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ABSTRACT
As elevator accidents do great damage to people’s lives and property,
taking immediate responses to emergent calls for help is necessary.
In most emergency cases, passengers must use the “SOS” button
to contact the remote safety guard. However, this method is un-
reliable when passengers lose the ability of body movement. To
address this problem, we define a novel task of identifying real and
fake calls for help in elevator scenes. Given that the limited call for
help dataset collected in elevators contains multimodal data of real
and fake categories, we collected and constructed an audiovisual
dataset dedicated to the proposed task. Moreover, we present a
novel instance-modality-wise dynamic framework to efficiently use
the information from each modality and make inferences. Exper-
imental results show that our multimodal network improves the
performance on the call for help multimodal dataset by 2.66% (ac-
curacy) and 1.25% (F1 Score) with respect to the pure audio model.
Besides, our method outperforms other methods on our dataset.

CCS CONCEPTS
• Human-centered computing;

KEYWORDS
Multimodal action recognition, abnormal event recognition, dy-
namic neural network

1 INTRODUCTION
Elevators are an important part of our life for daily transportation.
As technology advances, so do the risk factors. Many hazardous
situations are possible to happen while traveling in an elevator.
Therefore, an efficient call for help system is needed to ensure life
and property safety. Nowadays, emergency calls in elevators rely
on manually pressing the “SOS” button. This hardware-dependent
method has several disadvantages. It is hard for passengers to get
an immediate rescue if the button is damaged or the passengers
have limited mobility. However, due to the limited application and
challenging nature, the specific task of intelligent calls for help
recognition in elevators receives little attention in the past decades.

∗Corresponding Author.

With cutting-edge sensors to capture audio and video signals be-
coming common, advanced video and speech processing techniques
and machine learning methods play key roles in various fields, like
action recognition and classification [Wu et al. 2020; Zhang and
Xiang 2020], speech recognition [Povey et al. 2011; Wolf and Nadeu
2014]. An intelligent call for help detection system improves rescue
efficiency becomes possible.

For the reason that research in this area is limited, we proposed
a novel framework of the intelligent system. After being waken
up by the keywords, the intelligent system will only send warn-
ings when it identifies a real call for help instead of giving out
information every time it detects the keyword. In this case, there
will be fewer misjudgments and the efficiency will be improved
in return. Meanwhile, as speech-based keyword spotting [Chen
et al. 2014] has been widely applied in many smart applications,
this paper excludes the front-end keyword spotting and focuses on
developing an efficient model that can identify real or fake call for
help events after keyword detection.

Furthermore, we incorporate both audio and video information
to address the real and fake call for help recognition. Multimodal
input has a better performance compared to unimodal input. Al-
though in most cases, prime audio signals are able to discriminate
the two categories, they will fail in the situation that the passengers
are imitating the real call for help in their conversations. Comple-
mentary video information providing the actions and states of the
passengers can separate the vocally ambiguous cases. Therefore,
the fusion of audio and video features takes advantage of comple-
mentary information. We are certainly not the first to attempt to
fuse information from different modalities, there were works for
multimodal event recognition before, such as [Gemmeke et al. 2017;
Pareek and Thakkar 2021]. However, the above methods have a
common drawback that unimodal information is sufficient for most
samples, for those cases, rigid multimodal networks waste time
and efficiency. Unlike these, we are intended to design a reliable
dynamic neural network based on our dataset. The structure of our
multimodal dynamic network is introduced in Section 4.

To support our research toward utilizing multimodal informa-
tion to recognize the real or fake call for help in elevators, we first
defined the meaning of real and fake categories, as specified in
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Section 3.1. In our definition, the real category means that passen-
gers need emergency rescues due to hazardous events of elevators,
urgent accidents, or personal health problems. In contrast, the fake
category means that the passengers mention the keyword in con-
versations in the absence of emergencies. Then, we construct an
elevator multimodal call for help dataset, the Elevator Help Dataset,
consisting of 3724 pairs of audio and video data captured by 266
actors. The detail of the dataset is in Section 3.

To summarize, the contributions of our paper are threefold.

