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ABSTRACT
Given that very few action recognition datasets collected in ele-
vators contain multimodal data, we collect and propose our mul-
timodal dataset investigating passenger safety and inappropriate
elevator usage. Moreover, we present a novel framework (RGBP) to
utilize multimodal data to enhance unimodal test performance for
the task of abnormal event recognition in elevators. Experimental
results show that the best network architecture with the RGBP
framework effectively improves the unimodal inference perfor-
mance on the Elevator RGBD dataset by 4.71% (accuracy) and 4.95%
(F1 score) with respect to the pure RGB model. In addition, our
RGBP framework outperforms two other methods for "multimodal
training and unimodal inference": MTUT [1] and the two-stage
method based on depth estimation.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).
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Figure 1: Comparison of our RGBP framework with two
other frameworks that use depth and RGB data in the train-
ing stage and only RGB data in the inference stage. a) a two-
stage framework that involves depth estimation. b) MTUT
c) RGBP (proposed).

1 INTRODUCTION
Elevators are widely used public infrastructures that facilitate daily
transportation. However, the structure and position of elevators
make them vulnerable to several abnormal activities, such as forced
opening the door. Moreover, some emergent events in elevators,
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such as passenger fainting, may not be noticed in time. Therefore,
elevators are important scenarios to implement abnormal event
detection, which can help ensure life and property safety, enhance
facility preservation, and reduce labor costs with an improved mon-
itoring efficiency. Abnormal event detection is one popular appli-
cation of the video-based action recognition [2, 5, 8–10, 28, 33, 46]
and mainly involves classifying human actions into normal and
abnormal activities [24].

The narrow space, crowded scene, and special angle of the mon-
itoring camera make it usually insufficient to use the single RGB
modality to detect abnormal events. One common way to compen-
sate for the information, such as position and distance, is to add
depth data [18, 22, 27]. In real-life situations, however, depth data is
rarely available due to the expensiveness of depth cameras. Hence,
if we involve depth data to assist the training process and only use
the single RGB modality in the inference stage, the performance of
abnormal event detection in elevators would possibly be enhanced
with relatively low cost. There are mainly two common ways to
deal with this task. One is depth estimation based on the RGB im-
ages [6, 13, 29], whose output would be estimated depth data and
used as the input of depth feature extractor. The other is to use the
information from the depth modality to improve the performance
of single RGB modality [1]. This paper proposes a new framework,
called the RGBP framework, which generates a pseudo depth model
and fuses it with the RGB model in the inference stage. Figure 1
shows the comparison of these three different frameworks.

As mentioned above, our proposed RGBP framework can use
both RGB and depth data during the training process and only use
RGB data in the inference stage. The realization of our framework
contains three stages, as specified in section 3. The first stage is to
pre-train an RGB and depth joint model (RGBD). The second stage
is to train a pseudo depth model that learns to generate the depth
features from RGB data, which is supervised by a proposed feature
similarity loss. The third stage is to substitute the depth model with
the pseudo depth model and perform inference. All the models
are trained on our proposed Elevator RGBD Dataset introduced in
section 4.1. We compared our RGBP frameworks with the other
two frameworks aforementioned in section 4.2, and our framework
performs the best on the Elevator RGBD Dataset.

In summary, the contributions of this paper are as follows. First,
we propose a new framework that generates a Pseudo Depth stream
during the training process to imitate and replace the Depth stream
in the inference stage. Second, we propose the feature similarity
loss to give differentiated supervision to each block of the Pseudo
Depth feature extractor. Third, we introduce the Elevator RGBD
Dataset, which overcomes some limitations of existing datasets.

