
Low-Latency Online Speaker Diarization with Graph-Based Label Generation

Yucong Zhang1, Qinjian Lin2, Weiqing Wang1, Lin Yang2, Xuyang Wang2, Junjie Wang2, Ming Li1,3

1Department of Electrial & Computer Engineering, Duke University, Durham, NC 27708, USA
2AI Lab, Lenovo Research, Beijing 100085, China

3Data Science Research Center, Duke Kunshan University, Kunshan 215316, PR China
{yucong.zhang, ming.li369}@duke.edu

Abstract
This paper introduces an online speaker diarization sys-
tem that can handle long-time audio with low latency.
We enable Agglomerative Hierarchy Clustering (AHC) to
work in an online fashion by introducing a label matching
algorithm. This algorithm solves the inconsistency be-
tween output labels and hidden labels that are generated
each turn. To ensure the low latency in the online setting,
we introduce a variant of AHC, namely chkpt-AHC, to
cluster the speakers. In addition, we propose a speaker
embedding graph to exploit a graph-based re-clustering
method, further improving the performance. In the exper-
iment, we evaluate our systems on both DIHARD3 and
VoxConverse datasets. The experimental results show
that our proposed online systems have better performance
than our baseline online system and have comparable per-
formance to our offline systems. We find out that the
framework combining the chkpt-AHC method and the
label matching algorithm works well in the online set-
ting. Moreover, the chkpt-AHC method greatly reduces
the time cost, while the graph-based re-clustering method
helps improve the performance.

1. Introduction
Speaker diarization aims at solving the problem of ”who
spoke when”. It is a process of separating the input audio
into different pieces in terms of different speaker identi-
ties. Speaker diarization involving multiple speakers has
various kinds of applications. Particularly, the bound-
aries produced by a diarization system can provide useful
information to multi-speaker automatic speech recogni-
tion [1, 2] and improve its performance.

The conventional modularized speaker diarization
systems usually contain multiple modules [3, 4, 5], in-
cluding voice activity detection (VAD) [6], speech seg-
mentation, embedding extraction [7, 8, 9] and speaker
clustering [10, 11, 12, 13]. Each of those modules
has been studied widely to improve the overall perfor-
mance of the diarization system. For embedding extrac-
tion, i-vector [7], x-vector [8] and d-vector [9] are the
most frequently used methods. In the clustering stage,
embeddings are grouped together according to some

similarity metrics. The typical clustering methods for
speaker diarization are agglomerative hierarchy cluster-
ing (AHC) [10, 11] and spectral clustering (SC) [12, 13].
In addition to the key modules mentioned above, re-
clustering module may also be employed as the post-
processing to further improve the performance [3, 4].

Recently, the demand for online speaker diarization
systems has surged in many scenarios, e.g., meeting or
interview, but the conventional modularized speaker di-
arization system cannot be directly applied to the online
diarization task, since most of the clustering algorithms
are designed for offline tasks. An intuitive solution is that
the clustering is performed on the whole received speech
segments when new speech segments arrive. However, it
is not time efficient and may cause high latency. Further-
more, the labels generated by the clustering algorithms
might not be temporally consistent among all the speech
segments. To handle all these problems, low-latency on-
line diarization methods are studied.

Over the decade, several online speaker diarization
systems have been developed. In the early design of the
system, Gaussian Mixture Model (GMM) was trained
as a background model, and some adaptation methods
were used when a speech segment was assigned to a new
speaker [14, 15]. However, those systems usually need
pre-trained models, such as GMM for male speech, fe-
male speech and non-speech. Later on, speaker embed-
ding methods were proposed to replace the GMM ap-
proach. Some studies use d-vector as speaker embed-
ding to represent speaker segments, and the embeddings
were then clustered by some supervised methods [16, 17].
However, those supervised diarization method needs lots
of annotated diarization data, which might be difficult to
acquire in real application.

