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Abstract 
Speaker state recognition is a challenging problem due to 
speaker and context variability. Intoxication detection is an 
important area of paralinguistic speech research with potential 
real-world applications. In this work, we build upon a base set 
of various static acoustic features by proposing the 
combination of several different methods for this learning task. 
The methods include extracting hierarchical acoustic features, 
performing iterative speaker normalization, and using a set of 
GMM supervectors. We obtain an optimal unweighted recall 
for intoxication recognition using score-level fusion of these 
subsystems. Unweighted average recall performance is 
70.54% on the test set, an improvement of 4.64% absolute 
(7.04% relative) over the baseline model accuracy of 65.9%. 
Index Terms: intoxication detection, speaker state, 
hierarchical features, speaker normalization, GMM 
supervectors 

1. Introduction 
Paralinguistic study of speech often includes characterizing 
speaking styles, mental states of cognition and socio-emotions, 
and individual attributes such as age, and gender. Extracting 
this information automatically from a speech signal has 
various applications in commerce, education and healthcare. 
Features and methods developed in a particular paralinguistic 
domain can often be applied in other distinct but overlapping 
domains. This paper focuses on identifying an intoxicated 
speaker state from a single utterance. One potential application 
of intoxication detection is identifying impaired vehicle 
operators [1]. It is possible that such a speech system could be 
used as a stand-alone device or combined with chemical-based 
systems. 

In this paper, we present an intoxicated speaker state 
recognition study using speech collected from 154 German 
speakers comprising the Alcohol Language Corpus (ALC) 
database [2]. The two speaker states of interest are intoxicated 
(indicated by a blood-alcohol content above 0.5mg/L) or 
sober. 

The automatic classification of the intoxicated speaker 
state from this dataset is confounded by at least three factors. 
First, there are many speakers in the database. The speakers 
have diverse vocal tract and glottis physiologies, as well as 
differing ranges of vocal expressivity (e.g., activation level 
during communication). Second, the database consists of three 
styles of speech: read speech, spontaneous speech, and 
command and control. Vocal characteristics of each style 
differ greatly. For example, speech rate is expected to be much 
slower and less variable in read or command speech, as 
compared to spontaneous speech for a given speaker. Third, 
the utterance durations range from 0.5 to over 60 seconds, 
indicating drastically different amounts and types of 
information. Taken together, different speakers, speech styles, 

and utterance durations provide a complex dataset that makes 
feature generalization challenging. 

The difficulty of identifying intoxicated speech may be 
easily understood from the results of a perceptual listening 
experiment conducted by Pisoni and Martin [3]. Raters 
achieved only 73.8% accuracy in identifying which of two 
lexically identical read sentences from a single speaker was 
recorded during intoxication and only 64.7% accuracy when 
given an arbitrary sentence. These findings underscore the 
inherent variability in intoxicated speech production and the 
need for an effective speaker normalization scheme. 

Research conducted on the effect of alcohol on articulation 
concluded that articulation became more difficult as level of 
intoxication increased. Pisoni showed that intoxicated speakers 
had difficulty controlling abrupt opening and closing of the 
vocal tract [3]. The effects were more pronounced during 
complex speech production, such as vocalizations that 
involved coordination with laryngeal actions. We expect 
spectral features to capture inhibited articulatory ability. We 
also expect jitter and shimmer (peak to peak variations in pitch 
and energy, respectively) to quantify stuttering and/or 
“quivering” voice that is associated with intoxicated speech 
[3,4]. 

Although Mel-frequency cepstral coefficients (MFCCs) 
are generally found to outperform formant features across 
many speech-based classification tasks, formants were shown 
to be the top feature set in a related paralinguistic 
classification, sleepiness detection [5]. As a result, we also 
include the first three formants and their bandwidths here. 

Reduced speech rate on the same read stimuli has been 
noted for intoxicated speakers [3,6].  Whether due to increased 
difficulty of articulation and/or slower cognitive processing, 
the average duration for speaking a sentence in these studies 
was found to increase with alcohol consumption. Motivated by 
this knowledge, we analyzed speech rate features obtained 
after forced alignment of phonemes following data 
transcription.   

