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Abstract—Autism spectrum disorder (ASD) is a neuro-
developmental disorder, which causes deficits in social lives.
Early screening of ASD for young children is important to
reduce the impact of ASD on people’s lives. Traditional screening
methods mainly rely on protocol-based interviews and subjective
evaluations from clinicians and domain experts, which requires
advanced expertise and intensive labor. To standardize the
process of ASD screening, we design a ”Responsive Social
Smile” protocol and the associated experimental setup. Moreover,
we propose a machine learning based assessment framework
for early ASD screening. By integrating speech recognition
and computer vision technologies, the proposed framework can
quantitatively analyze children’s behaviors under well-designed
protocols. We collect 196 stimulus samples from 41 children with
an average age of 23.34 months, and the proposed method obtains
85.20% accuracy for predicting stimulus scores and 80.49%
accuracy for the final ASD prediction. This result indicates that
our model approaches the average level of domain experts in this
”Responsive Social Smile” protocol.

I. INTRODUCTION

Autism spectrum disorder (ASD) is a mental disorder
that may significantly impact people’s lives. Difficulties in
social communication represent one category of the autistic
syndromes [1]. Among the indicators that can reflect our
sensing and understanding of the social environment, the smile
is one of the most important factors. Especially for children
between 1 to 3 years old, their responses to simple utterances,
including a responsive social smile, can reflect the level of
ASD in some widely used screening tests (e.g., ASD-G [2],
ADOS-2 [3]).

Although social smiling is essential in ASD screening, most
existing methods still rely on clinicians’ subjective evaluation.
According to screening sheets, clinicians can distinguish
ASD and evaluate multi-dimensional abilities. Unlike other
screening methods involving clear indicators and benchmarks
(e.g., response to name, joint attention), the responsive social
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Fig. 1. The layout of the experimental environment and video recording
example.

smile is evaluated by emotion description that usually remains
an ambiguous classification result. It is especially harder for
clinicians to assess children’s emotions on small faces and
record them when distracted from carrying out experiments.
Remembering every score for different social stimuli during
the screening or perform the behavior scoring after the test is
very subjective and labor-intensive, which requires experience
and expertise. As top clinicians master the scoring skills
with high accuracy, we are motivated to imitate experts and
develop an intelligent, objective, and efficient system that can
recognize social stimuli, detect and quantify the corresponding
emotion in ASD screenings. In this case, clinicians would
be equipped with leading technology and rich experience and
universally serve autism children.

First, we design a user-friendly protocol to standardize the
experiments of responsive social smiling. Second, we employ
a set of audio-visual pattern recognition modules, including
speech recognition, face recognition, and facial expression
recognition, to measure children’s responses to social stimuli.
Third, based on the multimodal behavioral features extracted
from the original audio-visual data, we utilize a machine
learning based classifier to predict the ASD label, which is
usually evaluated by clinicians.
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TABLE I
COMPARISONS OF TYPICAL METHODS

Authors Method Algorithm Accuracy Sensitivity Specificity
Data Scale

(ASD/Non-ASD)

Age

(Years)

Liu et al. [4] Eye movement K-means + SVM 88.51% 93.10% 86.21% 29/58 4-11

Li et al. [5] Hand imitation tasks Linear SVM 86.70% 85.70% 87.50% 16/14 2-4

Nakai et al. [6] Abnormal prosody SVM 76.00% 81.00% 73.00% 31/51 3-10

Heinsfeld et al. [7] Neuroimaging Neural Networks 70.00% 74.00% 63.00% 505/535 7-64

Ours Responsive social smile CNN + Decision Tree 80.49% 85.00% 77.27% 20/21 1-3

In the database collected by our collaborative hospital, our
automatic assessment framework achieves the accuracy of
85.20% for stimulus scoring and 80.49% accuracy for ASD
classification. The assessment framework allows clinicians to
concentrate on experiments, delivers standardized evaluation
with readable scores, and provides an additional classification
on ASD. It is worth noting that it generates complementary
and comparable performance against other widely used tasks
(e.g., response to name, joint attention). Although using
the responsive social smile score alone cannot give a very
comprehensive ASD classification, we believe that fusing
scores and features from multiple automatic assessment tasks
can further enhance the overall ASD screening performance.