Besides supervised diarization methods, online mod-
ularized speaker diarization systems that use adapted i-
vector and adaptive clustering are proposed [18, 19]. Zhu
et al. [18] used principal component analysis (PCA) to
transform speaker embeddings into a subspace, where
the embeddings are more distinguishable. Dimitriadis et
al. proposed a variation of the k-means algorithm several
years ago [19]. They refined the assignments of clusters

Figure 1: The pipeline of our proposed system

by repeatedly attempting cluster subdivision, while keep-
ing the most meaningful splits given a stopping criterion.
However, the time complexity of both algorithms are lin-
ear with the number of speaker segments. Hence, it is not
time-efficient to handle long-time audio clips.

More recently, an online speaker diarization system
based on End-to-End Neural Diarization (EEND) [20]
was proposed. They modified the Encoder-Decoder-
Attractor (EDA) architecture of Horiguchi et al. [21]
by adding an incremental Transformer encoder module.
However, systems based on EEND have two major prob-
lems. First, it is restricted by the number of speakers. The
online system purposed by Han et al. [20] performs com-
parably well to the offline systems when only one to two
speakers are involved, but it cannot deal with more speak-
ers well. Second, the end-to-end online neural diariza-
tion system needs a large amount of in-domain data to
train beforehand. However, in-domain supervised train-
ing data for diarization cannot be easily obtained. Al-
though simulated data can be used for training, the model
still need to be transformed to the specific domain by fine-
tuning on the real dataset. Those problems motivate us
to build a modularized online speaker diarization system,
which can deal with more speakers and without any train-
ing data.

In this paper, we propose an online modularized
speaker diarization system, which can handle long-time
audio without annotated training data. The source code
will be released soon and a demo can be found in the
Google Drive1. Our system is performed in a frame-wise
online fashion that mainly consists of five modules,
namely voice activity detection (VAD), speaker embed-
ding extraction, embedding clustering, post-processing
and label generation. The system is illustrated in Fig. 1.
We summarize the key contribution of our online system
as follows:

i. Speaker clustering with chkpt-AHC
We propose an online speaker clustering module, namely

1https://drive.google.com/file/d/1v84QFzEsR7XeuNSV-h4WK-
Qu1QRO3eBN/view?usp=sharing

checkpoint-AHC (chkpt-AHC), to allow the whole
system to process long-time audio with low latency. It
is worth noting that this module functions normally in
the offline setting, but it might cause label inconsistency
problem in the online setting. Hence, in order to solve
this problem, we propose a label matching algorithm to
re-arrange the labels in the back-end of the system. We
will explain more details in Section 2.2.1 about the label
inconsistency problem.

ii. Post-processing with graph-based re-clustering
After the clusters are derived from chkpt-AHC, we
further refine the clusters using a speaker embedding
graph, which is maintained and updated as new speaker
embeddings arrive. In Section 3.5.1, the experimental
results show that this module can slightly improve the
performance.

iii. Label matching
In order to fix the label inconsistency issue, we introduce
a novel approach to enable the online label generation for
long-time audio, such that the output labels can remain
the consistency.

The rest of the paper is organized as follows. Sec-
tion 2 presents the details of our online diarization sys-
tem. Section 3 describes the settings of our experiments
and shows the results. Conclusions are drawn in Sec-
tion 4.

2. Proposed Diarization System
2.1. Overview

The key idea of our work is to perform online cluster-
ing by only updating the label of the new speech seg-
ment based on the history segments. The whole work-
ing pipeline is shown in Figure 1. In the beginning,
speech segments will be represented as speaker embed-
dings. Then, the embeddings will be clustered by a new
variant of AHC algorithm, namely chkpt-AHC. In the
meantime, a speaker embedding graph will be built and

save
checkpoints

outputs: 1 1 1 1 2

start from
checkpoints

outputs: 1 2 2 2 2 2

t moment t+1 moment

new input

label inconsistency

Figure 2: Illustration of the label inconsistency problem

maintained accordingly. The resulting clusters generated
by chkpt-AHC will be further processed by a graph-based
re-clustering method. However, the labels generated after
the clustering modules may not be consistent with previ-
ous output labels when a new speech segment appears,
which is discussed in Section 2.2.1. Hence, we introduce
a label matching module in the back-end, which adopts
the Hungarian algorithm to align the speakers between
two neighboring time steps.