2 RELATEDWORK
Action Recognition and Abnormal Event Detection. In ac-
tion recognition, a label of an action is predicted based on the RGB
videos, depth data, or the skeleton sequences, etc. It is fundamental
to behavioral analysis and is widely used in video surveillance [5].
Abnormal event detection, as an important application of action
recognition in videos, is aimed to detect the abnormal events in
certain scenarios to prevent potential dangers [24]. When repre-
senting the behavior of the target in the videos, some early work

[12, 21, 26, 32, 39] analyze the histograms, variation, or acceleration
of the motions using optical flow vectors. However, such computa-
tionally expensive methods only extract global features. In handling
this issue, local features such as interest points are extracted to rep-
resent the significant motion variations of the abnormal actions
[23, 28], and texture features are extracted for each moving target
[25, 31, 37]. The object tracking method is also employed [2, 7]
to obtain the trajectory of each object described by a sequence of
coordinates corresponding to different frames. Then, to adapt to
the challenges resulting from the crowded scenes and non-static
objects, Rao et al. and other authors [41, 42, 45] propose the spa-
tiotemporal volume features by using the temporal information
obtained from consecutive frames.

Moreover, multiple studies have explored abnormal event de-
tection in the particular scenario of elevators. Shu et al. [33] learn
the movement characteristics of targets from corner kinetic energy
and use SVM to identify the violent behaviors in real-time. Zhu et
al. [46] recognize the people who fall down and then use image
entropy of Motion History Image [4] to detect violent behavior.
However, both work focus more on passenger safety and lack the
detection of inappropriate usage of the elevators. Moreover, many
datasets collected in elevators make some assumptions about pas-
senger behaviors. For example, the dataset used by Jia et al. [19]
assumes that people get in or out only when the elevator stops at
a certain floor, and it ignores the dangerous behaviors of forcing
open the door, etc. The dataset used by Xiao et al. [40] assumes an
ideal setup where the cameras can capture the faces of the occu-
pants. While in reality, the cameras are usually at the corner of the
ceiling, unable to capture the passengers’ faces. In addition, unlike
the dataset we propose in section 4.1, none of the above datasets
contains depth data, so they can not be used to train the models that
employ fusion methods. Furthermore, our collected database can
also be used to study the abnormal activity detection from depth
images only, protecting user privacy.

Multimodal Fusion. Since RGB data is a 2D representation of the
3Dworldwith one dimension of information lost, and the depth data
compensates for the lost information in the RGB videos. Therefore,
combining the information extracted from RGB data and the depth
data is common to integrate the complementary information. Fusion
can be carried out at different stages by concatenation, weighted
average, etc. Early fusion integrates data of different modalities into
one feature volume as the input to a machine-learning algorithm
[30]. Late fusion (i.e., decision-level fusion) involves the aggrega-
tion of prediction results made by multiple models trained on data
of multiple modalities. As a favored fusion method because of its
easy implementation and good performance, late fusion is widely
used when the errors of two networks are relatively uncorrelated
[35, 38]. For intermediate fusion, Karpathy et al. [20] show that a
model slowly fuses temporal information throughout the network
outperforms their models that employ early fusion or late fusion.
Hu et al. [17] propose a dense multimodal intermediate fusion net-
work for effective joint representation of the features.

Multimodal Training and Unimodal Inference.Different from
multimodal fusion, which aims to use the representation from mul-
tiple modalities together to enhance the performance, the method
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Figure 2: The RGBP frameworkworks in three stages, which involve two stages of training and one stage of testing. In training
stage 1, the pre-trained RGB model and the pre-trained depth model are fused. Supervised by 𝐿𝐶𝐸 , only the fusion model of
RGBD is trainable. In training stage 2, supervised by 𝐿𝐹𝑆 , the feature extractor of the pseudo depth model is trained to learn
the representation output by the depth model, with the depth model frozen. Then, to assemble the model for testing, for the
RGBP model trained in (a), its depth model is replaced by the pseudo depth model trained in (b). Then, the resulting model is
ready for inference.

of "Multimodal Training and Unimodal Inference" achieves that
goal when the inference inputs are only from one modality. In
our case, depth data enhances the performance of an RGB model,
while during inference, such data is usually unavailable since many
elevators are only equipped with RGB cameras.

Commonly, the most intuitive method to make inferences based
on both RGB and depth information when only the RGB data is
available is to employ "depth estimation." Though the depth data is
unavailable, we can first estimate the depth data via the RGB data
and then use the RGB data and the estimated depth data to make
a joint inference. Many work [6, 13, 34] achieve depth estimation
based on the RGB images, and the estimated results can be used in
the joint modeling. Such a method allows for fusion in the absence
of depth input, while it has two limitations. First, it requires two
models during the inference: RGB-to-Depth and RGBD joint classi-
fication models. Therefore, both the model size and the inference
time get increased. Second, the error of the RGB-to-Depth model
will lead to poor depth inputs given to the classification model,
resulting in a bigger accumulative error.