• We define a new task of real and fake call for help recognition
in an elevator to ensure the safety and property of humans.
• We introduce the Elevator Help Dataset fulfilling the gap of
the dataset in the task we proposed.
• We propose a dynamic inference network with multimodal
inputs to balance the work efficiency and accuracy of the
model.

2 RELATEDWORKS
In the ideal case, a complete call for help detection system needs
two stages: keyword spotting [Higgins and Wohlford 1985] that
can detect the presence of “help” keywords in continuous speech
signals, followed by an audio-visual classifier to recognize the real
or fake call for help.

Speech-based keyword spotting is currently a common and ma-
ture technique widely deployed in many applications (e.g., voice
assistant [Hoy 2018]). Thus, there is no urgent need to study key-
word spotting in this specified task. In this paper, we focus on
addressing recognizing real or fake calls for help in elevators. Our
proposed method mainly involves two concepts: event recognition
and dynamic neural networks. In this section, we will discuss the
related works, respectively, and summarize how they are associated
with our work.

Event Recognition. Event recognition by various types of data
has been a long-standing research interest. As audio and video are
the most common multimedia content currently, many researchers
have studied event recognition based on audio and video data [Gem-
meke et al. 2017; Pareek and Thakkar 2021]. In the area of video-
based event recognition, methods are plentiful and range from
using hand-crafted descriptors (e.g., iDT [Wang and Schmid 2013])
with machine learning models to deep neural networks (e.g., two-
stream [Simonyan and Zisserman 2014], C3D [Tran et al. 2015],
I3D [Carreira and Zisserman 2017] ). In the area of audio-based
event recognition, Warren et al. [Warren and Verbrugge 1984] first
explore the connection between perceptual properties and acous-
tic features. Gemmeke et al. [Gemmeke et al. 2017] propose the
AudioSet dataset, which is a large-scale human-labeled dataset
for audio event recognition. Also, a series of competitions funded
by IEEE (e.g., DCASE 2013 [Giannoulis et al. 2013], DCASE 2017
[Mesaros et al. 2017]) all promote the development of this research
area.

Multimodal Fusion. Recently, multimodal event recognition
is becoming prevalent. The inputs of neural networks develop from
single audio [McLoughlin et al. 2015] or video [Zhang and Xiang
2020] data to multimodal data including RGB-Depth, audio-visual
signals [Cippitelli et al. 2017; Wu et al. 2020], etc. As audio and
video data are different types of information, they have certain

complementary capabilities in some cases. Therefore, combining
information from different modalities takes advantage of integrated
information. Many previous works related to multimodal event
recognition have studied how to fuse information from different
modalities efficiently. One is the joint representation, also known
as early fusion [D’mello and Kory 2015; Nojavanasghari et al. 2016;
Ramachandram and Taylor 2017], which aims at fusing multimodal
features in the middle parts of neural networks. Another fusion
scheme is late fusion. Contrary to early fusion, late fusion is based
on the results of the decision from each modality. The advantage of
late fusion is that it allows different models for different modalities,
which build better models for specific modality [Baltrušaitis et al.
2018]. Additionally, hybrid fusion [Atrey et al. 2010; D’mello and
Kory 2015] combines these fusion methods, and it has been proved
successful in multimedia event recognition [Lan et al. 2014].

Dynamic Neural Networks. Most popular deep networks are
rigid. They have a static inference paradigm [Han et al. 2021]. Once
the training is completed, the parameters and structure of the model
remain unchanged, which limits the models’ capabilities [Graves
2016; Huang et al. 2017; Sabour et al. 2017; Yang et al. 2019]. The
more difficult the task, the more a neural network with a larger size
and stronger representation ability is needed. As the hard samples
account for a few parts of the whole dataset, a large computational
model adopted for all inputs is inefficient [Han et al. 2021]. The
key idea of dynamic neural networks is to solve easy input data
by smaller models and hard input data by larger models. There are
three categories of dynamic networks: spatial-wise, temporal-wise,
and instance-wise. Spatial-wise dynamic networks choose different
locations of the image as the input. The relevant approaches can
be further divided into three levels: pixel-level, region-level, and
resolution-level. These methods are suitable for cases where the
global background has no crucial clues. Temporal-wise dynamic
networks solve the problem of redundancy in temporal dimensions.
For the video as the input, there are two methods: RNN-based
adaptive networks and a dynamic pre-sampling procedure for key
frames [Han et al. 2021]. Instance-wise dynamic networks select dif-
ferent structures or parameters when processing different samples.
The main goal of choosing structures is to improve computational
efficiency, while dynamic parameters desire to improve the repre-
sentation power with minimal computational cost [Han et al. 2021].
A natural way for dynamic architecture is early exiting, which adds
routers in the middle layers and decides output results when the
confidence score reaches the threshold. Evidence [Huang et al. 2017]
shows that the ports in multiple layers of a network can interview
each other and weaken the capabilities of the model. Multi-scale
dense network (MSDNet) [Huang et al. 2017] adopts a multi-scale
architecture with dense connections, solving the problem of inter-
mediate router effectively. Considering the background and length
of our data, we use an instance-wise dynamic inference scheme.