Figure 3: chkpt-AHC

2.2. Online AHC and chkpt-AHC

The AHC algorithm for speaker clustering uses all the
speaker embeddings, and it uses the centroid linkage cri-
terion as a default setting, which means that each cluster
is represented by its centroid embedding. Each time when
a new speech segment arrives, the system first extracts
its embedding and then performs AHC on all the previ-
ously saved speaker embeddings along with the new one.
When AHC is performed, we use a pre-defined threshold
θ as a stopping criterion, such that the similarity mea-
sures among all the resulting clusters are smaller than the
threshold θ. The original AHC algorithm is not friendly
for online tasks, since the computational cost grows lin-
early with the length of the audio, leading to high latency
for long audio clips.

Therefore, in order to reduce the computational cost,
we set checkpoints to limit the number of initial speaker

embeddings for the AHC algorithm, which is called
chkpt-AHC. When the number of speaker embeddings
is fewer than the pre-defined checkpoint number k, the
online system performs AHC on all of the speaker em-
beddings. Otherwise, the intermediate clustering results
of k clusters are recorded as a checkpoint state, and it will
be used as the initial clustering state in the next time step.
When the next speaker embedding arrives, the cluster-
ing process starts from the checkpoint state of k clusters
and continues the clustering process with the new-coming
embedding. In this way, the checkpoint state is used to
control the maximum number of speaker embeddings to
be considered by AHC. With chkpt-AHC employed, the
total processing time reduces significantly, especially for
long-time audio, which is shown in Table 2.

2.2.1. Label Inconsistency Problem

Although AHC-based clustering methods can be easily
implemented and largely reduce the time for clustering,
they cannot be solely applied to an online system. Simply
adopting those methods will result in the label inconsis-
tency problem.

For simplicity, we call the labels that are generated
right after the clustering modules as hidden labels, and
the labels that are output by our system as output labels.
Then, the label inconsistency problem refers to the incon-
sistency between output labels and hidden labels. The
reason is that output labels cannot be changed once they
are output, while hidden labels might change according
to different inputs. Figure 2 illustrates the label incon-
sistency problem. It shows the agglomeration process
of chkpt-AHC with checkpoint number k = 4. At tth

moment, we have five speaker embeddings to agglomer-
ate. Since the checkpoint number k = 4, checkpoints are
saved when the system agglomerates to four clusters. In
the end, we can derive the speaker labels like “11112”,
where each label stands for the index of the speaker. At
(t+1)th moment, as Section 2.2 has mentioned, previous
checkpoints will be loaded and clustered with the new in-
put. Due to the change of the agglomerating order, the la-
bels for the previous segments have changed to “12222”.

However, “11112” has already been output as output la-
bels at tth moment, which are not able to change. In this
case, the label inconsistency problem arises between two
neighbor time steps. We are only allowed to find the best
label for the new input embedding according to the cur-
rent labels.

To this end, we apply a label matching algorithm to
solve this problem, which is described in Section 2.4.

2.3. Graph-based Re-clustering

Motivated by [3], we use a high threshold as the stop-
ping criteria of chkpt-AHC to get high-purity clusters.
As a result, the number of clusters after chkpt-AHC is
usually larger than the ground-truth number of speak-
ers. Then, we choose the speaker clusters based on the
duration criterion. However, in the online setting, the
duration of each cluster is always small at the begin-
ning, since the duration of each cluster accumulates with
time. Thus, we make some modifications so that the sys-
tem can perform in an online manner. At first, when no
cluster has a duration longer than a pre-defined thresh-
old, we pick one cluster with the longest duration as the
speaker cluster, and all the others as non-speaker clusters.
Then, as the timestamp increases, the speaker clusters are
picked using the duration criterion. In order to further
refine the clustering results, we propose a graph-based
approach to further determine whether the embeddings in
non-speaker clusters belong to a current speaker cluster
or a new speaker cluster.