Our approach is motivated by several previous works [7-
10]. Schuller et al. [7] and Black et al. [8] showed that 
hierarchical features, i.e., computing functionals-of-
functionals across windowed regions of an utterance helped to 
smooth-out noise and provide improved results in 
classification with large datasets, as compared to only 
computing global functionals of feature streams. Busso et al. 
demonstrated a technique for iterative speaker normalization 
to minimize inter-speaker differences while still preserving 
emotional discrimination [9]. The method estimates the neutral 
emotion samples for each speaker and normalizes based on the 
hypothesized neutral-class statistics, rather than the 
conventional global speaker normalization approach. They 
demonstrated accuracy only 2.5% lower than the optimum 
(oracle) and 9.7% higher than without normalization. Li et al. 
incorporated a fusion method based on systems using a set of 
Gaussian Mixture Model (GMM) supervectors at the acoustic 
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level for automatic speaker age and gender recognition 
[10,11]. In this work, we also propose the GMM latent factor 
analysis (LFA) [12] based Eigenchannel factors as a new kind 
of GMM supervector for intoxication detection. We present a 
classification study based on these three previously unexplored 
methods in intoxicated speech detection. 

In section 2, methodology and approach are explained. 
Experimental results and discussion are presented in section 3, 
and conclusions and future work are discussed in section 4. 

2. Methodology and Approach 
In Section 2.1 we detail data pre-processing. In section 2.2 we 
discuss the competition scoring metric. Sections 2.3-2.6 detail 
openSMILE features, Praat features, hierarchical features, and 
rate features respectively. In Section 2.7 we describe iterative 
feature normalization. We present the GMM supervector 
systems in Section 2.8 and the classifiers used in Section 2.9. 

2.1. Pre-processing 
Before feature extraction, all pauses and noise marked in the 
transcription files were removed in an effort to extract features 
only during speech segments from the speaker of interest. 

2.2. Competition Scoring Metric 
Our train and development (devel) data subsets are biased 
roughly 70%/30% towards sober utterances. Weighted average 
recall would be a misleading statistic since a simple ‘Zero-
Rule’ classifier could beat the baseline unweighted accuracy 
(65.3%). Unweighted average recall is a measure that does not 
weight the class accuracies by the number of samples from 
each class, but gives classes equal weights. It is a metric that 
attempts to simultaneously maximize the performance in each 
class, and therefore it is used as the performance metric for 
this study. 

2.3. Base Features 
The openSMILE base feature set contains a number of 
common acoustic low-level descriptors (LLDs) [13]. It 
includes MFCCs, log magnitude of Mel-frequency bands 
(MFBs), fundamental frequency (f0), energy, jitter, and 
shimmer, among other features. The final base feature set is 
produced by computing ‘global’ static functionals (e.g., mean, 
standard deviation) across each of these LLD streams.  We 
refer to these as ‘global’ features, since the functionals are 
computed across the entire utterance in this case.  Further 
description of the chosen base feature set may be found in [2]. 

2.4. Praat Features 
While many LLDs are extracted in the base feature set, we felt 
complementary acoustic information could be extracted using 
Praat [14]. We extracted eight feature contours with Praat 
using a 25ms window and 10ms period. f0 was extracted using 
the autocorrelation function method, with a minimum and 
maximum f0 of 75Hz and 500Hz, respectively. We normalized 
the pitch on a logarithmic scale, log2(f0 / f0μ), where f0μ is the 
mean pitch for the utterance. Energy was normalized as E / Eμ, 
where Eμ is the mean energy for the utterance. Formants 1-3 
and their bandwidths were also estimated using Praat, 
motivated by the findings in [5]. 

2.5. Hierarchical Features 
Counting both the base and Praat feature subsets, there are 130 
LLDs (Table 1). Utterance durations for this corpus range 

from 0.5 seconds to over 60 seconds, so computing functionals 
across the entire utterance may result in features that are not 
comparable for widely varying utterance durations. 

The motivation behind extracting hierarchical features is 
two-fold: 1) because of the windowing technique used, we 
hope the hierarchical features will be more comparable for 
varying utterance durations, and 2) we hope these features 
better capture moment-to-moment changes in an utterance, 
compared to the global features.  