In all, for our task of call for help recognition, the definition of the
categories, the application setting in elevators, and limited views are
unavailable in the existing public datasets. Therefore, we construct
a dataset for our specified task. Moreover, we propose a modality
and depth dynamic inference framework using information from
different modalities efficiently. This way, the proposed model is able
to learn both the low-level and high-level cross-modal information,
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has a better representation power, and makes accurate predictions
with higher efficiency compared to unimodal methods.

3 TASK DEFINITION AND PROPOSED
DATASET

3.1 Task Definition
Our goal is to build an automatic system that can recognize the true-
ness of calls for help in elevator scenes and improve the efficiency
of the safety monitoring system. For developing this framework,
the intuitive way is regarding the proposed task as a para-linguistic
recognition task after keyword spotting that can identify real or
fake calls for help in elevators. However, two potential cases will
confuse speech-only models. First, some common conversations
also include the keyword, while speakers are casually talking about
a related topic. Second, people imitate movie scenes or accidents
with keywords spoken in a vivid tone. In the two cases above, only
audio features cannot tell whether people are really in need of help.

To mitigate this problem, we consider the cases in daily life to
define the real and fake call for help categories. Both categories
have the same requirement that the keyword "Help" is included in
the sentence. Briefly speaking, a real call for help happens when
passengers need rescues in certain urgent emergencies (e.g., eleva-
tor malfunctions, physical discomfort), while a fake call for help is
the situation where passengers have no need for instant rescues
even if they try to fool the system(e.g., talking about related topics,
imitating jokes).

The following are examples of the real category. Imagine a lady
is trapped in the elevator due to the malfunctioning elevator door.
She shouts “Help! Help! The door is broken. Someone, please help
me!” flapping the elevator door to attract others’ attention. Her
tone is frightening during the whole process. Another example is
that a man sitting on the floor holds his stomach with a painful
face. He tries to shout but his voice sounds feeble. He says “Help!
There is something wrong with me. Please help me!”

Fake call for help examples is shown below. A woman says to
another passenger that “ I heard someone shouting ‘ Help! Help!’
outside. Could you hear that?” In this example, the woman is imi-
tating another person’s call for help. Although her tone when she
said “Help! Help!” is frightening which sounds like real samples,
she does not need rescue. Another example is that a man says, “I
watched the film ‘The Help!’ yesterday.” The keyword is in the
sentence, but it is not a sign of a call for help. The keyword is only
part of a normal word.

3.2 Elevator Help Dataset
Data Collection. Our dataset is collected in a simulated elevator
environment with the green screen as the background. The green
screen is used for image segmentation in the future. The video and
audio data are recorded by one camera in the top corner of the
cabin ceiling and one microphone in the center of the ceiling, as
shown in Figure 2(a). Due to the redundancy of adjacent frames
in video data, the video FPS (frames per second) does not need to
be too high, and the frame rate is downsampled and saved to 5 fps.
Additionally, the audios are collected by a high-fidelity microphone
with a sampling rate of 16 kHz.