In an attempt to handle this problem, Abavisani et al. propose
a training method called MTUT [1], which encourages a model
of one modality to utilize the learned information from multiple
modalities. By aligning the spatiotemporal semantic information of
the RGB model, the optical flow model, and the depth model during
training, their method enhances the performance of each model.
Regarding knowledge transfer, an inspiring idea is proposed by
Hinton et al. [16], where a well-trained teacher network provides
extra supervision for the training of the student network. Therefore,
in the work of Aydogdu et al.[3], the radar model is trained on both
the raw radar data and the knowledge distillation from the camera
data, making it able to use the radar modality alone with enhanced
performance during inference.

In all, for our task of action recognition and event detection, the
actions of interest and the special setting in elevators, characterized
by crowded space and limited views, are largely unavailable in the
current public datasets. Therefore, we propose a dataset specifically
designed for our task. Moreover, we propose our own "multimodal
training, unimodal testing" framework. As discussed in section 3,
unlike MTUT, which encourages one modality to learn multiple
modalities, we build one more model and guide it to generate the
features of another modality. This way, we can better maintain the
features extracted from different modalities without having one of
them interfering implicitly with the other.

3 PROPOSED METHOD
Our proposed method is a framework called "RGBP," which adopts
data from multiple modalities for training while uses only one
modality data for inference. Specifically, it takes RGB data alone
as input, while it can make a prediction based on both the features
of the RGB data and the predicted features of the depth data. It is
achieved by having the RGBP composed of three 3D convolutional
networks, the RGB model, the depth model, and the pseudo depth
model. All three models have similar, or in our case, the same 3D
CNN architecture. The RGB model and the pseudo depth model
take RGB data as input, and the depth model takes depth data as
input. Since we will only use the RGB model and the pseudo depth
model during inference, our RGBP framework can have enhanced
performance even when only RGB inputs are available. The pseudo
depthmodel aims to output the depth features, even though its input
is the RGB data. Such learning is called "representation learning"
[44], where a model aims to directly return the representation of
the data of modality 𝐴 from the data of modality 𝐵. This way,
the pseudo depth model can supersede the depth model in many
fusion architectures without the need for depth input data while
maintaining the benefits of multimodal fusion.
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To achieve this, as illustrated in Figure 2 (d), we train the inter-
mediate outputs of the pseudo depth model to be consistent with
those of the depth model. If some inconsistency is found, the incon-
sistency will result in the feature similarity loss, which is defined in
section 3.2. The gradients of such loss will flow through the feature
extractor of the pseudo depth model and modify its parameters.

Therefore, our method involves multimodal training since the
depth model directly learns from the depth input, and the pseudo
depth model is trained to learn the depth model’s output represen-
tations. Our method also realizes unimodal inference since it only
uses the RGB model and the pseudo depth model during testing.

3.1 RGBP Framework
Since the pseudo depth model is trained to utilize the RGB input
to produce the representations of the depth data, it can supersede
the depth model during inference. Such an idea can be realized in
our proposed three-stage framework, which can be summarized
as "train an RGBD model," "train a pseudo depth model as a sub-
stitution," and "substitute in the RGBD," respectively. In training
stage 1, we first train an RGB model and a depth model, with each
of them consisting of a feature extractor and a classifier. Then, we
fuse the outputs of their feature extractors. The fusion can be at
the decision level or elsewhere, and as illustrated in Figure 2 (a),
the dotted lines denote all the possible paths for fusion. Then, the
fusion model (colored in green in Figure 2) is supervised by the
cross-entropy loss denoted as 𝐿𝐶𝐸 , and the red lines represent the
paths the gradients of the loss backward will flow through. In this
stage, only the fusion model is trainable, and both the RGB model
and the depth model are frozen.

