mia) as an ex-
ample. Based on the idea of similar pronunciation and frag-
mentation, we came up with the following confusing words in
table 1. Table 1 shows the phoneme sequence of the keyword
and confusion words, where the subscript of phoneme repre-
sents tone. Confusion words as adversarial samples attack the
acoustic model in the wake-up word system, cause false rejec-
tions that severely disrupt the usage experience.

In order to compare the performance of models in practical
applications, we used the same setup of HI-MIA database [14]
to further record 16k audios with the same 12 confusion word
patterns in table 1 from new 30 speakers. The supplemental
database HI-MIA-CW is released.1

Table 1: Phoneme sequences of the keyword and confusion
words

Data Type Words Phoneme Sequence

Keyword ni hao, mi ya N I2 H A3 U3 M I3 YH I4 A4

Confusion Words

ni hao mi N I2 H A3 U3 M I3
ni hao, ni hao N I2 H A3 U3 N I2 H A3 U3

ni hao ya N I2 H A3 YH I4 A4

hao mi ya H A3 U3 M I3 YH I4 A4

ni mi ya N I2 M I3 YH I4 A4

ni hao N I2 H A3 U3

mi ya, mi ya M I3 YH I4 A4 M I3 YH I4 A4

hao mi, hao mi H A3 U3 M I3 H A3 U3 M I3
ni hao mi N I2 H A3 U3 M I1
hao mi ya H A3 U3 M I1 YH I4 A4

mi ya, mi ya M I1 YH I4 A4 M I1 YH I4 A4

hao mi, hao mi H A3 U3 M I1 H A3 U3 M I1

3. Model architecture
In this section, we present our baseline system, which is modi-
fied from the CNN-based KWS system [8]. As shown in Figure
1, our baseline system consists of three modules:(i) a feature
extraction module, (ii) a convolutional neural network and (iii)
a posterior processing module.

The feature extraction module converts the audio signals
into acoustic features. 80 dimensional log-mel filterbank fea-
tures are extracted from a speech frame with 50ms long and
12.5ms shift. Then we apply a segmental window with 121
frames to generate training samples that contain enough con-
text information as the input of the model.

Figure 1: Framework of the baseline system.

Our backbone network consists of three convolutional lay-
ers each followed by a maximum pooling layer. For all three
CNN layers, the kernel size is set to (3,3), the stride is (1,1),
and the pooling size is set to (2,2). Two fully connected layers

1http://www.openslr.org/120/

and a final softmax activation layer are applied as the back-end
prediction module to obtain the keyword occurrence probabil-
ity.

The acoustic feature sequence is transformed into a pos-
terior probability sequence of selected keywords by the model.
We perform the keyword detection algorithm over a sliding win-
dow with length Ts. Here we use x(i) = {xi, xi+1, . . . , xi+Ts}
to denote one input window over the segment X that contains
N frames. Then the keyword confidence score is calculated as
follows:

conf(X) = max
1≤t≤N−Ts

Pkeyword(x(t)) (1)

where Pkeyword(x
(t)) is the posterior probability of the key-

word appearing in the window started at frame t. The KWS
system triggers once when the confidence score exceeds a pre-
defined threshold.

4. Adversarial samples
Models that perform well on a test data set might fail in real
life applications where many testing samples are confusion
words. This problem becomes more important in the case of
customized wake up words defined by the users. In this case,
to reduce the performance degradation when applying KWS in
unmatched scenarios and improve the robustness of KWS, we
propose three methods to generate adversarial samples for con-
fusion words.

4.1. Waveform Concatenation

To obtain training samples of confused words, it is natural
to use unit selection and waveform concatenation.[22] shows
the difference between concatenative and neural TTS system.
We use a Large Vocabulary Conversational Speech Recogni-
tion(LVCSR) to align the audio and the text in a labeled pub-
lic speech dataset, then truncate the audio to get waveform of
each subword of the keyword. Truncated audio may come from
different speakers. We simply concatenate the waveform ac-
cording to the order of the subwords in keywords and confused
words to generate the adversarial samples.

4.2. Text-to-speech Augmentation

We obtain synthesized data from a mandarin multi-speaker TTS
system [23]. In this setup, 7k speakers from publicly available
datasets and internal datasets are collected and used for syn-
thesis. For each speaker, we first extract the speaker embed-
ding with one utterance by using the TTS system. Then 3 kinds
of synthesized samples are generated by the multi-speaker TTS
system conditioned on the speaker embedding: (i) positive sam-
ples that whose content is the keywords (ii) negative samples
that do not contain keywords, (iii) adversarial negative samples
that are confusion words that have contents close to the key-
words.

