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Abstract—We propose a new methodology to model high-level descrip-
tions of physical activities using multimodal sensor signals (ambulatory
electrocardiogram (ECG) and accelerometer signals) obtained by a
wearable wireless sensor network. We introduce a two-step strategy where
the first step estimates likelihood scores over the low-level descriptions
of physical activities such as walking or sitting directly from sensor
signals and the second step infers the high-level description based on
the estimated low-level description scores. Assuming that a high-level
description of a certain physical activity may consist of multiple low-
level physical activities and a low-level physical activity can be observed
in multiple high-level descriptions of physical activities, we introduce
the statistical concept of latent topics in physical activities to model
the high-level status with low-level descriptions. With an unsupervised
approach using a database from unconstrained free-living settings, we
show promising results in modeling high-level descriptions of physical
activities.

Index Terms—unsupervised real-life physical activity modeling, high-
level descriptions of physical activities, latent topic models for physical
activities

I. INTRODUCTION

There is a growing body of interest in monitoring health condition
through sensor networks and mobile devices [1], [2]. Specifically,
measuring an individual’s physical activity is beneficial to many
healthcare scenarios, such as obesity prevention and reducing the
risk of cardiovascular disease [3].

The USC KNOWME project has been developing methods and
tools to track users’ physical activity, level of stress, and vital
signs for health care applications especially pediatric obesity [3],
[4], [5], [6]. In this framework, Li et al. performed classification
tasks with respect to 9 low-level descriptions of physical activities,
such as lying, sitting, walking, etc. With supervised in-lab based
data of structured activities obtained from the subjects, the authors
demonstrated promising results by fusing various pattern recognition
methodologies based on ambulatory electrocardiogram (ECG) and
accelerometer signals [5].

In this work, we focus on two main directions: the first goal
is to analyze unstructured multimodal sensor data obtained from
unsupervised free-living settings, and the second goal is to derive
high-level descriptions of physical activities. The motivation for the
former is to translate ideas and results from laboratory studies to
real-life use of these systems. The rationale behind seeking high-level
descriptions is that they can provide summaries of low-level physical
activities over a given time period that could be useful for clinical
decision making and treatment planning by experts. See Table I for
the full list of high-level descriptions that are used in this work.

Analyzing free-living data with respect to high-level descriptions is
however very challenging since there is greater variability in the range
and types of activities as well as greater measurement uncertainty
and no well-defined ground truth. Importantly, one may have non-
prototypical activity types, that are often blends of prototypical

activity categories. To model high-level descriptions of real-life
physical activities, here we propose a two-step modeling strategy
which involves an automatic low-level classifier as an intermediate
step; the first step will estimate likelihood scores over the low-level
classes to describe a person’s state and the second step will infer
the high-level description that summarizes the estimated low-level
physical activities.

It is worth noting that high-level descriptions may include various
low-level physical activities simultaneously and any low level activity
may be associated with more than one high level description. This
many-to-many mapping leads to ambiguities in inferring the high-
level semantic descriptions. For instance, sitting can be observed in
both homework and eating a meal categories, hence an automated
monitoring system cannot determine whether the subject is doing
his/her homework or having a meal when it detects the subject
is sitting. To mitigate this ambiguity, we introduce the concept of
latent topics in physical activities. We hypothesize that each high-
level physical activity consists of a set of latent topics and each
latent topic has a set of low-level physical activities. Note that
similar approaches can be found in text processing and image/audio
processing [7], [8], [9], [10]. Assuming that a document (or an image)
has a distribution over a set of latent topics and each latent topic,
in turn, has a distribution over a set of words (or observations),
the concept of latent topics (a.k.a. latent topic models) has been
extensively investigated. In this paper, we borrow the idea of the
latent topics to describing physical activities and apply the Latent
Dirichlet Allocation to implement the idea.

II. LATENT TOPICS IN PHYSICAL ACTIVITIES

In this section, we introduce the notion of latent topics in
physical activities for modeling high-level descriptions using low-
level descriptions. In the following subsections, details on the low-
level description classifier and latent Dirichlet allocation (LDA) are
provided followed by actual implementation of latent topic models
for physical activities. Note that, as described in the next section, the
notion of word and topic in this present context refers to a physical
activity primitive and its logical grouping.