To acquire sufficient high-quality data, we employ 266 actors of
all ages and provide them with a series of selective scripts for refer-
ence to perform various scenarios (shown in Table 1). In each call
for help event, the actors can arbitrarily choose a pair of dialogues
and actions and freely play according to their understanding of the
call for help events. For the real call for help samples, the actors
will imitate the real urgent situations, such as elevator accidents or
physical discomfort. For the fake call for help, actors will freely talk
about some topics with “Help.” or imitating some real call for help
scenes in their conversations. Figure 1 shows the examples of the
visaul dataset. The entire dataset is completed by a combination of
given scripts for reference and free performances. Considering the
actors are strangers to each other and the duration of collecting all
the data is up to over half a year, the independence and diversity of
our data samples can be guaranteed.

(a) Discomfort. (b) Knock on the door. (c) Fake category (con-
versation).

Figure 1: Examples of the visual data.

Data Annotation. To improve the data quality, we manually
annotate all the synchronized audio and video data. The reason we
have to manually annotate all the data is that there is no existing
dataset for us to train a clipper on the keyword. Finally, 4168 audio-
visual clips are cut out, 2076 of which are labeled as the real call for
help events, and the other 2092 clips are labeled as the fake call for
help events. Each clip has a one-second audio data and a five-second
video data, with the keyword “Help” in the recorded conversation.
We set the length of audio as one second for the reason that a
one-second audio is guaranteed to contain the keyword we set and
some contexts of the conversation. In contrast, a one-second video
has limited information. Therefore, we use a five-second video
history (include the keyword) to ensure enough video information.
Through this proposed dataset, we transfer the proposed task to a
binary classification problem based on audio-visual data.

Data Statistics.We shuffled the data in pairs and split the train-
ing, validation, and test set with the ratio of 7 : 1 : 2. At the
same time, we control that one identity presents only in one set.
The distribution of two categories is shown in Figure 3(a) and the
distribution of duration of untrimmed data is shown in Figure 3(b).

4 PROPOSED METHODS
As our proposed task is specifically a multimodal learning task,
we design the neural network following the idea of making full
use of information from different modalities. Many researchers
have studied multimodal fusion and it has become a classical prob-
lem [Atrey et al. 2010; D’mello and Kory 2015; Snoek et al. 2005].
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Table 1: Selective Scripts for performing call for help events.

Contents of the Conversation
(speaking in Mandarin) Actions

“Help, please help me.”
“The elevator is broken, help!”
“I’m trapped. Who can save me? help!”
“Oh my god, someone fainted, help!”
“Come and save her. Help me!”
“I’m dying. Help me!”
“Do not hurt me! Help! Help!”
“Stay away from me! Otherwise I will call for help!”
...

Stomp the feet, scratch the head.
Dizziness.
Shake to left and right.
Walk around in panic.
Cry.
Stand motionless.
Flap the elevator doors and walls.
Lay weakly on the floor.
...

Contents of the Conversation
(speaking in Mandarin) Actions

“When I came here, I saw someone fainted, the others were calling for help.”
“I watched a movie called ‘The Help!’ yesterday.”
“Last week, I was trapped in the elevator. I shouted ‘Help! Help!’ ”
“Nancy is so annoying. She always turns someone for help.”
“Can you show me how the actress call for help in the drama? ”
“Nancy is so nice. She helped the old man and saved his life.”
“Do you know what to say when you want to call for help? ”
“Do you know what is ‘help’ in other languages? ”
...

Stand calmly.
Confused expressions.
Happy.
Worried.
Walk around in panic.
Exaggerated expression.
Show other people a picture on the phone.
Wave hands in the air.
...

Microphone

RGB-D Camera

Door

(a) Data collection.

Start Time

End Time

(b) Data annotation for audio.

Figure 2: Data Processing. Figure 2(a) shows the elevator en-
vironment where we collect data. Figure 2(b) shows the data
annotation pipeline for audios. We recorded start and end
times for each keyword in the audios.
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Figure 3: Statistics of our data.

However, due to the heterogeneity of different modalities, sepa-
rate backbone networks are often required to extract features from

different modalities and then fused together, which is usually time-
consuming and results in a waste of the large model size. To achieve
the balance between model accuracy and model efficiency, we pro-
pose a modality-wise dynamic architecture that adopts the merits
of multimodal fusion and dynamic model inference in a flexible way.
Figure 7 summarizes the framework of our instance-modality-wise
dynamic neural networks. There are three components of the com-
plete model: pre-trained VideoNet, pre-trained AudioNet, and the
Final DecisionNet with a fusion block to fuse extracted audio-visual
features. The Final DecisionNet will make a decision with the fused
features obtained from two backbone networks.

