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Abstract—Lexical content variability in different utterances is
the key challenge for text-independent speaker verification. In
this paper, we investigate using supervector which has ability to
reduce the impact of lexical content mismatch among different
utterances for supervised speaker embedding learning. A DNN
acoustic model is used to align a feature sequence to a set
of senones and generate centered and normalized first order
statistics supervector. Statistics vectors from similar senones are
placed together and reshaped to an image to maintain the local
continuity and correlation. The supervector image is then fed
into residual convolutional neural network. The deep speaker
embedding features are the outputs of the last hidden layer of
the network and we employ a PLDA back-end for the subsequent
modeling. Experimental results show that the proposed method
outperforms the conventional GMM-UBM i-vector system and
is complementary to the DNN-UBM i-vector system. The score
level fusion system achieves 1.26% ERR and 0.260 DCF10 cost
on the NIST SRE 10 extended core condition 5 task.
Index Terms: Speaker verification, text-independent, CNN,
supervector, deep speaker embedding

I. INTRODUCTION

Speaker verification, as a biometric technology, authenticate
a speaker’s identity given a speech signal. Generally, speech
contains not only lexical information but also paralinguistic
speech attributes, e.g. speaker, language, channel, emotion
and so on. Reducing these variability factors unrelated with
speaker information has been a key challenge in speaker
verification systems. Based on the constraints of the lexical
contents, speaker verification can be categorized into text-
dependent and text-independent one. Text-dependent speaker
verification employs the same set of phrases for enrollment and
verification, so all utterances are with nearly the same word
sequence. In contrary, text-independent one is a context-free
task. Text-dependent speaker verification usually outperforms
the text-independent one [1] for the constraint of the linguistic
contents.

To reduce the impact of lexical content mismatch, most text-
independent speaker verification systems adopt a high- and
fixed-dimensional supervector to represent a speech utterance
[2]. In this approach, acoustic features of an utterance are
aligned to a set of universal background model (UBM) tokens
which can be Gaussian mixture model (GMM) components

trained in an unsupervised manner [3] or phonetic states of a
deep neural network (DNN) acoustic model [4]. The aligned
features can be seen as the statistical acoustic patterns of the
given utterance on every token and are stacked together to
generate a supervector. As supervector is a high-dimensional
feature, current speaker verification systems use i-vector mod-
eling to perform dimension reduction [5]. In i-vector modeling,
a single factor analysis is used to generate a low dimensional
total variability space (i.e. i-vector space) which jointly models
language, speaker and channel variabilities.

Motivated by the success of deep learning, researchers
in speaker verification have been working on learning dis-
criminative deep speaker embedding features. Variani et al.
train a DNN to classify speakers and extract d-vector at
the frame level for text-dependent speaker verification [6].
Heigold et al. train an end-to-end system to discriminate
speaker pairs [7] and achieved better performance than i-
vector baseline system. Zhang et al. learn speaker embedding
features with an attention based convolutional neural network
(CNN) framework for the text-dependent task [8]. In text-
independent speaker verification task, DNN based methods
outperform i-vector baseline under short duration [9], [10],
[11] or large amount of data [12] condition. Recently, end-to-
end deep learning based approaches with different encoding
layer designs have also been proposed for speaker verification
and language identification [13], [14], [15].

All the DNN based systems mentioned above use frequency
domain features (i.e. MFCC, spectrogram, mel-filter bank
energy) as inputs. Since the input utterance may have any
arbitrary length, existing end-to-end approaches usually take
a fixed length input and then perform average pooling at
different layers or score level. This may not be ideal since
the variability of lexical contents may require a finer statistics
calculation on different phonetic units for text-independent
tasks. Motivated by the success of DNN i-vector [4] and tan-
dem i-vector [16], [17], the acoustic model generated phoneme
posterior probabilities is a natural 0th order occupancy prob-
ability for different phonetic tokens. Therefore, we perform
speaker embedding learning directly on the DNN phonetic-
aware supervector which already serves as a sequence-to-
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Fig. 1. The residual CNN architecture on supervector image for text-independent speaker recognition. The parameters in convolutional layer is Conv(output
channel, kernel size, stride, padding), the number in PReLU stands for learnable parameters.

vector pooling module. Moreover, the existing end-to-end
methods usually employ fully connected layers to model the
pooled fixed dimensional activations or features. In this paper,
we use CNN to explore the local correlation of features
on different tokens. Using residual network [18], we could
achieve a very deep network with good robustness against
overfitting.