A. Low-level description classifier

As an intermediate step to modeling high-level descriptions of
physical activities, we use the low-level classifier proposed by Li
et al. [5]. The specific low-level descriptions considered in this work
are lying, sitting, sit fidgeting, standing, stand fidgeting, playing wii,
slow walking, brisk walking, and running. We can view these as
vocabulary items (words) with which we can construct higher level
semantic descriptions (See Section II-C). In [5], time domain features
and cepstral features are extracted from both ECG and accelerometer,
and modeled with a support vector machine (SVM) and a Gaussian
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mixture model (GMM) respectively. Therefore, individual low-level
physical activities would have four different sub-classifiers; ECGt-
SVM, ECGc-GMM, accelerometert-SVM, and accelerometerc-GMM
where subscripts t and c represent time domain features and ceptral
features, respectively, which leads one test set to have 4 × 9 = 36
different scores.

B. Latent Dirichlet Allocation

As discussed earlier, the latent topic model which was originally
proposed for text signal processing assumes that a document consists
of latent topics and each topic has a distribution over words in a
dictionary [7]. This assumption can be realized using a generative
model such as Latent Dirichlet allocation (LDA). Fig. 1 illustrates
the basic concept of LDA in a graphical representation as a three-
level hierarchical Bayesian model.

Let V be the number of words in a dictionary and w be a V -
dimensional vector whose elements are zero except for the corre-
sponding word index in the dictionary. A document consists of N
words, and it is represented as d = {w1, w2, · · · , wi, · · · , wN}
where wi is the i th word in the document. A data set consists of M
documents and it is represented as S = {d1,d2, · · · ,dM}.

In this work, we define k latent topics and assume that each word
wi is generated by its corresponding topic. The generative process
can be described as follows:

1) For each document d, choose θ ∼ Dir(α),
where θ and α represent the topic distribution probability and
the Dirichlet coefficient, respectively

2) For each word wi in document d,
a) Choose a topic ti ∼ Multinomial(θ)
b) Choose a word wi with a probability p(wi|ti, β),

where β denotes a k×V matrix whose elements represent
the probability of a word with a given topic, i.e. βnm =
p(wi = m|ti = n).

It is apparent from the above that LDA assumes a large number of
hidden or latent parameters (θ, t, α, and β) and only one observable
variable w. In many estimation processes, parameters are often
chosen to maximize the likelihood values of a given data w. The
likelihood can be defined as

l(α, β) =
∑
w∈w

log p(w|α, β) . (1)

Once α and β are estimated, the joint probability of θ and t with
given w should be infered as

p(θ, t|w, α, β) = p(θ, t,w|α, β)
p(w|α, β) . (2)

In this work, we investigate the variational approximation method [9]
to estimate and infer the parameters of the topic model.

C. Implementation

To implement the idea of latent topics in physical activities with
the LDA framework, we need to define the word and the document
to represent a physical activity primitive and its logical grouping.
Considering the notion of word in this context, there are two options
for how we can represent the low-level physical activities in discrete
“word-like” format:

• Classification results of the low-level physical activity classifier,
e.g., one of nine classes based on our earlier work [5]

• Vector-quantized (VQ) indices of low-level physical activity
classifier scores

The size of vocabulary is the number of low-level physical activity
classes in the first case and the number of VQ codewords in the
second case (in the experiments of this work, there are 9 classes and
200 codewords, respectively). For the document, we collect words
from a certain period of time and consider them as a single document.

Fig. 1. Graphical representation of the topic model using Latent Dirichlet
Allocation.

Group Index High-level Description

Eating 1 Eating a meal
2 Snacking

After school/ 3 Church
Spare time/Hobbies 4 Hanging around

5 Homework
6 Listening to music
7 Music lesson/playing instrument
8 Playing video games/ surfing Internet while SITTING
9 Reading
10 Shopping
11 Talking on Phone
12 Watching TV or movie

Sleep/Bathing 13 Getting dressed
14 Getting ready (hair, make-up, etc)
15 Showering/bathing
16 Sleeping

School 17 Lunch/free time/study hall
18 Sitting in class
19 Club, student activity
20 Marching band/flag line
21 P.E. class

Transportation 22 Riding in a car/bus
23 Travel by walking
24 Travel by bicycling