4.3. Masked Audio

We applied random masking on keyword samples and used
them as the adversarial negative data in training to improve the
robustness of our KWS model. The KWS model should yield
undetected results when having these masked samples since
masked samples simulate confusion words like keyword audio
that are interrupted by mute in the middle. For each positive
sample, we generate corresponding masked samples online by



Figure 2: Framework of the domain embedding system.

replacing 40%-60% audio signals with Gaussian white noise,
unlike SpecAug[24] which uses the mean value.

4.4. Domain Adaptation

Based on the assumption that the distribution of synthetic data
and real data are different, we incorporate the domain adapta-
tion method of Environmental Domain Embeddings with TTS
augmentation in the training step in order to improve the robust-
ness of the model and make it fit the distribution of real data
better. As shown in Figure 2, we train the KWS system with
the domain embedding derived from a pre-trained domain clas-
sifier. The method is inspired by [25] and [26] which applied
the domain embedding to incorporate domain knowledge into
network training and improved the performance of the keyword
classifier on far-field conditions.

The domain classifier is trained by samples from different
domain which include real domain, synthetic domain and con-
catenated domain. The domain classifier consists of two stacked
LSTM layers followed by an average pooling layer and a final
fully-connected linear layer. Domain embeddings are extracted
from the output of the pooling layer and its dimension is fixed
to 128. The domain classifier is trained before the training of
CNNs. When we train the CNN model, we extract the domain
embedding from the pre-trained domain classifier and concate-
nate the embedding to the output of the first fully-connected
layer. Then the concatenated features are fed into two linear
layers for predicting the posterior probability of the keyword.

Table 2: Dataset statistics (P: positive, N: negative)

Samples Label Train Test

HI-MIA P 23k 2k
AISHELL-1 N 105k 10k
HI-MIA-CW N - 16k

Concatenated Keywords P 23k -
Concatenated Confusion Words N 23k -

Synthesized Keywords P 7k -
Synthesized Confusion Words N 90k -

Synthetic Negative N 188k -
Masked N 23k -

5. Experimental results
5.1. Dataset

Natural speech recorded by native speakers and generated ad-
versarial samples are both used for training in our experiments.
For natural speech data, the HI-MIA dataset [14] is used as the
positive samples. The HI-MIA dataset includes speech data
recorded by one close-talking microphone and six 16-channel
circular microphone arrays. Each utterance contains content
with four Chinese characters “ni hao, mi ya” (Hello, Mia). We

only use the recordings from the single-channel close-talking
microphone. Samples from 300 randomly selected speakers are
used as the training set, and samples from 30 speakers are used
as the HI-MIA test set. The AISHELL-1 [27] dataset is used
as the negative sample of real speech data. Utterances from
300 speakers are selected for training, and utterances from 30
speakers are used as the AISHELL-1 test set.

For concatenated data, each subword in keyword contains
about 3k samples, and we concatenate the waveform online
to synthesize keywords (concat-wake) and confusion words
(concat-cw) as train set. For synthetic data, we have 7k differ-
ent utterance samples from all speakers that are synthesized ac-
cording to the keyword text. They are used as synthetic positive
keywords (synt-wake) train set. And we also have samples that
include 12 confusion word patterns with 90k different voices,
where utterance from all speakers are used as the synthetic con-
fusion words (synt-cw) train set. Also we mask the postive
samples online as negative samples according to the Section 4
(mask). In addition, 188k negative audio samples are synthe-
sized with provided text from AISHELL-2 [28] (synt-neg). In
order to compare the performance of models in practical ap-
plications, we also used the HI-MIA-CW database as the test
set(real-cw). The statistics of the data we used for training and
testing is shown in table 2, where the term ‘Real’ denotes nat-
ural speech, including utterances from HI-MIA database (Real
Positive), AISHELL-1 (Real Negative) and HI-MIA-CW (Real
Confusion Words).

5.2. Experimental Setup

We preprocess the HI-MIA training set by trimming the begin-
ning silence and force align the audio by a speech recognition
system trained on the AISHELL-2 dataset. For each sample, we
obtain the start time of pronouncing the word ”ni” and use the
following 121 frames as the final input, where 121 frames are
enough for speaking the keyword according to the alignment in-
formation. Our models are trained for 100 epochs with Nesterov
momentum Stochastic gradient descent optimizer. The initial
learning rate of the optimizer is set to 0.1 and decays when the
training loss has not decreased for several rounds. During eval-
uation, we have a sliding window with a frame length of 121
for each utterance and detect the occurrence of the expected
keyword.