In training stage 2, the pseudo depth model utilizes the RGB data
to learn similar representations of the depth data. As illustrated
in Figure 2 (b), we use the feature similarity loss, denoted as 𝐿𝐹𝑆 ,
to make the representations output by the pseudo depth feature
extractor conform with those output by the depth feature extractor.
Since the depth feature extractor is used as a paragon, it is frozen to
avoid being affected by the poor representations from the pseudo
depth feature extractor. The classifier of the pseudo depth model
is a copy of the depth model’s classifier, and it is not affected in
this stage. Therefore, the gradients of the loss backward will only
flow to and modify the feature extraction layers in the pseudo
depth model. The performance of the pseudo depth model can be
evaluated by 𝐿𝐶𝐸 , while we do not let the classification loss produce
any backward gradients.

In stage 3, the model for inference is assembled by the models
trained in the two training stages. After the pseudo depth feature
extractor has learned to play the role of the depth feature extractor
well, we use the pseudo depth model to substitute the depth model
in the fusion model from stage 1. Then, the resulting RGBP model
can be either directly used for inference or slightly finetuned for
better performance before usage.

The differences between our method and theMTUT [1] lie in two
aspects. First, two modalities of the MTUT exchange information
only by the loss function, while our RGBP framework generates a
pseudo depth model to realize various modality fusions. Second,
when both RGB and depth data are available, predictions from
two modalities of MTUT can only be fused at the score level. In

contrast, our method allows fusion to happen at many stages in an
end-to-end manner.

3.2 Feature Similarity Loss
Ideally, though given the RGB data as the input, the pseudo depth
model could extract features and make predictions as if the given
input were the depth data. Therefore, apart from the class label,
which can enforce supervision on the class scores, the intermediate
outputs of the depth model provide timely supervision as well.
This supervision is imposed by the feature similarity loss, which
measures the similarity between the in-depth feature maps of the
depth model and those of the pseudo depth model. Then, during
loss backward, we apply its gradients to the pseudo depth model
alone to avoid degrading the depth model’s capability of producing
representations.

Our measurement of similarity is generic and adaptive to the
specific architecture of the applied model. In general, it has two
components, which measure the difference in the correlations of
the feature maps and the absolute consistency of the feature maps,
respectively.

Since the outputs of the in-depth layers contain high-level fea-
tures, or in other words, the semantic information [11], one level of
similarity between the feature maps returned by different models
can be evaluated by their semantic closeness. Here, we employ the
method of measuring their semantic closeness in the way proposed
by MTUT [1]: Let 𝐹𝑑𝑒𝑝𝑡ℎ , 𝐹𝑝𝑠𝑒𝑢𝑑𝑜 ∈ 𝑅𝑊 ×𝐻×𝑇×𝐶 represent two
feature maps from the depth model and the pseudo depth model,
each of which has width W, height H, temporal dimension size 𝑇 ,
and channel number C. Then, by reshaping 𝑅𝑊 ×𝐻×𝑇×𝐶 into 𝑅𝐷×𝐶

where 𝐷 =𝑊 × 𝐻 ×𝑇 , we express the spatiotemporal information
in one dimension of size 𝐷 . By encouraging the elements in the
reshaped 𝐹𝑑𝑒𝑝𝑡ℎ and 𝐹𝑝𝑠𝑒𝑢𝑑𝑜 to have similar correlation patterns,
we are expecting two feature maps to have analogous semantic
representations. The correlation of a feature map of modality𝑚 is
calculated by

𝑐𝑜𝑟𝑟 (𝐹𝑚) = 𝐹𝑚 𝐹𝑚𝑇 ∈ 𝑅𝐷×𝐷 (1)

where 𝐹𝑚 is the feature map obtained after the reshaping, stan-
dardization, and normalization of the original feature map 𝐹𝑚 .
Specifically, for the element 𝑓𝑚

𝑑, 𝑐
at the position (𝑑, 𝑐) of 𝐹𝑚 ∈

𝑅𝐷×𝐶 , it is first calculated by 𝑓𝑚
𝑑,𝑐

′ =
𝑓𝑚
𝑑,𝑐

−𝜇𝑑
𝜎𝑑

, where 𝜇𝑑 and 𝜎𝑑 are
the mean and standard deviation of the data in the row the element
locates at. Then, the standardized element is divided by the 𝐿2 norm

of the row it locates at, resulting in 𝑓𝑚
𝑑,𝑐

=
𝑓𝑚
𝑑,𝑐

′

𝑓𝑚
𝑑

′


2
.