4.1 Single Modal Backbone Networks
In order to better extract audio and video features, we build two
backbone networks for audio and video inputs.

AudioNet. AudioNet aims to extract high-level audio features
through the input of low-level audio features. Particularly, we treat
the proposed task as an audio-based event recognition problem.
Consider that we have a training set of audios, we denote the audio
as 𝐴 and the corresponding label as 𝑦, where 𝑦 ∈ {0, 1}, 𝑦 = 0
denotes 𝐴 covers real call for help. With the original audio signals
𝐴 in hands, we first compute MFCC (Mel Frequency Cepstral Coeffi-
cients)𝐴𝑀 with the number of filters in the filterbank as 40 and the
number of cepstrum to return as 40 as the pre-processing method.
Then we use feature extractor 𝐹𝐴 to extract high-level audio feature
matrix 𝑋𝐴 whose dimension is 512. The feature extractor 𝐹𝐴 we
use is ResNet-18 [He et al. 2016].

VideoNet. Similar to AudioNet, VideoNet aims to extract high-
level video features through the input of video signals. In this part,
we treat the proposed task as a video-based event recognition prob-
lem. We denote the video as 𝑉 and the corresponding label as 𝑦,
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Figure 4: Pipeline of AudioNet. The feature matrix 𝑋𝐴 is the
flatten output of global average pooling layer.
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Figure 6: Struture of the modified VGGish. The input MFCC
Features are the same as our AudioNet.

where 𝑦 ∈ {0, 1}, 𝑦 = 0 denotes 𝑉 covers real call for help. We
first compute normalized video signals 𝑉𝑁 as the pre-processing
method. Then we use feature extractor 𝐹𝑉 to extract high-level
audio feature matrix 𝑋𝑉 whose dimension is 512. As 3D convo-
lutions have shown competitive performance in tasks related to
video-based action recognition [Feichtenhofer et al. 2019; Qiu et al.
2017], we build a 3D convolutional neural network to be the feature
extractor 𝐹𝑉 . Figure 5 shows the basic components of the proposed
VideoNet.

4.2 Fusion Schemes.
Feature-level Fusion. Many feature-level fusion manners have
been raised for multimodal input [Atrey et al. 2010]. We choose
one simple but effective fusion manner that concatenates the audio
features𝑋𝐴 and video features𝑋𝑉 into the fused features𝑋𝐶 whose
dimension is 1024. More precisely, we obtain 𝑋𝐶 whose shape is
(1, 1024) from two vectors whose shapes are both (1, 512). In Figure
7, we denote the multimodal information fusion process as 𝐶 .

4.3 Modality-wise Dynamic Network
As mentioned before, aiming at achieving the balance between
model accuracy and model efficiency, we proposed an instance-
wise dynamic neural network that flexibly adopts information from
different modalities according to the difficulty of the input data. Due
to the property of our proposed task of call for help recognition,
the audio feature is necessary. Thus, it is mainly a speech-related

task with video data as auxiliary information. Since there are two
modalities in our dataset, we set a two-stage dynamic inference in
the proposed model. For a given pair of audio and video data 𝐴,𝑉 ,
the AudioNet will first give out the primary predictions 𝑂𝑢𝑡𝑝𝑢𝑡1
based on audio MFCC signals 𝐴𝑀 and the high-level audio features
𝑋𝐴 .

At this stage, there exist two different cases:

• Case 1: The AudioNet is confident of its output.
• Case 2: The AudioNet is not confident of its output.

Being confident means for 𝑂𝑢𝑡𝑝𝑢𝑡1, the highest probability of
two categories obtained by using a Softmax function is higher than
a set threshold 𝑇 , and vice versa.

The following steps for the two cases are different:

• Case 1: The final output is𝑂𝑢𝑡𝑝𝑢𝑡1 from the AudioNet. There
will be no following steps.
• Case 2: Video Features𝑋𝑉 will be extracted from the VideoNet.
The Final DecisionNet will first fuse 𝑋𝐴 , 𝑋𝑉 and then get
the output 𝑂𝑢𝑡𝑝𝑢𝑡2 after four fully connected layers.