The contributions of the proposed method are as follows.
Firstly, we utilize the power of DNN acoustic model to robust-
ly perform phonetic aware 1st order statistical pooling to get
supervectors and reshape the high-dimensional supervector as
a image. Secondly, we feed supervector images into deep CNN
to learn speaker discriminative embeddings. Convolutional
layers have much less parameters comparing to fully connected
layers, this allows us to utilize deeper network architecture
and helps to prevent overfitting. Thirdly, we explore the local
continuity and correlation of similar phonetic tokens in super-
vectors. As the phonetic tokens tied with DNN acoustic model
may have phonetic similarities among different granularity
levels, we use hierarchical clustering and phonetic decision
tree to reorder the token indexes and form a supervector
image, in which similar phonetic tokens are grouped together
to highlight local correlation. This reorder operation can help
CNN to learn more discriminative speaker embeddings. Final-
ly, the speaker embedding features are modeled and scored
by cosine similarity and PLDA back-end [19]. Experimental
results show that the new supervector image and ResNet based
speaker embedding outperforms the DNN or fully connected
layer learnt embedding from supervectors. Furthermore, the
proposed method achieves comparable performance with the
start-of-art DNN i-vector speaker verification systems, and
score level fusion can further boost the performance.

The rest of the paper is organized as follows. Section 2
presents the proposed framework for text-independent speaker
verification. The experimental results are presented in Section
3 while conclusions are future works are provided in Section
4.

II. METHOD

Fig. 1 illustrates the network architecture in this work.
Details are shown in the following sections.

A. Feature extraction

Given a MFCC sequence {y1,y2, · · · ,yL} from a L frames
utterance, the 0th and centered 1st order Baum-Welch statistics
on the UBM are calculated as follows:

Ni =

L∑
t=1

P (ci|yt) (1)

Fi =
L∑

t=1

P (ci|yt)(yt − µi) (2)

where ci stands for each of the senone in time delayed neural
network (TDNN) acoustic model and µi is the mean vector
of the corresponding senone, P (ci|yt) is the frame level
phone posterior probability (PPP) stands for the ith senone
extracted from a TDNN [20]. The corresponding centered
mean supervector F̃ is generated by concatenating all the F̃i

together:

F̃i =

∑L
t=1 P (ci|yt)(yt − µi)∑L

t=1 P (ci|yt)
(3)

The MFCC features are 60 dimensional feature vectors con-
sisting 20 MFCC coefficients and their first & second order
deltas. The TDNN acoustic model outputs a 5515 dimensional
PPP and the final supervector as input to residual network can
be seen as a 5515×60 image.

B. Data pre-processing

The 5515×60 dimensional supervector image consists of
3 5515×20 blocks corresponding to MFCC coefficients, first
and second derivatives, respectively. We perform mean and
variance normalization for each block separately.

Furthermore, since each senone may have different occupan-
cy probability in different utterances, we use the 0th Baum-
Welch statistics to re-weight the supervector as follows,

F̃i =

√√√√ L∑
t=1

P (ci|yt)

∑L
t=1 P (ci|yt)(yt − µi)∑L

t=1 P (ci|yt)
(4)

This normalized supervector gives more weight on those
‘confident’ senone and less on others, thus we hope the DNN
may concentrate more on F̃i with ‘confident’ senone.



Fig. 2. Original, hierarchical clustering reordered, phonetic decision tree
reordered DNN-UBM mean supervector. The three supervectors above are
normalized as mentioned in section II-B.

C. Explore continuity in supervector

The 5515 senones of TDNN output layer have phonetic sim-
ilarity among different granularity level such as tri-phone level,
mono-phone level and vowel & consonant level. Grouping the
similar senones together may offer continuity and correlation
in the supervector image and make CNN to learn the speaker
embedding more effectively. We explore two methods to group
similar senones together in this work.

1) Hierarchical clustering index: The first method used to
generate reordering indexes is hierarchical clustering. Firstly,
the distances between each of the senone’s mean vector µi

are calculated. We try cosine distance and correlation distance
in this work. Secondly, a hierarchy tree of clusters is built
based on the distances. The leaf nodes of the hierarchy tree
are associated with 5515 senones. Finally, going through all
the leaf nodes with the same direction forms the reordering
indexes.