Six KWS systems are trained and evaluated regarding dif-
ferent training setups in our experiments: (i) baseline: use all
real samples (include Real Positive set and the Real Negative
set), which are shown in table 2, for training. (ii) real+concat-
*: use the all real samples, all concatenated samples(include
concat-wake and concat-cw) for training. (iii) real+syn-*: use
all real samples, all synthetic samples(include synt-wake, synt-
cw and synt-neg) for training. (iv) real+mask: use all real sam-
ples, and the masked samples for training. (v) real+concat-
*+syn-*+mask: use all real samples, all concatenated sam-
ples, all synthetic samples, and the masked samples for train-
ing. (vi) real+concat-*+syn-*+mask+EMB: use all real sam-
ples, all concatenated samples, all synthetic samples, and the
masked samples for training. Pre-trained Domain Classifier is
incorporated in this setup.

There are two combination sets for evaluation: (i) real: use
the test set from Real Positive set and Real Negative set for
evaluation. (ii) real + real-cw: in addition to the test sets men-
tioned above, the natural samples of confusion words (real-CW)
are also included.



5.3. Results

Results are shown in Figures 3, 4 and Tables 3, 4, where Figure
3 and Table 3 show the performance of models on real test sets
(HI-MIA + AISHELL-1) without confusing words testing sam-
ples, Figure 4 and Table 4 show performance of models on the
real + real-cw test set. As for real test sets, we choose the false
rejection rate under one false alarm per hour as each model’s
performance criterion separately. Table 4 presents the KWS
performance of the five models regarding the false rejection rate
when the false alarm rate per hour is 20, as adding confusion
words in the test set makes the task more challenging.

Table 3: Performances of models trained with different methods
on the real test sets (the false rejection (FR) rate (%) under one
false alarm (FA) per hour)

Training set real

baseline 0.417

real + concat-* 1.67
real + syn-* 1.37
real + mask 0.334

real + concat-* + synt-* + mask 3.29
real + concat-* + synt-* + mask + EMB 0.523

Table 4: Performances of models trained with different methods
on the real+real-cw test sets (the false rejection (FR) rate (%)
under twenty false alarms per hour)

Training set real+real-cw

baseline 68.60

real + concat-* 46.05
real + syn-* 38.54
real + mask 63.63

real + concat-* + synt-* + mask 16.87
real + concat-* + synt-* + mask + EMB 9.81
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Figure 3: Performances of models on the real test sets

From Table 3 and 4 we can obtain the following observa-
tions. First, the baseline system performed well in real test
sets without confusing word samples. However, the perfor-
mance of the baseline system degrades dramatically on con-
fusion words examples, which happens frequently in real-life
applications. Second, directly adding adversarial samples leads
to performance degradation on the real test set but masked sam-
ples help train the system and achieve the best result (0.334) on
the real test set. Moreover, after the domain embedding algo-
rithm is applied, the system also maintains the performance on

0 20 40 60 80 100
False Alarms Per Hour

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 R
ej

ec
tio

n 
Ra

te

baseline
real+concat-*
real+synt-*
real+mask
real+concat-*+synt-*+mask
real+concat-*+synt-*+mask+EMB

Figure 4: Performances of models on the real+real-cw test sets

the real test set and achieves the result (0.523). It is because
domain adaptation methods help the system to learn to fit the
distribution of real data better and overcome the degradation
in performance due to the domain shift. Third, the accuracy
on the confusion word test set has been significantly improved
by adding adversarial synthetic samples. It can also be found
that adding concatenated samples and adding masked samples
does not improve the performance as much as TTS synthesized
ones. This may be due to insufficient simulation of confusion
word when masked samples are added separately, while possi-
bly misleading the system to learn whether there is a Gaussian
distribution of judgments. Also the concatenated samples show
steep changes in the splicing breakpoints in the spectral features
and do not simulate the confusion words well enough. Fourth,
adding synthetic samples along with concatenated and masked
samples can help the system to better learn the difference be-
tween confusing words and keywords, which achieve the result
16.87% on the real+real-cw testing set.

Finally, comparing to the baseline without any augmen-
tation, this augmentation setup with the domain adaptation
method achieves best performance on the real+real-cw testing
set and shows great robustness on confusion words scenarios
as the false rejection rate under twenty false alarms per hour
decreases from 68.60% to 9.81%.

6. Conclusions
In this paper, we discuss the concept of the confusion words
and focus on the task of small-footprint keyword spotting in
this scenario, then show the effectiveness of generating adver-
sarial samples to train a keyword recognition system. Confus-
ing words that sound very similar to the keywords lead to a
significant degradation in system performance. We release the
supplemental database HI-MIA-CW and adopt three augmen-
tation strategies to enhance the robustness, including concate-
nated samples, masked samples and synthesized samples with
the domain adaptation methods. Experimental results show that
our proposed methods can effectively maintain the accuracy on
general real test data and at the same time achieve significant
improvement under the test condition with confusing word sam-
ples.
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