The pseudo-code 1 shows the pipeline for the dynamic inference
process.

Algorithm 1: pseudo algorithm for our two stage instance-
modality-wise dynamic inference
Data: 𝐴,𝑉
Result: 𝑂𝑢𝑡𝑝𝑢𝑡1 𝑜𝑟 𝑂𝑢𝑡𝑝𝑢𝑡2
Compute 𝑋𝐴 and 𝑂𝑢𝑡𝑝𝑢𝑡1 using the AudioNet ;
if AudioNet is confident of 𝑂𝑢𝑡𝑝𝑢𝑡1 then

return 𝑂𝑢𝑡𝑝𝑢𝑡1;
else

Compute 𝑋𝑉 using the VideoNet ;
𝑋𝐶 ← Fuse 𝑋𝑉 and 𝑋𝐴 ;
Input 𝑋𝐶 into Final DecisionNet;
𝑂𝑢𝑡𝑝𝑢𝑡2 ← Final DecisionNet(𝑋𝐶 );
return 𝑂𝑢𝑡𝑝𝑢𝑡2 ;

end

4.4 Network Training.
The two backbone networks have been well trained on our dataset
separately. Since the main function of two backbone networks is
extracting features, the weights and parameters of the pre-trained
feature extractors should not be updated during the training pro-
cess of the Final DecisionNet. In the training process of the Final
DecisionNet, the two backbone networks are frozen, and the net-
work at this stage only learns how to get effective information from
the fused features 𝑋𝐶 .

We implement the networks based on PyTorch. Without oth-
erwise stated, we use cross-entropy as the criterion function. For
network optimization, Adadelta with weight decay by 10−5 is used
as the optimizer for the AudioNet and Adam with initial learning
rate 10−4 and weight decay by 10−5 as the learning rate for the
VideoNet and Final DecisionNet.
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Figure 7: Proposed Instance-Modality-wise Dynamic Neural Network. The operator𝐶 represents the concatenation of feature
vectors.

5 EXPERIMENTS
This section evaluates our method trained on the Elevator Help
Dataset for the task of real and fake calls for help recognition in el-
evators. We evaluate the accuracy and F1 score for each model. We
also compare the performances of each part of our model against
other methods, such as ResNet 3D [Tran et al. 2018], VGGish [Her-
shey et al. 2017]. All the experiments are conducted with GPU
Nvidia GTX1080ti.

5.1 Ablation Studies
The effect of modality. Most of the work still focuses on uni-
modality event classification. One advantage of our work is using
audio-visual multimodal input. Therefore, we conducted experi-
ments on our Elevator Help Dataset to verify the superiority of
multimodal inputs. We tried three different inputs: audio, video, the
fusion of audio and video. We also use a baseline model SVM with
the fused feature 𝑋𝐶 as the input. The result of them is reported in
table 3.

The model with audio as the only input is the same as AudioNet
in Figure 4, ResNet 18 [He et al. 2016]. The model with video as the
only input is shown in Figure 5. And the model with multimodal
input we use to evaluate is the structure shown in Figure 4 without
the dynamic inference mechanism which only has 𝑂𝑢𝑡𝑝𝑢𝑡2 as the
result.

We also provide a table to show the necessity of fusion of mul-
timodal features (Table 2). In Table 2, “c” means the set of correct
predictions while “f” means the set of false prediction. “cc” repre-
sents the number of samples in the set that both Stage 1 and Stage 2
gives out correct predictions; “ff” represents the number of samples
in the set that both Stage 1 and Stage 2 gives out false predictions;
“cf” represents the number of samples in the set that Stage 1 gives
out correct predictions while Stage 2 gives out false predictions;
“fc” represents the number of samples in the set that Stage 1 gives
out false predictions while Stage 2 gives out correct predictions.

A key observation is that the audio modality performs better
than the visual modality. It is not hard to understand: people’s tone,
pitch, and volume according to their emotions in emergencies will
be more distinct in normal situations compared with visual signals.