Then, throughminimizing the difference between the correlation

of two featuremaps calculated by



𝑐𝑜𝑟𝑟 (𝐹𝑑𝑒𝑝𝑡ℎ) − 𝑐𝑜𝑟𝑟

(
𝐹𝑝𝑠𝑒𝑢𝑑𝑜

)


2
𝐹
,

we encourage the pseudo depth model to have the same understand-
ing of the input as the depth model does. Semantic closeness, as
discussed above, measures the level of similarity on a loose level.
Meanwhile, a tighter level of similarity is achieved by forcing the
feature maps output by two models to be the same. Through mini-

mizing
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, two corresponding feature maps will



Cross-modal Assisted Training for Abnormal Event Recognition in Elevators ICMI ’21, October 18–22, 2021, Montréal, QC, Canada

Passenger 
Fainting

Quarrel
Violent
Physical
Conflict

RGB Video

Depth Video

Cameras

Door

Actors

a) b)

75,
28%

191,
72%

Gender

Male Female

[35, 40]

(40, 45]

(45, 50]

(50, 55]

(55, 60]

(60, 65]
0

5

10

15

20

25

30
Age

c)

d)

Figure 3: Data collection information of the Elevator RGBD
Dataset. (a) The elevator cabin for data collection, composed
of a green screen as the background, an RGBD camera, and a
door. (b) The gender distribution of the actors. (c) The age dis-
tribution of the actors. (d) Some examples of RGB and depth
frames in the Elevator RGBD Dataset.

develop element-wise analogousness. Combing the above two mea-
surements of similarity together, we define the feature similarity
loss as

𝐿𝐹𝑆 =

𝑃∑
𝑝

1
𝐷 × 𝐷

𝜆𝑝
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𝐹
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+
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𝑞

1
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𝜆𝑞




𝐹𝑑𝑒𝑝𝑡ℎ𝑞 − 𝐹
𝑝𝑠𝑒𝑢𝑑𝑜
𝑞




2
𝐹

(2)

where B denotes the batch size, and 𝐹
𝑑𝑒𝑝𝑡ℎ
𝑝 and 𝐹

𝑝𝑠𝑒𝑢𝑑𝑜
𝑞 refer to

the feature maps at layer p of the depth model and that at layer q
of the pseudo depth model. Since a CNN can have many layers and
not all of them produce feature maps of the same importance, we
use 𝜆𝑝 and 𝜆𝑞 to denote how much we emphasize the correctness
of the feature maps of layer 𝑝 and 𝑞, respectively. 𝜆𝑝 and 𝜆𝑞 are
determined by the specific architecture of the model, as we will
discuss in section 4.3.

In addition, Q and P are two sets that contain the indexes of cer-
tain layers, with the layers in P contributing to the first component
of 𝐿𝐹𝑆 and the layers in Q contributing to the second component.
Since the feature maps from the shallow layers have not learned
the abstract information of the inputs, they are evaluated by their
semantic closeness to the corresponding depth feature maps. By
comparison, the deep layers are better at learning the high-level
features. Therefore, a well-trained pseudo depth model is expected

Table 1: The 5 events in the Elevator RGBDDataset and their
corresponding descriptions and number of samples.

Event Description # Sample

Normal

This class contains some normal
behaviors that will not threaten the
safety of the elevator and passengers,
e.g., intimate interaction, chatting.

14896

Passenger
fainting

This class contains some passengers
that seem to need rescue, e.g., falling

over, lying on the floor.
2128

Quarrel This class contains some passengers
that seem to exchange angry words. 2128

Force
opening
the door

This class contains one or more
people trying to open the elevator

door at an inappropriate time that will
threaten elevator safety.

2128

Violent
physical
conflict

This class contains some behavior
like fighting or hijacking, which will
threaten the safety of passengers.

4256

to produce the same representation as the depth model does, as the
second component of 𝐿𝐹𝑆 requires.