(a) Using 0.6 as threshold (b) Using 0.3 as threshold

Figure 4: Graphs with different threshold

We introduce a speaker embedding graph G, which is
constructed as new speech segments arrive. Each node
ni in the graph represents a speaker embedding ei. The
weight of the edges is the similarity between the speaker
embeddings, measured by certain metric. The similarity
threshold used to build a graph is lower than the stop-
ping criteria of chkpt-AHC. As Fig. 4 shows, the graph
contains more connected nodes when applying a lower
threshold, which allows us to perform more precise re-
finements. Otherwise, it is difficult to adjust since many
unconnected notes are present due to a high threshold.

Since building such a graph is computationally ex-
pensive, we prune some of the edges in the speaker em-

(a) Graph before pruning (b) Graph after pruning

Figure 5: Effects of Graph pruning with threshold=0.3

bedding graph as shown in Fig. 5. Intuitively, if the new
speaker node is not similar to another node in the graph,
the new node is not connected to that node and that node’s
neighbors in the graph.

With the auxiliary speaker embedding graph, we pro-
pose a novel approach to deal with the embeddings in
non-speaker clusters. Given a speaker embedding graph
G, we can represent it as a weighted adjacency matrix A
as follows:

Aij =

{
θij , θij > s
0, θij ≤ s

where θij is the similarity score between embedding ei
and embedding ej . We use cosine similarity as the score
metric in the experiment.
We define the cluster likelihood L(i)

j to measure how
likely node ni belongs to the jth speaker cluster. The jth

speaker cluster is represented by a set Cj that contains
the indices of the nodes in the jth cluster. The cluster
likelihood L(i)

j can then be calculated as follows:

L(i)
j =

∑
k∈Cj

Aik

|Cj |

where |Cj | is the cardinality of Cj , counting the number
of nodes in the jth cluster.

With the speaker embedding graph and cluster like-
lihood, we can assign a non-speaker node to the cluster
with the highest cluster likelihood:

l(ni) = argmaxjL
(i)
j

where l(ni) is the index of the cluster that node ni should
be assigned to.

2.4. Label Matching Algorithm

Labels of each speech segment are generated according
to different clusters in the back-end module. However,
with the appearance of new speech segments, the cluster-
ing result might not be consistent, which is illustrated in
Section 2.2.1. Hidden labels generated in the back-end
might change when new speech segments arrive, but the
previously output labels in the front-end are not allowed

(a) Label matching (b) Bipartite graph

Figure 6: Front-end module

to change. This leads to a mismatch between output la-
bels and hidden labels as shown in Fig. 6 (a). This moti-
vates us to implement an algorithm to match the back-end
labels and the output labels so as to make inferences on
the label of the new speech segment. We re-frame the la-
bel matching problem as a maximum weighted bipartite
matching problem, which can be solved using the Hun-
garian algorithm [22]. Each node in the bipartite graph
stands for a label. Output labels and back-end labels are
in the separate part of the graph. The edge weight be-
tween two nodes is the frequency that two labels appear
at the same time. An example of the graph is shown in
Fig. 6 (b).

By formulating the problem as a bipartite matching
problem, we derive the matching result using the Hungar-
ian algorithm. We then use this result to make inferences
on the new speech segment as shown in Fig. 6 (a).

3. Experiments
We first build three baseline speaker diarization systems,
including two offline systems and one online system. All
three baseline systems are described in detail in Sec-
tion 3.2. Then, we measure the performance of our pro-
posed online system and compare it with the performance
of all baseline systems. Finally, we record the processing
time of our proposed online systems in order to measure
the time efficiency.

Throughout the whole experiment, offline speaker di-
arization systems are only tested in the offline setting,
while online ones are only tested in the online setting.