Table 2: Correction of failure in Stage 1 using the multim-
modal network.

Method cc cf fc ff
Our Method of separate training 787 3 25 12

End-to-end training 352 38 425 12

Additionally, actions and gestures can change on purpose in both
real and fake scenarios. For example, in the Elevator Help Dataset,
a real call for help case can be that a person stands motionless in
the cabin and shout for help; and a fake call for help case can be
that person imitating the movie scene with his hands shaking in
the air and laughing at the silly actions. Therefore, the multimodal
model is better than the unimodal model.

The effect of fusion schemes. The fusion scheme we use is
early fusion. To verify the superiority of early fusion, we experiment
with the other two fusion schemes: late fusion and hybrid fusion. For
late fusion, we do the result-level fusion. We simply add the output
from the AudioNet and the VideoNet together and re-range them
as the new results. One example for understanding is assuming
𝑂𝑢𝑡𝑝𝑢𝑡1 = [0.4, 0.6], 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑂𝑢𝑡𝑝𝑢𝑡 = [0.3, 0.7]. After the
sum operation, the result will be [0.7, 1.3] and the final re-ranged
𝑂𝑢𝑡𝑝𝑢𝑡2 will be [0.35, 0.65]. For hybrid fusion, we add a late fusion
of 𝑂𝑢𝑡𝑝𝑢𝑡1 and 𝑂𝑢𝑡𝑝𝑢𝑡2 to our original model. The comparison of
the results is shown in Table 3. It is clear that in our case, early
fusion is the most efficient fusion scheme.

The superiority of the strategy of training the backbone
networks separately. We stressed training the backbones sepa-
rately instead of training the complete network in an end-to-end
way. The potential problem of end-to-end training is that one back-
bone has been overfitting while the other one is still underfitting.
Since we have little knowledge of the training detail of each part of
the network, it is hard for us to adapt the optimization parameters
and functions flexibly and instantly. Another trouble brought by
the end-to-end training is that a well-designed weighted loss is
needed for the training process.
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Table 3: Performances of models with different modalities and fusion schemes.

Modality Accuracy F1 score # Parameters FLOPS(G)
Audio 95.53 95.54 11, 171, 266 0.19
Video 88.03 87.29 4, 659, 362 39.51

SVM (baseline) 49.46 49.46
Multimodality (Our model early fusion) 98.19 98.19 16, 495, 046 39.71

Multimodality (late fusion) 95.77 95.74 15, 830, 628 39.71
Multimodality (hybrid fusion) 97.58 97.59 16, 495, 046 39.71
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Figure 8: End-to-End Training Process.

In our experiments of end-to-end training, we design theweighted
loss in equation 1: Assume for a given pair of audio and video𝐴, 𝑉 ,
the AudioNet gives out the output 𝑂𝐴 with cross-entropy loss 𝑙𝐴 ,
the VideoNet gives out the output 𝑂𝑉 with cross-entropy loss 𝑙𝑉
and the Final DecisionNet gives out the output 𝑂𝐷 whose loss is
denoted as 𝑙𝐷 .

𝑙𝐷 = 𝛼𝐴𝑙𝐴 + 𝛼𝑉 𝑙𝑉 (1)

where 𝛼𝐴 denotes the weight for 𝑙𝐴 and 𝛼𝑉 denotes the weight for
𝑙𝑉 , and 𝛼𝐴 + 𝛼𝑉 = 1.

As it is hard to evaluate the impact of which feature has dominant
positions in the determining process, we set 𝛼𝐴 and 𝛼𝑉 as 0.5, 0.5
in our experiments.

The two-stage data is shown in Table 2. And the change of
accuracy of the two outputs during the training process is shown
in Figure 8.

As shown in Table 2, it is clear that Stage 1 in the end-to-end
training model is not as powerful as it is in the model trained with
our strategy. And from Figure 6, we can tell that the AudioNet is
barely working as the accuracy is only 0.5 which equals a random
guess in a two-class classification. We think the reason is that the
model tends to learn how to get effective information from the
combined features instead of learning how to extracting effective
high-level features from the multimodal inputs. The failure of Stage
1 will go through Stage 2 with larger amounts of computations and
results in a decrease in efficiency.