II. RELATED WORK

Traditional methods for screening ASD often require a
series of structured tests involving social interactions between
the clinician and the child under the assessment. In the field
of psychology, two golden standards are Autism Diagnostic
Observation Schedule-Generic (ADOS-G) [8] and the revised
version ADOS-2 [2]. Clinicians also want to investigate
children’s performance in their daily lives by questionnaires
[9], [10], [11]. The parents of children under assessment need
to finish a questionnaire with multi-choice questions, e.g.,
motion and voice imitation, stereotyped and repeated action,
environmental perception, social communication, language
development. Both ADOS screening and questionnaire are
subjective and have high demands on experienced clinicians.

In recent years, many researchers begin to explore the
feasibility of applying machine learning based methods to
perform assistive screening. The goal is to design intelligent
algorithms for observing and analyzing children’s social
behaviors quantitatively. Kosmicki et al. [12] utilize SVM
to investigate the potential importance of different behavioral
scores in ADOS-G [8] screening. Thus, adopting a subset of all
the scores can reduce the time cost in screening processes. It
shows that the most relevant scores are usually generated from
children’s voice, visual attention, hand movement, emotion,
and other behaviors, reflecting social abilities.

Based on the above results, some researchers turn to
recognize ASD scores and detect autism from behavior data by
machine learning methods. There are already some powerful
tools that are easy to use. In the speech processing domain,
Kaldi [13] is one of the most popular speech recognition

toolkits, which can work well in many applications. In the
field of computer vision, OpenCV is popular in digital image
processing. Dlib [14] is another useful tool, it contains a set
of CNN models for face detection (e.g., MMOD [15]).

For observed behavior data, Jiang et al. [16] present a
neural network model to learn human visual attention, then
perform an ASD assessment. Liu et al. [3], [4] propose
methods to identify ASD children by gaze patterns. In
screening experiments, 4-11 years old children are asked to
recognize faces in pictures, and their eye fixation trajectories
are recorded. The recorded eye movement data are partitioned
into regions by the k-means algorithm and then represented
by histogram-based feature extraction [17]. Finally, an ASD
classification accuracy of 89.63% is reported by using SVM
as the classifier. Li et al. [5] analyze hand imitation tasks
recorded by the motion tracker. The movement data is from
30 adults and described by 20 kinematic parameters. In the
paper, they try four different machine learning classifiers
(SVM, Random Forest, Naive Bayes, and Decision Tree) to
predict ASD, with the best accuracy of 86.70%. Hashemi et al.
[18] design a mobile application, which presents fixed movie
stimuli to children and records their reaction to screen ASD.
This mobile application reflects various indicators, but it only
implements two screening protocols for toddlers: response to
name and emotion recognition. It shows that the ASD group’s
response latency is significantly longer compared to the non-
ASD group. It also reports that ASD children exhibit fewer
positive emotions than non-ASD children when watching the
same movies.

Based on voice analysis, Nakai et al. [6] utilize abnormal
prosody to detect the ASD. In their experiments, 3-10 years old
children are asked to recognize picture cards under instructions
verbally. Children’s voice is to be judged by speech therapists
and a machine learning method. The authors conclude that
the SVM classifier performs better than humans. Li et al.
[19] present a method to evaluate children’s atypical prosody
and stereotyped idiosyncratic phrases by speech processing
methods.

Rather than screening autistic children just from a single
aspect, the latest research tries to build a complex assessment
framework that can detect autism from multimodal data. Liu
et al. [20] propose a regularized procedure-related assessment
framework for response to name and questionnaire research.
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Fig. 2. Age-ASD distribution in the clinicial database.

In the framework, the algorithm needs the start time of a name
call whether the child turns his head, looks at the voice source,
and records the child’s performance. The framework integrates
a series of technologies involving speech recognition, face
detection, and face verification. The interaction from name
call shows children’s understanding of a single word rather
than conveyed emotion. It would be better to choose other
protocols to analyze children’s understanding and expression
in social communication.