2) Phonetic decision tree clustering index: For the second
method, we extract reordering indexes from the phonetic
decision tree which is generated during TDNN acoustic model
training phase. In decision tree, a question relates to the pho-
netic context is attached to each node. The tree is constructed
for each state of each phone to cluster all of the corresponding
states of all of the associated tri-phones [21]. We thus use the
indexes of the leaf nodes in phonetic decision tree to reorder
the senones.

Figure 2 shows the differences between the original su-
pervector image without reordering and the two reordered
supervector image. We can see that the supervector image
without reordering is like a ‘noisy’ picture to some extent. The
hierarchical clustering reordered supervector shows some con-
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Fig. 3. A ResNet building block

tinuity in the MFCC coefficients block and second derivatives
block, but remains the first derivatives part in a noisy style.
Phonetic decision tree groups the similar senone together, the
third supervector image shows its continuity in all three blocks.

D. Neural network architecture

Deep residual convolutional network (ResNet) [18] is a
kind of very deep network architectures showing competitive
accuracy and nice convergence behaviours in many computer
vision tasks such as object recognition, face identification,
emotion recognition. Residual network has a series of residual
block in which a bypassing shortcut connects the residual
block’s outputs and inputs. A typical ResNet block is shown
in figure 3. It is defined as:

y = F(x,Wi) + x (5)

where x and y are input and output of vectors of the ResNet
block, the function F(·) can be one or more convolutional
layers with parameters Wi.

In this work, we have 4 residual network layers with 1,
2, 4, 1 residual block(s). Each residual block contains two
convolutional layers with one additional down-sampling layer
for the first block of each ResNet layer. The total number
of convolutional layer is 20. Pooling layer is not used and
the size of the supervector images change whenever a down-
sampling convolutional layer works. Each convolutional layer
is followed by a parametric rectified linear unit (PReLU) [22].

The output of ResNet is then sent into a feed-forward
neural network with two fully connected layers. The first is
a bottleneck layer and is used to learn speaker embeddings.
The final layer is used to classify speaker labels when training
ResNet. The loss function for ResNet training is multi-class
cross entropy.

E. Deep speaker embeddings

The last hidden layer of the network serves as a bottleneck
layer with 512 nodes. The final fully connected layer is
performed on the last hidden layer to classify speaker labels
during the training phase. Thus the outputs of the last hidden
layer can be seen as a deep speaker embedding feature. We use
simple cosine similarity scoring and probabilistic linear dis-
criminant analysis (PLDA) back-end [19] to assess the learned
deep speaker embeddings. Pairs of speaker embeddings are
compared on the PLDA model to generate final verification
scores.



III. EXPERIMENTS

A. Dataset

We conduct our speaker verification experiments on NIST
SRE 2010 extended core condition 5 [23]. Training data
are conversational telephone speech from datasets released
through the Linguistic Data Consortium. The SRE portion
consists of NIST SRE data from 2004 through 2008. The
Switchboard portion consists of Switchboard 2 Phase 2, 3
and Switchboard Cellular. We employ a energy based voice
activity detector (VAD) to drop all frames that are decoded
as silence or speaker noises. This result in a total number of
57350 utterances from 5756 speakers. In the evaluation set,
there are 4267 enrol models and 767 test segments. In total
there are 416119 trials with 7169 target trials including both
male and female trials.

B. i-vector baseline system

We first train a GMM-UBM based ivector system using
Kaldi toolkit. The front-end features are 20 MFCCs with
a frame length of 30ms that are normalized over a sliding
window of up to 3 seconds. First and second derivatives are
appended to create 60 dimensional features. The UBM is a
2048 component GMM and the dimension of i-vector is 600.
I-vectors are centered and length normalized before PLDA
scoring. GMM and i-vector extractor are trained on all the
training data and PLDA is trained on SRE portion.

We also train a DNN-UBM ivector system. It uses supervec-
tor described in section II-A. The TDNN acoustic model used
as a DNN-UBM is trained on about 1,800 hours of the English
portion of Fisher dataset [24]. The other configurations on i-
vector extractor and PLDA model are same as GMM-UBM
based i-vector system.

C. ResNet system setup

When training the ResNet based speaker verification system,
we refine the training data by removing speakers with less than
4 utterances. Then we have a total of 4352 speakers which
matches the size of final output layer. All the training data
including Switchboard and SRE portion are used to train the
PLDA back-end.