3.1. Datasets

For the speaker embedding model, it is trained on the de-
velopment set of Voxceleb2 [23] with 5994 speakers and
achieves an equal error rate (EER) of 1.06% on the Vox-
celeb1 original test set. For the speaker diarization part,
we use full sets in DIHARD3 [24] challenge and Vox-
Converse [25] datasets as our diarization datasets. For
DIHARD3, there are 254 audio clips in the development
dataset and 259 audio clips in the evaluation dataset. For

VoxConverse, there are 216 audio clips in the develop-
ment dataset and 232 audio clips in the evaluation dataset.
We use the development datasets to tune the parameters
and evaluate our systems on the evaluation datasets.

3.2. Baseline Systems

We include three baseline systems for comparison as
shown in Table. 1. Two of them are offline systems and
another one is an online system. Here is the detailed de-
scription:

Baseline 1
The first baseline system is an offline speaker diarization
system. It is introduced by [24] for DIHARD3 competi-
tion without VB-HMM resegmentation.

Baseline 2
The second baseline system is an offline speaker di-
arization system made on our own. It uses a similar
AHC-based speaker clustering module with the naive
re-clustering module as shown in [3]. The naive re-
clustering module uses a threshold to reassign the non-
speaker clusters to the speaker clusters. Intuitively, the
non-speaker clusters are assigned to one of the speaker
clusters via cosine similarity between centroid embed-
dings with a threshold. Our implementation of the offline
speaker diarization system has the DER of 16.82% on
the evaluation dataset of DIHARD3, which outperforms
the official baseline provided in the DIHARD3 competi-
tion [24]. Moreover, the result is better than half of the
teams that take part in the DIHARD3 competition, which
indicates that our offline system has a comparable perfor-
mance with the state-of-the-art offline systems.

Baseline 3
The third baseline system is an online system. It contains
none of our proposed modules, and the mechanism be-
hind it is intuitive. When a new speech segment arrives,
this system will assign it to the most similar cluster and
update the centroid embedding of that cluster. Here, we
measure the similarity between the new speech segment
and a cluster by calculating the cosine similarity between
the speaker embedding of the new segment and the cen-
troid embeddings of the clusters. Especially, if the sim-
ilarity score is lower than a pre-defined value, the new
speech segment will form a new cluster on its own.

3.3. Model Configurations

3.3.1. Speaker Embedding Extraction

In our work, we use the same recipe described in [26].
The input frame is 1s in length with a 0.5s shift. We use
a deep CNN based on ResNet [27] to extract the 128-dim
speaker embeddings.

Table 1: The DER (%) of the proposed speaker diarization system.

Sys. Offline Online AHC Chkpt-
AHC

Naive
re-clustering

Graph-based
re-clustering

Label
Matching

DIHARD3 VoxConverse

Dev. Eval. Dev. Eval.

Base. 1
√

- - - - - - 20.71 20.75 - -
Base. 2

√
-

√
-

√
- - 17.63 16.82 3.94 4.68

Base. 3 -
√

- - - - - 39.07 36.79 10.34 14.65

Prop. 1 -
√ √

-
√

-
√

20.17 19.68 5.20 6.28
Prop. 2 -

√
-

√ √
-

√
20.78 20.05 5.91 6.71

Prop. 3 -
√

-
√

-
√ √

20.28 19.57 5.80 6.60

3.3.2. Thresholds for Speaker Clustering and Re-
clustering

The thresholds for chkpt-AHC and speaker embed-
ding graph are tuned on the corresponding development
datasets, as shown in Fig. 7. The optimal thresholds for
different datasets are similar, which shows that similar
thresholds can be applied to different datasets. As a re-
sult, we use 0.6 as the stopping threshold for both AHC
and chkpt-AHC, and we use 0.4 as the threshold to build
the speaker embedding graph for the experiment. In addi-
tion, we limit the maximum number of clusters for chkpt-
AHC to 50 in our experiment.