Moreover, many scientists applied advanced physical and
biological technologies, e.g., nuclear magnetic resonance and
genetic testing for ASD screening. Heinsfeld et al. [7] explore
the ABIDE [21] database that contains brain neuroimaging
data from 7-64 years old people, and they achieve 70.00%
accuracy using DNN. However, applied equipment is too
expensive to be prevalent. It is also difficult for young children
to stay still and be scanned by neuroimaging devices.

Some widely used methodologies are shown in Table
I. It shows that cost and age requirements prevent some
accurate ASD screening methods among children. How to
automatically evaluate young children’s social understanding
remains a challenging task. To solve the problem, we present
an automatic framework to detect the behavior score in the
psychological experiment of the responsive social smile [2].
Our contributions can be summarized as follows:

• We design standardized test environments with low-cost
devices and a structured protocol.

• We deploy the hardware and protocol in our collaborative
hospital and collect a multimodal database containing 41
young children. Professional doctors diagnose all these
41 children and provide detailed behavior scores as well
as ASD labels.

• We build a large video-based facial expression database
dedicated to children under six years old. This database
has 15,000 video clips from different children under six
years old, and it is used to fine-tune our expression
recognition module. It is specially set up for young
children who are diagnosed with autism, while others are
not.

• The proposed framework could provide an overall ASD
classification and the corresponding behavior scores of
various stimuli, which helps clinicians’ diagnose and
intervention.

TABLE II
STIMULI AND KEY WORDS IN A PROTOCOL.

Stimulus Key Words Voice Source

1 Greeting smile “Hello!” + Children’s names Clinician

2 Praise words “You are so cute/cool!” Clinician

3 Hide and seek “Let’s play hide and seek’.’ Clinician

4 Hints of tickling ”I am going to tickling you!” Clinician

5 Tickling “Real tickling now!” Clinician

6 Greeting smile “Hello!” + Children’s names Parent

• Lastly, a machine learning based classifier is employed
to give the final classification result for ASD screening.

III. PROTOCOL AND DATABASE

In the experiment, a child, a clinician, and a parent sit as
the layout in Fig. 1. A camera can directly record the child’s
front face. The participating child’s behaviors are evaluated as
0 or 1 for each stimulus by a clinician. To be more specific,
0 represents a clear response and smile, which means that the
child could hear the stimulus, understand the social meaning,
and express emotional responses. While score 1 represents
no responses for the given stimulus. Whether the child looks
back to the stimulus source or becomes happy can reflect his
understanding and social response level. Because sometimes a
child does not participate in every step of the social smile
experiments, some data do not contain all kinds of listed
stimuli.

A. Procedure of the responsive social smile protocol

Taking different humor mechanisms into consideration and
following the ADOS design, we introduce five types of
social stimuli into our protocol: greeting smile, praise words,
hide and seek, hints of tickling, and tickling. There are
three participants in an experiment: a child, a parent, and a
professional clinician. The clinician would give several or all
kinds of stimuli. Sometimes parents would try an additional
stimulus of praise words. Therefore, there are six stimuli
together, as shown in Table II.

During each step, a clinician or a parent would say key
words to indicate the start time of each stimulus. When a
child does not respond to words or behaviors, the clinician or
the parent would repeat the stimulus three times at most.

B. Clinical Database

By collaborating with the Third Affiliated Hospital of Sun
Yat-sen University, we have recorded multimodal data of this
protocol with 41 children (shown in Figure 2). Professional
clinicians diagnose that 20 are labeled as ASD, while the rest
21 are labeled as non-ASD. According to the DSM-IV [22]
standards, those young children are from 12 to 32 months old,
and the average age is 23.34 months. There are 33 boys and
8 girls, of which the male to female ratio is skew distributed
but close to 4:1, matching with the common gender ratio of
ASD [23].
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Fig. 3. The proposed assessment framework for analyzing the “Responsive Social Smile” protocol.

IV. MULTIMODAL ASSESSMENT FRAMEWORK

Figure 3 illustrates the whole framework for ”Responsive
Social Smile” consisting of five stages: temporal stimulus
localization, face detection, facial expression recognition,
stimulus scoring, and ASD classification. This framework
is designed to standardize the experimental procedures. To
be more specific, speech and image processing methods are
applied to quantify each step of the developed protocol and
give stimulus scores. Based on the feature vector composed of
stimulus scores, we utilize a decision tree classifier to predict
whether a participant has ASD or not.