Moreover, when calculating 𝐿𝐹𝑆 , for each pair of the feature
maps, the loss they produce is divided by the number of elements in
each feature map. Specifically, the coefficient 𝐷 ×𝐷 regularizes the
first component of 𝐿𝐹𝑆 and𝑊 ×𝐻 ×𝑇× C regularizes the second
component.

Our feature similarity loss is justified by our experiments in
section 4.3. When the pseudo depth model is supervised by 𝐿𝐹𝑆 , its
feature maps get closer to those from the depth model, and it also
obtains better and better performance in classification.

4 EXPERIMENT
This section evaluates ourmethod by training three architectures on
the Elevator RGBD Dataset, designed for abnormal events detection
under the elevator scenario. Each of the three architectures employs
a distinct fusion method, and we evaluate these RGBDmodels using
classification accuracy and weighted F1 score. We also compare
their performance against other methods for "multimodal training,
unimodal inference," such as MTUT [1] and a two-stage method
that utilizes depth estimation.

4.1 Elevator RGBD Dataset
The Elevator RGBD Dataset focuses on the abnormal events that
can happen in the elevators. This dataset contains five common
event classes, as listed in Table 1.

Each sample contains two types of data collected by an RGBD
camera (Intel Realsense D435 [14]): the RGB video with a length of
around 10 seconds and 1920×1080 resolution, and the depth video
with the same length, frame rate, and resolution as the RGB video.
Considering the redundant information in continuous frames, we
set the frame rate as five fps. The RGB and depth data are recorded in
a simulated elevator cabin with the green screen as the background,
a door, and an RGBD camera at a top corner, as shown in Figure 3
(a).
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Figure 4: Three RGBD architectures we use to test our
method. This figure uses the same color system as Figure
2, where the RGB (blue) blocks belong to the RGB feature
extractor, and the depth (grey) blocks belong to the depth
feature extractor.

There are 266 actors participating in the recording process, and
each actor performs the five events eight times as themain character
in his/her series of five events following a designed script. We
organize these videos and split the training, validation, and test set
with the ratio of 7:1:2. Meanwhile, we control the splits to avoid
that one identity presents in more than one set.

The age and gender distributions of the actors are shown in Fig-
ure 3 (b), (c). Due to the crowded space in elevators, facial contents
are not essential. Moreover, since we recruit actors randomly, the
distribution of actor attributes is expected to be close to the real
passenger distribution.

4.2 Comparison of Different Architectures in
Training Stage 1

In our experiments, we build the RGBD models by fusing the RGB
and depth models with three methods: the intermediate late fusion
method [36] (𝑅𝐺𝐵𝐷𝐿𝑎𝑡𝑒 ), the intermediate center-aligned fusion
method [17] (𝑅𝐺𝐵𝐷𝐶𝑒𝑛𝑡𝑒𝑟 ), and the intermediate left-aligned fusion
method (𝑅𝐺𝐵𝐷𝑙𝑒 𝑓 𝑡 ). Figure 4 shows the diagrams of these three
architectures, and the blue, grey, and green colors represent the
RGB blocks, depth blocks, and fusion blocks, respectively.

In the intermediate late fusion architecture in Figure 4 (a), the
fully connected layer of the RGB and depth models are removed.
The output feature maps following the global max-pooling layers
are concatenated. The global max-pooling reduces each feature
map in its width, height, and temporal dimension to 1, returning a
feature vector with the same number of elements as the channel
number. Then, the output of the pooling layer is put into a fully
connected layer, which is the only trainable layer in this model.

In the intermediate center-aligned fusion model in Figure 4 (b),
the feature maps from an RGB block, a depth block, and a fusion
block (if applicable) are concatenated and put into the next fusion
block. After the third fusion block, there are a max-pooling and a
fully connected layer. The fusion blocks and the fully connected
layer are trainable.

Table 2: Specification of the blocks and FC layers in three
RGBD architectures. in, out, k, s, and p refer to the in-
channel number, out-channel number, size of kernel, stride,
and padding, respectively. ResBlock refers to the 3D resid-
ual block in the Res3D network [15], and without specified
otherwise, the value of stride is 2 and that of padding is 1.