(a) chkpt-AHC (b) speaker embedding graph

Figure 7: Thresholds tuning

3.4. Evaluation Metrics

We use the diarization error rate (DER) to measure the
performance of our system. DER typically consists of
three components: False Alarm (FA), Speaker Confusion
and Missed Detection (Miss). Particularly, for the Vox-
converse dataset, we evaluate our model with a 0.25s for-
giveness collar for DER.

3.5. Results & Analysis

3.5.1. DER Performance

The overall diarization results are shown in Table 1. We
do not provide the DER results on VoxConverse of base-
line system 1, since oracle VAD is used. In our proposed
online system 1, We build an online speaker diarization

system that uses AHC and a naive re-clustering module
with a label matching module in the end. This system
has similar offline modules of the second baseline system.
The key difference is that we use a label matching algo-
rithm, which enables the state-of-the-art offline diariza-
tion components, such as the AHC and the re-clustering
module, to be embedded in an online system. Table 1
shows that by enabling the AHC and the re-clustering
module, the performance of our proposed online system 1
is much better than the baseline online system. Moreover,
the performance is even better than the offline baseline
system 1.

In our proposed system 2, we further change the AHC
module with the chkpt-AHC module and leave the re-
clustering module unchanged. Compared to the AHC
module used in our proposed system 1, the clustering
accuracy drops in the sense that chkpt-AHC starts clus-
tering from the intermediate checkpoint state instead of
clustering from the beginning. It is reasonable to see that
the DER goes up a little bit. Despite the tiny drop in
the performance, our proposed system 2 is much more
time-efficient than our proposed system 1 as illustrated in
Section 3.5.2.

Based on our proposed system 2, proposed system 3
replace the naive re-clustering module with a graph-based
re-clustering module. Compared to proposed system 2,
proposed system 3 gains improvement on all the datasets,
which indicates that the graph-based re-clustering mod-
ule works better than the naive re-clustering module.
(Online vs. Online) We compare the performance of our
proposed online systems with the baseline online system.
As shown in Table 1, all our proposed online systems out-
perform the baseline online system 3 by a large margin.
The results indicate that the framework including offline
speaker clustering methods, such as AHC or chkpt-AHC,
and the label matching algorithm works well in the online
setting.
(Offline vs. Online) Although our proposed online sys-
tems perform a little bit worse than the state-of-the-art
baseline offline system, they still outperform the baseline
offline system 1, which indicates that our proposed on-
line systems can achieve comparable performance to the
offline systems.

Table 2: Average processing time (s) / average audio time (s) for different datasets. This experiment is conducted on a single core of
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz.

Sys. DIHARD3 VoxConverse

Dev. Eval. Dev. Eval.

Prop. 1 121.8/484.0 113.0/458.8 104.3/338.3 446.1/830.2
Prop. 2 44.0/484.0 40.0/458.8 27.9/338.3 114.7/830.2
Prop. 3 48.9/484.0 44.7/458.8 32.5/338.3 142.7/830.2

3.5.2. Time Efficiency

Online speaker diarization systems need to handle speech
data in real-time scenarios and make lively updates, so
besides the DER performance, time efficiency is also an
important criterion. We use the average processing time
that a system takes to handle one audio clip in the datasets
as a metric to measure the time efficiency. Intuitively, it
is calculated by the time of processing the whole dataset
divided by the total number of audio clips in the dataset.

We compare the time efficiency among our proposed
systems. Table. 2 shows that the time cost for our pro-
posed system 1 is considerably high compared to the
other two, because it takes all the embeddings into ac-
count when clustering. Our proposed system 3 is a little
bit more time-consuming than the proposed system 2, be-
cause we add a speaker embedding graph to the system.
Building and maintaining such a graph might take extra
time. Overall, we find out that by applying chkpt-AHC,
the online system is much more time-efficient than the
online system with original AHC, and the performance is
almost the same. To further show that our proposed sys-
tem 3 is time-efficient, a demo can be found in Google
Drive2.