We calculated the hierarchical features by first windowing 
each LLD at two temporal granularities: 0.1s and 0.5s.  Then, 
the 15 functionals shown in Table 1 are extracted for each 
windowed segment of the LLD; this will produce a contour for 
each LLD and functional combination. We generate the final 
hierarchical features by computing the ‘core’ functionals 
(Table 1) across each of these resulting contours; we only use 
the ‘core’ functionals to prevent an even larger feature set 
from this combinatoric framework.   
 
Table 1. A list of acoustic low-level descriptors (LLDs) and 
static functionals; the six ‘core’ functionals are starred (*). 
  
LLD 120 OpenSmile, 10 Praat 
Functional Mean*, median*, standard deviation*, 0.01/0.99 quantiles*, 

0.01/0.99 quantile range*, skewness, kurtosis, min/max 
positions, upper/lower quartiles, interquartile range, linear 
approximation slope coeff., linear approximation MSE 

 

2.6. Speech Rate Features 
A total of 103 speech rate features are computed globally per 
utterance. Phoneme durations are not computed per utterance 
for specific phonemes since this could lead to over-fitting. 

The phoneme sequence and the phoneme durations are 
extracted after forced alignment with a manual transcription 
(included as part of the corpus). Each phoneme duration in an 
utterance is z-normalized based on phoneme durations of all 
identical phonemes in the training data. This provides a 
contour of normalized phoneme durations on which 
functionals can be computed. Two types of normalization are 
used, z-normalization and quartile-normalization (subtracting 
the median and dividing by the inter-quartile range). Features 
are normalized by both the sober statistics and the intoxicated 
statistics. Some functionals are also computed on the delta 
contour of normalized phoneme durations for an utterance. 
Only phonemes with at least 1000 instances and only 
phonemes that occur in both the intoxicated and the sober 
training data are considered; we ignore consequences to 
functionals computed on the delta contour. Consonant-vowel 
duration ratios and intra-pause duration to voiced speech 
durations were also chosen as features. 

2.7. Iterative Speaker Normalization 
Iterative speaker normalization is a technique in which 
features are normalized repeatedly in an effort to normalize by 
class statistics even when the classes are unknown, such as in 
the case of unlabeled ‘test’ data. Once an initial estimate of the 
class labels is obtained, classification is performed. Features 
are re-normalized by the new class labels and repetition of this 
process continues until convergence. 

The motivation for such a method is demonstrated in so-
called ‘oracle’ experiments using the devel set. We find that if 
we know the class labels, we are able to achieve much greater 
performance from normalizing each speaker by the sober class 
statistics than by normalizing each speaker with global 
statistics for all utterances by that speaker.  
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In our work we initialize the class labels to the result of 
global z-normalization. Iterative normalization can be 
sensitive to the classifier parameter settings and initial 
conditions (class estimates), and convergence to a higher 
performance is not guaranteed.  

When the class label distribution is changed drastically, it 
is intuitive that global z-normalization may fail. Alternatively, 
a potential strength (or weakness) of the iterative method is 
that its performance depends on the ability to seek out the true 
class labels. By repeatedly finding new estimates of class 
labels, iterative speaker normalization may still succeed when 
class label distribution changes cause global speaker z-
normalized classifiers to fail. Four iterations were seen to be 
enough to provide convergence for the iterative speaker 
normalization method, based on empirical analysis. 

2.8. GMM supervectors system 
A 512 component GMM was trained upon the 39 dimensional 
MFCC features from the training dataset. Then, MAP 
adaptation and Universal Background Model (UBM) scoring 
were performed for every utterance in the entire dataset. The 
GMM mean supervectors were generated by concatenating the 
mean vectors of all components from the adapted GMM. The 
Tandem posterior probability (TPP) supervector [10,11] is the 
maximum likelihood (ML) estimate of the mean of a 
multinomial distribution. Linear kernel and Bhattacharyya 
probability product kernel were used for the SVM modeling 
for mean and TPP supervectors, respectively. Further 
information can be found in [10,11]. Furthermore, in the 
GMM factor analysis framework for speaker verification [12], 
we can consider the intoxicated speech as normal speech being 
corrupted by channel variability. Let us denote ��,� as the 
speaker and channel dependent mean supervector. Then ��,� 
can be decomposed into speaker dependent mean supervector 
plus the channel variability ��, where � is the low rank 
Eigenchannel matrix learned from the pooled within speaker 
covariance matrix. 
                                    ��,� = �� + ��.  
� is a factor loading matrix and the components of � are 
channel factors [12]. Rather than reducing the intoxicated 
variability for speaker verification, we directly adopt the low 
dimensional Eigenchannel factors � as our Eigenchannel 
factor supervector for SVM modeling. In this LFA approach, 
the GMM size and Eigenchannel matrix rank are 256 and 4, 
respectively. The Eigenchannel matrix was trained on both the 
train set and the devel set. 