Work 25 Working (e.g., part-time job, child care)
26 Doing house chores (e.g., vacuuming, dusting, washing dishes, animal care, etc.)
27 Yard Work (e.g., mowing, raking)

Physical Activities 28 Aerobics, jazzercise, water aerobics, Taebo
and Sports 29 Basketball

30 Bicycling, mountain biking
31 Bowling
32 Broomball
33 Calisthenics / Exercises (i.e. push-ups, jumping jacks, sit ups)
34 Cheerleading, drill team
35 Dance (at home, at a class, in school, at a party, at a place of worship)
36 Exercise machine (cycle, treadmill, stair master, rowing machine)
37 Football
38 Frisbee
39 Golf / Miniature golf
40 Gymnastics / tumbling
41 Hiking
42 Hockey (ice, field, street, or floor)
43 Horseback riding
44 Jumping rope
45 Kick boxing
46 Lacrosse
47 Martial arts (karate, judo, boxing, tai kwan do, tai chi)
48 Playground games (tether ball, four square, dodge ball, kick ball)
49 Playing catch
50 Playing with younger children
51 Roller blading, ice skating, roller skating
52 Riding scooters
53 Running / jogging
54 Skiing (downhill, cross-country, or water)
55 Skateboarding
56 Sledding, tobogganing, bobsledding
57 Snowboarding
58 Soccer
59 Softball/baseball
60 Surfing (body or board), Skimboarding
61 Swimming (laps)
62 Swimming (play, pool games, water volley ball, snorkeling)
63 Tennis, racquetball, badminton, paddleball
64 Trampolining
65 Track and field
66 Volleyball
67 Walking for exercise
68 Weight lifting
69 Wrestling
70 Yoga, stretching
71 Other
72 Interactive video games (like Nintendo Wii or Dance Dance Revolution [DDR])
73 Walking dog, Playing with pet

TABLE I
LIST OF HIGH LEVEL CATEGORIES.
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III. DATABASE

A. KNOWME in-lab data

In this database, there are 20 overweight youth (10 male and 10
female; average age 14.6 ± 1.8 years; average body mass index
(BMI)1 percentile 95.8 ± 3.7) and each subject wore the ALIVE
heart rate monitor2 connected wirelessly to a Nokia N95 cell phone
to record his/her sensor signals, i.e., electrocardiogram (ECG) and
accelerometer signals. The physiological signals were collected and
labeled in a supervised way; the subjects were asked to perform
a certain physical activity for a given time period. Each subject
performed 4 sessions on different days and different times, and each
session consists of 7 minutes for each of the nine physical activities,
such as sitting and walking. See [4], [6] for more details.

B. KNOWME unsupervised real-life data

There are 12 subjects (subset of in-lab data subjects; 7 male and 5
female; average age 14.6 ± 1.9 years; average BMI percentile 96.4 ±
3.7) and each subject wore the device as done in collecting the in-lab
data. The main difference is the fact that the subjects wore the device
in their natural free living settings and the data collection was done in
an unsupervised way to monitor real-life physical activities. For the
collected data, the subjects were asked to record the self-assessment

1The body mass index (BMI) is a popular measure of relative weight for
height and is used by physicians to evaluate the weight status of patients and
by epidemiologists to study disease trends in different population samples.

2http://www.alivetec.com/
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Fig. 2. Data duration distributions in hour and count of number of physical
activities based on self-assessment during the data collection: (a) with or
without physiological data (b) only with physiological data .

w/ or w/o only w/
physiological data physiological data

Total hours per day 16.9 5.4
PA descriptions 34 28

TABLE II
DATABASE STATISTICS BASED ON SELF-ASSESSMENT OF PHYSICAL

ACTIVITIES.

of their physical activities based on 73 high-level descriptions in 30
minutes intervals for the corresponding collection day.