4. Conclusions
In this paper, we propose an online modularized diariza-
tion system that can handle long-time audio with low la-
tency. In the system, we propose a label matching algo-
rithm to handle the label inconsistency problem, which
enables us to embed the offline speaker clustering ap-
proaches, such as AHC, in an online system. We fur-
ther propose the chkpt-AHC method and the graph-based
re-clustering method. Through the experiments, we find
out that applying chkpt-AHC significantly improves time
efficiency, and adopting the graph-based re-clustering
method helps improve the performance. We experimen-
tally show that our proposed online systems achieve bet-
ter performance than our baseline online system, and
comparable performance with the offline systems.

2https://drive.google.com/file/d/1v84QFzEsR7XeuNSV-h4WK-
Qu1QRO3eBN/view?usp=sharing

5. References
[1] Naoyuki Kanda, Christoph Boeddeker, Jens

Heitkaemper, Yusuke Fujita, Shota Horiguchi,
Kenji Nagamatsu, and Reinhold Haeb-Umbach,
“Guided Source Separation Meets a Strong ASR
Backend: Hitachi/Paderborn University Joint
Investigation for Dinner Party ASR,” in Proc.
Interspeech, 2019, pp. 1248–1252.

[2] Ivan Medennikov, Maxim Korenevsky, Tatiana
Prisyach, Yuri Khokhlov, Mariya Korenevskaya,
Ivan Sorokin, Tatiana Timofeeva, Anton Mitro-
fanov, Andrei Andrusenko, Ivan Podluzhny, et al.,
“The STC System for the CHiME-6 Challenge,” in
CHiME 2020 Workshop on Speech Processing in
Everyday Environments, 2020.

[3] Xiong Xiao, Naoyuki Kanda, Zhuo Chen, Tianyan
Zhou, Takuya Yoshioka, Sanyuan Chen, Yong
Zhao, Gang Liu, Yu Wu, Jian Wu, et al., “Mi-
crosoft Speaker Diarization System for the Vox-
Celeb Speaker Recognition Challenge 2020,” in
Proc. ICASSP. IEEE, 2021, pp. 5824–5828.

[4] Federico Landini, Ondřej Glembek, Pavel Matějka,
Johan Rohdin, Lukáš Burget, Mireia Diez, and
Anna Silnova, “Analysis of the BUT Diariza-
tion System for Voxconverse Challenge,” in Proc.
ICASSP. IEEE, 2021, pp. 5819–5823.

[5] Tae Jin Park, Manoj Kumar, and Shrikanth
Narayanan, “Multi-Scale Speaker Diarization with
Neural Affinity Score Fusion,” in Proc. ICASSP,
2021, pp. 7173–7177.

[6] Tim Ng, Bing Zhang, Long Nguyen, Spyros Mat-
soukas, Xinhui Zhou, Nima Mesgarani, Karel
Veselý, and Pavel Matějka, “Developing a speech
activity detection system for the DARPA RATS pro-
gram,” in Proc. Interspeech 2012, 2012, pp. 1969–
1972.

[7] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre
Dumouchel, and Pierre Ouellet, “Front-end Factor
Analysis for Speaker Verification,” IEEE Transac-
tions on Audio, Speech, and Language Processing,
vol. 19, no. 4, pp. 788–798, 2010.

[8] David Snyder, Daniel Garcia-Romero, Gregory
Sell, Daniel Povey, and Sanjeev Khudanpur, “X-
vectors: Robust DNN Embeddings for Speaker
Recognition,” in Proc. ICASSP. IEEE, 2018, pp.
5329–5333.

[9] Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez
Moreno, “Generalized End-to-end Loss for Speaker
Verification,” in Proc. ICASSP. IEEE, 2018, pp.
4879–4883.

[10] Daniel Garcia-Romero, David Snyder, Gregory
Sell, Daniel Povey, and Alan McCree, “Speaker
Diarization Using Deep Neural Network Embed-
dings,” in Proc. ICASSP. IEEE, 2017, pp. 4930–
4934.