2.9. Classifier Type 
A support vector machine (SVM) with linear kernel, L2 

regularization, and L2 loss is used. Although SMOTE was 
used on the baseline model, we instead choose to exploit 
knowledge of class bias to adjust the decision threshold of the 
SVM model. 

SVM training was performed using LIBLINEAR. The cost 
parameter, C, prevents over-fitting. We can obtain a more 
balanced recall between the two classes by setting the class 
weight parameters and C appropriately; these parameters were 
optimized on the devel set. 

3. Experimental Results and Discussion 

3.1. Non-GMM Features 
First, we divided our non-GMM features into 4 sets and ran a 
grid search to optimize performance of each. The four feature 
sets are the original 4368 base features, global functional and 

hierarchical features of the Praat LLDs, all hierarchical 
features, and rate features. It became apparent that speaker z-
normalization performed better on the openSMILE base set 
than speaker mean normalization, and we used only this 
normalized set for our classifiers in order to reduce the final 
set of features. 

From error analysis, we noticed empirically that the 
iterative speaker-normalization method seemed to be 
optimizing the unweighted accuracy by performing better at 
classifying instances of sobriety, whereas the global speaker-
normalization method, when optimized, performed better at 
classifying instances of intoxication. We implemented a basic 
score-level fusion classifier that tries to exploit the possible 
complementarity of these methods by summing up the class-
weighted confidence of each instance (“naive fusion”). 

The results are presented in table 2. The table contains 
columns for the non-speaker-normalized features (None), 
speaker z-normalization without regard to class labels 
(Global), iterative sober-class z-normalization (Iter.), naive 
fusion of global and iterative classifiers (Naive Fusion), and 
oracle sober-class z-normalization (Oracle). 
 
Table 2. Unweighted classification results on devel set. The 
baseline is 65.3% [2]. 

 Speaker Normalization 
Set  

None 
 

Global 
 
Iter. 

Naive 
Fusion 

 
Oracle 

All Feats  
0.6287 

 
0.7104 

 
0.7176 

 
0.7258 

 
0.7831 

Only: 
Original  

 
0.6439 

 
0.7079 

 
0.6838 

 
0.7033 

 
0.7471 

 
Praat 

 
0.5950 

 
0.6617 

 
0.6323 

 
0.6414 

 
0.7114 

 
Hierarchical 

 
0.6225 

 
0.7083 

 
0.7052 

 
0.7145 

 
0.7770 

 
Rate 

 
0.5732 

 
0.5791 

 
0.5292 

 
0.5429 

 
0.5764 

 
Speaker normalization by sober class z-statistics with oracle 
knowledge achieves the best performance in all cases, showing 
the potential power of this speaker normalization scheme.  The 
best performance on the development set without oracle 
knowledge is from the naive fusion method when using all 
features. 

The hierarchical feature set has the highest unweighted 
average recall of the individual feature sets. It is followed 
closely in the four speaker normalization columns by the 
original base feature set. The Praat set has much lower 
classification accuracy. This is likely because the Praat feature 
set is constructed from functionals and hierarchical features of 
10 prosody and formant-related LLDs, whereas more 
informative features may be contained in utterance-level 
functionals of the 120 LLDs comprising the original base set. 

Rate features appear to not generalize well. This is 
understandable given the diversity of the utterance type and 
duration. Preliminary tests show potential improvement for the 
speaking rate features if three separate models are trained 
based on utterance length, which roughly divides speech 
styles. This method is one effort to concurrently address two 
of the issues corrupting speaking rate feature performance, 
speech style and length of utterance.  This is an area of future 
research.   