A. Temporal Stimulus Localization

The first task of the proposed framework is to locate the
timestamp of each ”Responsive Social Smile” stimulus. We
deploy an automated speech recognition (ASR) system by the
Kaldi toolkit [13]. The speech recognition model is trained
from the AISHELL-2 database [24], which provides 1,000
hours of clean read-speech Mandarin data. As our ASR system
can easily detect the six kinds of stimuli, then the start time
of each stimulus is captured. Within the subsequent 3-second
time window, the participant’s response to the given stimulus
will be analyzed.

B. Face Detection

The next step is to extract face images of the participant
from the time-window after each stimulus. Considering young
children’s faces usually occupy small regions in video frames,
it is necessary to find a robust face detector. Hence we
choose the face detector integrated into OpenCV-DNN toolkit
[25], which has been successfully tested to work well in
many industrial cases. According to the detection results, a
sequence of face images during the given time window could
be obtained and then fed to the next step for emotion analysis.

C. Facial Expression Recognition

Analyzing children’s facial expressions is a critical task for
evaluating their responses to stimuli. As the facial expression
is always delivered by a sequence of continuous facial muscle
movements, we propose a CNN-based model to capture both
spatial and temporal features for facial expression recognition.
The network structure (shown in Figure 4) is mainly made of
4 parts: the 2D residual block, the 3D-CNN branch, the 2D-
CNN branch, and the fusion layer. The input of our proposed
model is set to a 7-frame sequence of face images that are

Fig. 4. Structure of the facial expression recognition neural network.

resized to the shape of 224×224. Table IV-C illustrates the
detailed architecture of the proposed model.

At the beginning of the model, a 2D residual block can
extract shallow features from face images, consisting of the
first three layers of ResNet-18 [26]. Moreover, the output of
this block has 128 feature maps with the shape of 28×28.

In the 3D-CNN branch, extracted features from the previous
block are delivered to a 3D-CNN module consisting of the
fourth and fifth layers of the pre-trained 3D-ResNet-18 [27],
[28]. Furthermore, the output of this part is a 512-dimensional
vector. After the advent of 3D convolutional neural networks
proposed in 2012 [29], this approach significantly outperforms
many current state-of-the-art results in different domains.

In the 2D-CNN branch, the network is used to capture in-
depth spatial information. This branch consists of the first
five layers in ResNet-18 [26], followed by an average pooling
layer. The output of residual parts has the shape of 512×7,
while the average pooling layer will ensure that the output of
this entire branch is also a 512-dimensional vector.

Finally, a fusion layer is placed to fuse the temporal and
spatial information from two separate branches. At this stage,
the outputs of two streams are concatenated to a 1024-
dimensional vector and followed by a fully-connected output
layer to predict six categories of facial expressions. We train
the proposed 2D-3D CNN model on the Oulu-CASIA database
[30], and Table IV demonstrates the results compared to other
methods.

Since our target is to evaluate whether a child gives a
responsive smile to an external stimulus, instead of classifying
six kinds of emotions, the neural network trained on the Oulu-
CASIA database is considered a pre-trained model. In the
subsequent steps, it will be fine-tuned to a binary classifier
for Smile or Non-smile.
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TABLE III
ARCHITECTURE OF THE FACIAL EXPRESSION RECOGNITION MODEL

Layer Name 2D CNN Branch 3D CNN Branch

conv1 7× 7, 64, stride 2

conv2
3× 3 max pool, stride 23× 3, 64

3× 3, 64

× 2

conv3

3× 3, 128

3× 3, 128

× 2

3× 3, 128

3× 3, 128

× 2

conv4

3× 3, 256

3× 3, 256

× 2

3× 3× 3, 256

3× 3× 3, 256

× 2

conv5

3× 3, 512

3× 3, 512

× 2

3× 3× 3, 512

3× 3× 3, 512

× 2

pooling average pooling None

merge concatenation, Softmax

D. Stimulus Scoring

E. ASD Classification

Our ultimate goal is early screening for young children
with ASD. Adopting all 6 stimulus scores, we concatenate
each binary score to a 6-dimensional feature vector. Since
this feature vector implies the child’s social responses under a
series of external stimuli, it is significant to be used in autism
screening. Based on this feature vector, a machine learning
algorithm can be trained to classify children with or without
ASD.