𝑅𝐺𝐵𝐷𝐿𝑎𝑡𝑒 𝑅𝐺𝐵𝐷𝐶𝑒𝑛𝑡𝑒𝑟 𝑅𝐺𝐵𝐷𝐿𝑒𝑓 𝑡

RGB
Blocks

Pre conv (in=3, out=16, k=7, s=2, p=3)
max pool (k=3, s=2, p=1)

1 ResBlock (32, 3), s=1
2 ResBlock (64, 4)
3 ResBlock (128, 6) —
4 ResBlock (128, 3) —

Depth
Blocks

Pre conv (in=1, out=16, k=7, s=2, p=3)
max pool (k=3, s=2, p=1)

1 ResBlock (32, 3), s=1
2 ResBlock (64, 4)
3 ResBlock (128, 6)
4 ResBlock (128, 3)

Fusion
Blocks

1 — ResBlock
(128, 4)

ResBlock
(128, 6)

2 — ResBlock
(512, 6)

ResBlock
(256, 3)

3 — ResBlock
(1024, 3) —

FC fc 256 fc 1024 fc 384

Note: ResBlock (n, m)=
[
3 × 3 × 3 𝑛

3 × 3 × 3 𝑛

]
×𝑚

In the intermediate left-aligned fusion model in Figure 4 (c), the
feature maps from a depth block are concatenated with the feature
maps from an RGB block or a fusion block. The concatenated result
is put into the next fusion block or the max-pooling layer. The
output of the pooling layer is put into a fully connected layer, and
the fusion blocks and the fully connected layer are trainable.

Implementation Details: we adopt the Res3D network [15] as
the backbone in our architectures, and we shrink its size for faster
inference. In all these architectures, the feature maps from block 1
are regulated by the first component of 𝐿𝐹𝑆 , and those from block
2, 3, 4 are regulated by the second component. That is, we set
𝑃 = {1}, and 𝑄 = {2, 3, 4}. The detailed parameter settings in each
architecture are specified in Table 2.

In all the experiments, we use a batch size of 16 containing 16-
frames clips. The frames are picked by isometric sampling from the
RGB and depth videos, with each of them resized to 135 and 240
in width and height, respectively. We use the Adadelta optimizer
[43] with 𝜌 of 0.9, 𝜖 of 10−6, and weight decay of 10−3 and 𝐿𝐶𝐸
to supervise the training process. We first pre-train the RGB and
depth blocks in the RGB and depth models for 11100 iterations and
put these blocks into the corresponding positions in these three
architectures. Then, these three architectures are trained for 11100
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Figure 5: Comparison of validation accuracy of the RGB
model with those of the intermediate late fusion mode
(𝑅𝐺𝐵𝐷𝐿𝑎𝑡𝑒 ), the intermediate center-aligned fusion model
(𝑅𝐺𝐵𝐷𝐶𝑒𝑛𝑡𝑒𝑟 ), and the intermediate left-aligned model
(𝑅𝐺𝐵𝐷𝐿𝑒𝑓 𝑡 ).

Table 3: Comparison of the test accuracies of different archi-
tectures and methods.

Method Acc. # Parameters
RGB model 83.12 8.77M
Depth model 83.04 8.63M
RGB+Depth 86.71 17.54M
2𝑅𝐺𝐵𝐿𝑎𝑡𝑒 86.28 17.55M
𝑅𝐺𝐵𝐷𝑙𝑎𝑡𝑒 89.08 17.54M
2𝑅𝐺𝐵𝐶𝑒𝑛𝑡𝑒𝑟 83.80 266.01M
𝑅𝐺𝐵𝐷𝐶𝑒𝑛𝑡𝑒𝑟 88.37 266.00M
2𝑅𝐺𝐵𝐿𝑒𝑓 𝑡 85.74 25.79M
𝑅𝐺𝐵𝐷𝐿𝑒𝑓 𝑡 87.85 25.78M

iterations.

Experiment Results: Figure 5 shows the validation accuracies of
these three architectures and the RGB model during the training
process, and Table 3 lists their test accuracies.