The top model from the train/devel classifiers was chosen 
to classify the test set. The best model was “naive fusion” 
using all systems. While classification on the devel set shows 
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72.58% accuracy (7.28% absolute gain), test set classification 
provided only 66.85% accuracy (0.95% absolute gain). 

The reduced performance on the test set may be due to a 
number of factors. We suspected that the major corruption in 
our model came from the difference in class distribution 
between the train and devel sets and the effect it has on the 
absolute feature values resulting from speaker normalization. 

In order to better match the test set class distribution per 
speaker that reaches intoxication (there are 1620 and 1380 
sober and intoxicated utterances respectively [2]), we 
duplicated the training instances marked as alcoholized for 
each speaker such that each speaker in the training set had 60 
alcoholized instances and 60 non-alcoholized instances. All 
speakers have 30 alcoholized utterances, indicating that they 
drank alcohol, but were not necessarily intoxicated. We 
empirically found this to perform better than when using 
SMOTE. Next, speaker normalization was conducted the same 
as before. This time, we optimized the fusion weights between 
the confidence scores generated by the two speaker 
normalization methods. Our unweighted accuracy improved to 
68.14% (a 2.24% absolute improvement). 

3.2. Inclusion of GMM Features 
Fusion results on the devel set are shown in Table 3. Optimal 
weights were found for certain feature set sub-groups, and 
further optimal weights were found for the combination of the 
fused sub-groups. Among the three GMM supervectors, the 
Eigenchannel factor supervector achieved the best 
performance of 70.39% on the devel set. In addition, by fusing 
with the GMM mean and TPP supervector systems, the 
accuracy is further improved to 71.43%. Finally, by fusing 
GMM supervector based systems with the hierarchical features 
based subsystems, the performance is enhanced to 76.96%. 
The results of the global speaker normalization method, the 
iterative method, and their fusion are slightly different than in 
Table 2 because of the revised, class-unbiased speaker 
normalization method described at the end of Section 3.1. 

The optimal “weighted fusion” model was re-trained on 
the combined train and devel sets and used to classify the test 
set. The unweighted accuracy on the test set is 70.54%, a 
4.64% absolute (7.04% relative) improvement over the 
baseline. Table 4 contains the confusion matrices from the 
devel and test classifications. On the development set, the 
same method achieved a 11.66% absolute improvement over 
the baseline. The drop in performance may be due to 
overfitting or various potential differences between the devel 
and test sets. 

 
Table 3. Unweighted classification results on devel and test 
sets. The baselines are 65.3% and 65.9% respectively [2]. 
 

Set UW Acc Set Fusion UW Acc 
Global (1) 71.29 (1)+(2) 71.45 

Iterative (2) 69.28 (3)+(4) 69.06 
TPP (3) 63.93 (3)+(4)+(5) 71.43 
LFA (4) 70.39 All (1-5) 76.96 

GMM (5) 65.05 All [test set] 70.54 
 
Table 4. Confusion matrices of the weighted fusion system on 
the devel and test sets. 
 
Data Ref. | Pred. Sober Intoxicated Sum 

devel Sober 2130 630 2760 
Intoxicated 297 903 1200 

test Sober 1127 493 1620 
Intoxicated 393 987 1380 

4. Conclusions and Future Work 
Intoxication detection is an important, but challenging area of 
paralinguistic speech research with potential real-world 
applications. We tested the efficacy of several acoustic-based 
methods with the potential to provide benefits to this 
paralinguistic machine learning task. The methods include 
hierarchical acoustic features, iterative speaker normalization, 
GMM supervectors, an Eigencannel supervector, and score-
level fusion. We obtained a balanced recall for intoxication 
recognition using score-level fusion of these subsystems. 
Unweighted average recall performance on the test set was 
70.54%, an improvement of 4.64% absolute (7.04% relative) 
over the baseline model accuracy of 65.9%.  

Since speaker normalization can be highly susceptible to 
changes in the class-label distributions between the test and 
development sets, the robustness of the two speaker 
normalization techniques to these distribution changes should 
be investigated as part of our future work. 

Another area of future work should be automatic 
identification of speech style. We expect less feature 
variability within speech styles, leading to performance gains. 
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