V. EXPERIMENTS

A. Experiment Settings

As described in previous sections, each child participating in
our experiment undergoes a series of stimuli from the clinician
or parent. Meanwhile, the camera and microphone record the
audio-visual data of the child’s reactions. From the recorded
data, we can locate the time window of each stimulus, extract
face images, perform facial expression recognition tasks, and
finally classify the ASD label.

TABLE IV
COMPARISONS OF FACIAL EXPRESSION RECOGNITION ON OULU-CASIA

Method Descriptor Accuracy

Yu et al. [31] DCPN 86.23%

Jung et al. [32] CNN-DNN 81.46%

Zhang et al. [33] PHRNN-MSCNN 86.25%

Kuo et al. [34] CNN 91.67%

Ours 2D-3D CNNs 89.10%

To be more specific, the default length of the localized
time window is 20 seconds under the condition of 24 FPS
(frames per second). Usually, there are approximately 480
frames for each stimulus. Afterward, those face images will
be resized to the shape of 224×224 and cut into 7-frame clips,
followed by the facial expression recognition and protocol
scoring. Finally, we test several machine learning models on
our clinical database using the feature vector made of wise
stimulus scores. A decision tree classifier obtains the highest
accuracy of 80.49%.

B. Fine-tuning FER Model

Our FER (facial expression recognition) model is initially
trained on the Oulu-CASIA database [30], which includes six
categories of facial expressions from 80 adults. There are two
major problems that we need to solve.

• The output of the pre-trained model has six categories,
which does not match with our binary classification.

• Most databases for facial expression recognition are
collected from adults, which may not work well on young
children.

To address these issues, firstly, we replace the output
layer of the pre-trained model with a 2-dimensional one,
while the trained parameters of previous layers are preserved.
Besides, we collect and set up a facial expression database
that is designed explicitly for young children. Fine-tuning
the pre-trained model on this database improves the model’s
performance and usability in our experiments significantly.

The new facial expression database contains 15,000 videos
(each with a length of 7 frames), and each video is manually
labeled as a smile or non-smile. The videos are recorded from
another 54 children under the same condition described in
Figure 1. There is no overlap between these 54 children and
those 41 children in our database. We fine-tune the model on
our self-labeled database and finally achieve the accuracy of
92.60% for smile classification.

C. Results of Stimulus Scoring

In this part, the well-trained model of smile classification is
used to give a stimulus score. As the stimulus scoring strategy
introduced in our proposed framework, we employ the smile
classification model to each trial and then set a threshold to
determine a stimulus score for every stimulus. If the output
value is higher than the limit, the related trial is marked as a
smile. Otherwise, it is marked as non-smile. Since sometimes
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 Each stimulus for a child is called a trial, and this section 
introduces how we determine the stimulus score by observing 
the children’s facial expressions. In previous parts of this 
paper, we have described how to localize the corresponding 
time window of children’s responses, the methods of extracting 
face images, and taking facial expression recognition. After 
obtaining a sequence of face images from the localized time 
window, we cut this sequence to several short clips with a 
fixed length of 7 frames. Then, each clip will be fed to the 
proposed facial expression classifier and get a single score to 
indicate whether a child gives a responsive smile. By counting 
the number of smiles in total clips, the stimulus score will be 
marked as 0 if the number is over a threshold. Otherwise, it 
will be marked as 1.



TABLE V
CONFUSION MATRIX OF STIMULUS SCORING ON THE COLLECTED

CLINICAL DATABASE

Predicted

Smile Non-Smile

A
ct

ua
l

Smile 62 13

Non-Smile 16 105

the emotion in a young child’s face is ambiguous, it is difficult
to distinguish the smile from other facial expressions in a
toddle’s face image. Therefore, we set the decision threshold
to be 0.9 empirically, which means the child must give a clear
enough response to count as smiling.