Fig. 2 illustrates the data duration distribution and the correspond-
ing subject-reported counts of physical activities during the data
collection; Fig. 2 (a) is based on self-assessment results with or
without actual physiological data collected and Fig. 2 (b) is also
based on self-assessment results but only with actual corresponding
data collected. As shown in the figure (also shown in Table II), the
actual physiological data collected covers only a small portion of
the high-level physical activities in the list (only 28 categories have
corresponding physiological data). It may reflect the fact that that the
data collection was performed during weekend days; for instance, no
school-related activities can be observed in the database. It may also
indicate the tendency of subjects regarding physical activities; note
that only a few sport-related activities exist (and the subjects in the
dataset were overweight). Although study on the relationship between
obesity and sport-related activities is beyond the scope of this work,
this data offers some evidence to the nature of the relationship. It is
also notable that the data only covers limited time in a day (average
5.4 hours per day) which is significantly small compared to the self-
assessed labels. There are 6 categories of physical activities that
exist in self-assessment sheet but not in the collected physiological
signals. One reason is that the data collection was performed in an
unsupervised way and the subjects had failed to turn on the system
properly.

IV. EXPERIMENTS

We built the low-level description models using the KNOWME
in-lab data as described in Section II-A. To analyze real-life physio-
logical signals, we segment the database into 20-second chunks and
feed them into low-level classifier so that we have low-level physical
activity results every 20 seconds. Then, as described in Section II-C,
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Fig. 3. Topic distributions over time of different subjects along with self-
assesment of their high-level physical activities.
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we generate words based on low-level descriptions (either final results
of classifiers or vector-quantized scores from the classifiers) and
cluster the low-level description results in 10 minutes with 50%
overlapping to construct documents. Other segmenting approaches
can be studied to facilitate various durations of physical activities.

With the generated documents, we trained the latent topics in phys-
ical activities with latent Dirichlet allocation (LDA) method (Section
II). Fig. 3 shows the topic distributions over time of different subjects
along with self-assesment of their high-level physical activities: (a)
for subject ID 19 ad (b) for subject ID 22. The lines in different
colors represent different latent topics (30 topics in this case) and
the topic distribution at each time instance sums up to one. Note
that only a couple of topics out of 30 latent topics dominate the
distribution at each time instance. It is also remarkable that the
topic distributions at individual time instances are not completely
independent (the adjacent ones are actually highly correlated) even
though we consider them independent using bag-of-words approach
during the modeling procedure. These indicate that the latent topic
modeling approach can model some slow-varying properties in low-
level physical activities with only a few non-zero parameters of latent
topics. In this work, we assume that the slow-varying properties can
be represented with high-level descriptions of physical activities.

However, it is difficult to study the direct relationship between
high-level descriptions and topic distributions since we can observe,
as partially shown in the figure, inter-subject differences as well
as intra-subject differences for the same high-level description (as-
suming the self-assesment of high-level descriptions are accurate).
Therefore, we apply another layer of classical machine learning
strategy to model the relationship between high-level descriptions
and topic distributions. For evaluation, we perform classification tasks
with respect to high-level descriptions of physical activities. We use
the latent topic distribution as a representative feature of a segment
and feed the feature into the support vector machine (SVM) with
Bhattacharyya kernel [11] for training and classification.

Fig. 4 shows the accuracy of high-level physical activity classi-
fication tasks as a function of the number of latent topics (a solid
line with vector quantized classifiers’ scores and a dashed line with
final classification results). The accuracy is the averaged value of 10-
fold cross validation. Since we can only train high-level descriptions
with data, we could model only 28 classes present in our corpus. As
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Fig. 4. Accuracy of high-level physical activity classification tasks using
latent topics in physical activities as a function of the number of latent topics.

shown in the figure, the classification tasks produce promising results
(> 50% accuracy when the number of latent topics are greater than
90 with indices of vector-quantized scores). Note that the cases using
indices of vector-quantized scores significantly outperforms the ones
using final results regardless of the number of latent topics. This is
reasonable because the final classification results may quantize out
too much information about subjects’ physical activities by choosing
only one most likely category of given scores whereas there are
different patterns within each low-level description.

V. CONCLUDING REMARKS

We introduced a new methodology which models real-life mul-
timodal sensor data, collected in an unsupervised manner from
overweight youth, with respect to high-level descriptions of physical
activities. The proposed notion of latent topics in physical activities
shows promising results in classifying the high-level descriptions
based on low-level descriptions of fixed length of physiological data.

In the future, adaptive analysis segment length of physiological
data will be studied to facilitate various durations of physical activ-
ities based on agglomerative hierarchical clustering (AHC) method
as shown in speaker diarization applications [12]. Designing more
robust and user-friendly data collection system is another direction
for future work.
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