The choice of our backbone network. We compare the per-
formances of our backbone networks with other feature extractors
to verify the efficiency of our AudioNet and VideoNet. To control
the effect of dimensions of inputs, we use the same size of MFCC
features and audio as the input. And during the process of training,
we use the same optimizer and optimization parameters and train
the models with the same number of epochs. We also let the models
give out the same dimension of high-level audio and video features
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threshold during the dynamic inference.
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(b) The relationship between F1 Score and
threshold during the dynamic inference.
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(c) The relationship between stage 1 pass
rate and threshold during the dynamic in-
ference.
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(d) The relationship between FLOPS and
threshold during the dynamic inference.

Figure 9: Effects of different parameters in dynamic infer-
ence.

Table 4: The performance of different backbone networks

Modality Model Accuracy F1 score # Parameters

Audio ResNet18 95.53 95.54 11,171,266
Modified VGGish 89.12 89.36 7,989,634

Video Our VideoNet 88.03 87.29 4,659,362
ResNet 3D 55.82 22.46 33,204,930

to control the effect of dimensions of the features. The result is
shown in Table 4.

For audio, we choose a slightly modified VGGish as a comparison.
The network structure is shown in Figure 6. Although the number
of parameters of our AudioNet is slightly larger than the modified
VGGish, the performance of our model is much better. For video,
we choose the ResNet 3D [Tran et al. 2018] as a comparison of our
VideoNet. Our VideoNet is obviously better than ResNet 3D. One
reason for the result is that the network structure of our VideoNet
is much simpler than ResNet 3D who has a serious overfitting
problem.

The efficiency of dynamic structures. As introduced in Sec-
tion 4.3, our model chooses modalities wisely for different samples
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Table 5: Results of model with different inference ways. The time we recorded is for our testing dataset which has 827 samples.

Inference way Accuracy F1 Score Stage1 Passrate(%) Time
Rigid AudioNet 95.53 95.53 100 10𝑠

Dynamic with threshold 0.55 95.89 95.91 99.03 10𝑠
Dynamic with threshold 0.65 96.98 96.98 97.82 10𝑠
Dynamic with threshold 0.75 97.22 97.22 94.20 11𝑠
Dynamic with threshold 0.85 98.07 98.07 90.81 12𝑠
Dynamic with threshold 0.95 98.19 98.19 82.95 12𝑠
Rigid Complete Network 98.19 98.19 0.00 25𝑠
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(b) The confusion matrix of dynamic
inference with threshold 0.7.
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(c) The confusion matrix of dynamic
inference with threshold 0.9.
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net.

Figure 10: Confusion matrix of selected different networks.

in order to improve the efficiency of inference. To verify the valid-
ity of our dynamic inference structure, we use parameters such as
accuracy, F1 score, pass rate, inference time, percentage of saved
parameters to evaluate the model.

Table 5 and Figure 9 shows performances of the dynamic in-
ference with different threshold. With the threshold higher, there
will be more samples to be sent to Stage 2 and thus takes more
computations, time with higher accuracy. The time that the rigid
complete network cost is over twice than the dynamic network
with the threshold as 0.95 whose accuracy is the same as the rigid
network. It is clear that the dynamic network uses less time and
memory without a huge loss of accuracy compared with a rigid
multimodal network.

The confusion matrix of the dynamic networks with different
threshold also verify our assumption that the instance-modality-
wise dynamic network is efficient (See Figure 10).

6 CONCLUSION
In this paper, we study the call for help recognition with multimodal
input under a dynamic inference structure.We define a new problem

of identifying real and fake calls for help in elevators. And due to the
lack of an applicable dataset, we collect a new dataset Elevator Help
Dataset to fill the gap. Then we propose a method to better learn the
combinedmultimodal features andmake an instance-modality-wise
prediction efficiently. Extensive experiments show, 1) our dataset is
applicable; 2) multimodal features improve the performances of the
model; 3) the dynamic inference method improves the efficiency
of the model. Further improvements are expected by finding more
sophisticated evaluation metrics of the dynamic network as well
as exploring a policy decision method for dynamic inference. For
future work, we plan to extend our work to include a system that
enables to do multimodal training and unimodal inference.
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