D. Fully connected DNN system setup

To verify the effectiveness of the deep residual convolutional
neural network on supervectors, we also train a fully connected
neural network (FC Net) on the same supervector as a com-
parison system. This network has two hidden fully connected
layers with 512 neurons each and the activation function is
rectified linear unit (ReLU). The input is a 330900×1 high-
dimensional supervector which is preprocessed as described
in section II-B, and the output layer has 4352 nodes which
matches with the 4352 speakers in the training set. The speaker
features are read from the outputs of the last hidden layer.

TABLE I
PERFORMANCE COMPARISON ON NIST SRE 2010

ID System Description PLDA Cosine
EER(%) DCF10 EER(%) DCF10

1 GMM-UBM i-vector 2.28 0.489 6.93 0.799
2 DNN-UBM i-vector 1.45 0.255 3.42 0.461

3 FC Net / supervector 3.84 0.673 9.54 0.892

4 ResNet / supervector 2.22 0.402 8.90 0.811
5 ResNet / cosine HC 2.16 0.383 8.26 0.808
6 ResNet / correlation HC 2.09 0.391 8.84 0.821
7 ResNet / decision tree 2.16 0.407 7.85 0.788

8 Fusion 4 5 6 7 1.74 0.329 7.57 0.772
9 Fusion 1 8 1.51 0.293 5.61 0.664

10 Fusion 2 8 1.34 0.246 3.21 0.455
11 Fusion 1 2 8 1.26 0.260 3.29 0.442

E. Results

Table I shows the results obtained with experimental setup
presented above. Performance metrics for the experiments are
Equal Error Rate (EER) as well as the minimum of the nor-
malized detection cost function (DCF) with PTarget = 10−3

for SRE10 [23].
During implementing the systems, we observe that the deep

speaker embedding trained by ResNet does not achieve the
best performance on both cosine and PLDA back-ends. As the
training epoch increasing, cosine EER decreases from 9.5% to
7.5% and the PLDA EER increases from 2.1% to 3.0%. The
main reason for this may be overfitting. Overfitting may cause
the mismatch distribution between training data and testing
data. So this might explain that the performance of PLDA
back-end which requires the same training data degrades. We
believe that when training data is sufficiently large, cosine
distance back-end may be good enough to model deep speaker
embeddings just as in face verification tasks.

It can be observed from table I that all the four deep residual
convolutional networks outperform the fully connected DNN
on both cosine back-end and PLDA back-end. The perfor-
mance gain mainly comes from the power of ResNet which
is trained on supervector images. Comparing the four ResNet
systems, we see that the reordered supervector images can
boost the performance of ResNet. The most useful reordering
methods are correlation distance based hierarchical clustering
for EER and cosine distance based hierarchical clustering
for minDEF10. Moreover, different reordered methods are
complementary for each other, score level fusion can greatly
improve the performance as as shown in Table I system 8. The
combination of these systems was obtained by linear fusion of
their scores. We use BOSARIS toolkit [25] to fuse the system
scores. The fusion results show that the supervector image
ResNet system and the i-vector system are complementary to
each other. The final fusion result achieves 1.26% EER and
0.260 normalized minDCF10. Figure 4 shows the Detection
Error Trade-off (DET) curves of the PLDA back-end system
wit ID 1, 2, 8 and 11 in table I.
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IV. CONCLUSION

In this paper, we investigate learning speaker embeddings
with deep residual CNN on supervector images for text-
independent speaker recognition system. A DNN acoustic
model is used to align a feature sequence to a set of senones
and generate the phonetic aware supervector. Statistics vectors
from similar senones are placed together to maintain the
local continuity and correlation using hierarchical clustering
or phonetic decision tree. Experimental results show that
training deep residual CNN on reordered supervector images
outperforms applying fully connected DNN directly on high-
dimensional supervectors.

Generating supervector can be seen as an encoding process
in which the feature sequence is encoded into a set of senone
tokens tied with ASR acoustic model. In the further work,
we will extend the idea of using supervector for CNN. We
will explore a encoding layer in DNN architecture to auto-
matic learn speaker discriminative tokens and align a feature
sequence to the learned tokens to get supervector. Then feature
reordering and deep CNN can be applied on top of the learned
supervector in an unified end-to-end architecture.
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