In our experiments, there are 41 children with or without
ASD (described in III-B); each child is tested up to 6 stimuli.
We finally obtain 196 stimulus scores.

To evaluate the performance of our scoring method, we
invite three clinicians to watch the protocol videos and
label each trial as the ground truth. Each clinician works
individually, and majority voting is adopted as the final
score of a given trial. Considering the limited amount of
data, we employ the ”leave-one-out” cross-validation strategy
to evaluate the proposed method. Table V illustrates the
confusion matrix of our scoring results. The experimental
result shows that our method achieves an accuracy of 85.20%
for predicting stimulus scores.

D. Results of ASD Classification

Based on the 6-dimensional feature vector consisting of
all stimulus scores, we utilize machine learning algorithms to
classify whether a child has ASD or not. As children may not
always cooperate with our experiments, some missing data is
set to the mean of the other stimulus scores from the same
child.

Using feature vectors made of predicted stimulus scores,
we evaluate four widely-used methods with a ”leave-one-
out” cross-validation strategy on the ASD classification task
(shown in VII), and the decision tree classifier achieves the
highest accuracy, sensitivity, and specificity. Table VI shows
the confusion matrix of the decision tree classifier, which
represents the best performance we have achieved.

To evaluate our predicted stimulus scores, we also directly
utilize stimulus scores marked by the clinicians to repeat
the model training process. Table VIII reveals that accurate
stimulus scoring can relatively improve the performance
of ASD classification. Meanwhile, it also shows that our
framework performs very close to conventional clinicians.

E. Failure Case Study

To take an in-depth analysis of our proposed framework,
we scrutinize the 29 stimulus scores, which are incorrectly
predicted in Table V. Reviews show that most of those trials
involve smiles, while doctors consider that those smiles are
their spontaneous emotion rather than responses to social
environments. Figure 5 demonstrates four examples of failure

TABLE VI
CONFUSION MATRIX OF ASD CLASSIFICATION BASED ON PREDICTED

STIMULUS SCORES

Predicted

ASD Non-ASD

A
ct

ua
l

ASD 17 3

Non-ASD 5 16

TABLE VII
ASD CLASSIFICATION BASED ON PREDICTED STIMULUS SCORES

Algorithm Accuracy Sensitivity Specificity

Logistic Regression 63.41% 66.67% 63.64%

Naive Bayes 68.29% 65.00% 68.42%

SVM 70.73% 70.00% 70.00%

Decision Tree 80.49% 85.00% 77.27%

TABLE VIII
ASD CLASSIFICATION BASED ON CLINICIAN’S STIMULUS SCORES

Algorithm Accuracy Sensitivity Specificity

Logistic Regression 70.73% 70.00% 70.00%

Naive Bayes 73.17% 75.00% 71.43%

SVM 75.61% 70.00% 77.78%

Decision Tree 82.93% 80.00% 84.21%

cases. It can be seen that these children react obviously in a
smiling manner. However, the reactions are not due to designed
stimuli, and they are attracted by other things nearby.

Since autistic children are heterogeneous, it is difficult to
perform the ASD screening from a single aspect perfectly.
The analysis above also shows that we need to fuse results
from multiple protocols of the same child together to enhance
the performance of the screening framework in the future.

VI. CONCLUSION

We design a standardized protocol and experiment setup
for behavior analysis in ASD screening, namely ”Responsive
Social Smile.” Also, we present a machine learning based
assessment framework to predict the behavior scores for
children under three years old. To improve the reliability of the
proposed framework, we collect and label a facial expression
database dedicated to young children, then fine-tune our facial
expression module to obtain an accuracy of 92.60% on the
collected emotion database. Finally, the proposed stimulus
scoring and ASD classification methods obtain an accuracy of
85.20% and an accuracy of 80.49% on the clinical database.

The experiments indicate that our proposed framework can
work well for ASD screening. The performance is close to
clinicians’ average ASD screening ability in this ”Responsive
Social Smile” protocol. In the future, we will fuse data from
multiple complementary protocols of a child to further enhance
the screening performance.
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Fig. 5. Examples of failure cases.
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