[11] Gregory Sell and Daniel Garcia-Romero, “Speaker
Diarization with PLDA I-vector Scoring and Unsu-
pervised Calibration,” in Proc. SLT. IEEE, 2014,
pp. 413–417.

[12] Quan Wang, Carlton Downey, Li Wan, Philip An-
drew Mansfield, and Ignacio Lopz Moreno,
“Speaker Diarization with LSTM,” in Proc.
ICASSP. IEEE, 2018, pp. 5239–5243.

[13] Qingjian Lin, Ruiqing Yin, Ming Li, Hervé Bredin,
and Claude Barras, “LSTM Based Similarity Mea-
surement with Spectral Clustering for Speaker Di-
arization,” in Proc. Interspeech, 2019, pp. 366–370.

[14] Jürgen Geiger, Frank Wallhoff, and Gerhard Rigoll,
“Gmm-ubm based open-set online speaker diariza-
tion,” in Proc. INTERSPEECH 2010, Makuhari,
Japan, 2010, pp. 2330–2333.

[15] Konstantin Markov and Satoshi Nakamura, “Im-
proved novelty detection for online GMM based
speaker diarization,” in Proc. Interspeech 2008,
2008, pp. 363–366.

[16] Aonan Zhang, Quan Wang, Zhenyao Zhu, John
Paisley, and Chong Wang, “Fully Supervised
Speaker Diarization,” in Proc. ICASSP, 2019, pp.
6301–6305.

[17] Enrico Fini and Alessio Brutti, “Supervised On-
line Diarization with Sample Mean Loss for Multi-
domain Data,” in Proc. ICASSP. IEEE, 2020, pp.
7134–7138.

[18] Weizhong Zhu and Jason Pelecanos, “Online
Speaker Diarization Using Adapted I-vector Trans-
forms,” in Proc. ICASSP. IEEE, 2016, pp. 5045–
5049.

[19] Dimitrios Dimitriadis and Petr Fousek, “Develop-
ing on-line speaker diarization system.,” in Proc.
Interspeech, 2017, pp. 2739–2743.

[20] Eunjung Han, Chul Lee, and Andreas Stolcke,
“BW-EDA-EEND: Streaming End-to-end Neural
Speaker Diarization for A Variable Number of
Speakers,” in Proc. ICASSP. IEEE, 2021, pp. 7193–
7197.

[21] Shota Horiguchi, Yusuke Fujita, Shinji Watanabe,
Yawen Xue, and Kenji Nagamatsu, “End-to-End
Speaker Diarization for an Unknown Number of
Speakers with Encoder-Decoder Based Attractors,”
in Proc. Interspeech, 2020, pp. 269–273.

[22] Harold W Kuhn, “The Hungarian Method for the
Assignment Problem,” Naval research logistics
quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[23] Arsha Nagrani, Joon Son Chung, and Andrew Zis-
serman, “Voxceleb: A Large-scale speaker Identifi-
cation Dataset,” arXiv preprint arXiv:1706.08612,
2017.

[24] Neville Ryant, Prachi Singh, Venkat Krishnamohan,
Rajat Varma, Kenneth Church, Christopher Cieri,
Jun Du, Sriram Ganapathy, and Mark Liberman,
“The Third DIHARD Diarization Challenge,” arXiv
preprint arXiv:2012.01477, 2020.

[25] Joon Son Chung, Jaesung Huh, Arsha Nagrani, Tri-
antafyllos Afouras, and Andrew Zisserman, “Spot
the Conversation: Speaker Diarisation in the Wild,”
in Proc. Interspeech, 2020, pp. 299–303.

[26] Weicheng Cai, Jinkun Chen, Jun Zhang, and Ming
Li, “On-the-fly Data Loader and Utterance-level
Aggregation for Speaker and Language Recogni-
tion,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 28, pp. 1038–1051,
2020.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun, “Deep Residual Learning for Image
Recognition,” in Proc. CVPR, 2016, pp. 770–778.