To validate that the increased number of model parameters does
not cause the improved performance, we also try the two-stream
RGBmodels by replacing the depth blocks with RGB blocks in three
RGBD architectures (2𝑅𝐺𝐵𝐿𝑎𝑡𝑒 , 2𝑅𝐺𝐵𝐶𝑒𝑛𝑡𝑒𝑟 , 2𝑅𝐺𝐵𝐿𝑒𝑓 𝑡 ). These
two-stream RGB models are trained from scratch for 22200 itera-
tions. We also try simply adding the output scores from the RGB
and depth models to see whether the performance is enhanced
(RGB + depth). The results and the number of model parameters
are also listed in Table 3.

By simply adding the output scores of the RGB and depth models,
we enhance the performance, which becomes better than that of the
three two-stream RGB models. The three RGBD models perform
better than the corresponding two-stream RGB models and the
simple addition result, which validate the effectiveness of the depth
information and our architectures.

4.3 Generation and Evaluation of the Pseudo
Depth

As discussed in section 3.2, we build a pseudo depth model with
the same 3D CNN structure as the RGB model and train it with
our proposed feature similarity loss. To evaluate the pseudo depth

Figure 6: Correlation between 𝐿𝐹𝑆 , 𝐿𝐶𝐸 , classification accu-
racy, and training iteration of the pseudo depth model. Left:
𝐿𝐶𝐸 and Acc. vs. 𝐿𝐹𝑆 . Right: 𝐿𝐶𝐸 vs. iteration and 𝐿𝐹𝑆 vs. iter-
ation.

model’s classification capability, we adopt the pre-trained depth
classifier with the extracted pseudo depth features as inputs. If the
classification loss of this assembled pseudo depth model decreases,
the pseudo depth feature extractor is considered to be improving
its performance in representation learning.

In the inference stage, we replace the depth blocks with pseudo
depth blocks to build RGBP architectures (𝑅𝐺𝐵𝑃𝐿𝑎𝑡𝑒 , 𝑅𝐺𝐵𝑃𝐶𝑒𝑛𝑡𝑒𝑟 ,
𝑅𝐺𝐵𝑃𝐿𝑒𝑓 𝑡 ) and change the inputs into the RGB videos.
Implementation Details: we apply 𝐿𝐹𝑆 on each of the feature
maps from the four blocks of the depth model and the pseudo depth
model, with their 𝜆 set to 1, 2, 3, 5, respectively. The depth model is
frozen, and the learning rate of the pseudo depth model is set to 1.
In the inference stage, after the RGBP is assembled, we can directly
use it for inference. In our experiment, 𝑅𝐺𝐵𝑃𝐶𝑒𝑛𝑡𝑒𝑟 is directly used,
and the fusion model of 𝑅𝐺𝐵𝑃𝐿𝑎𝑡𝑒 and 𝑅𝐺𝐵𝑃𝐿𝑒𝑓 𝑡 are finetuned for
1110 and 4440 iterations, respectively, both having a learning rate
of 10−3.
Experiment Results:When training a pseudo depth model super-
vised by a well-trained depth model via 𝐿𝐹𝑆 alone, we observe its
positive correlation with 𝐿𝐹𝑆 and its negative correlation with the
classification accuracy. That is, on the training set, as 𝐿𝐹𝑆 decreases,
the classification loss of the pseudo depth model decreases, and its
classification accuracy improves, as shown in Figure 6. Therefore,
we justify that our definition of 𝐿𝐹𝑆 provides effective supervision.

The feature learning process is visualized in Figure 7. We present
the feature maps (averaged over channels and temporal dimension)
output by the four blocks in the pseudo depth model after 100, 1100,
and 11100 iterations. As the number of iterations increases, the
feature maps look more and more similar to that of the depth model
in general and look different from that of the RGB model.

Table 4 lists the test accuracies of these three RGBP architectures
and their corresponding RGBD architectures.𝑅𝐺𝐵𝑃𝐿𝑎𝑡𝑒 ,𝑅𝐺𝐵𝑃𝐶𝑒𝑛𝑡𝑒𝑟 ,
and 𝑅𝐺𝐵𝑃𝐿𝑒𝑓 𝑡 improve the accuracy with respect to the RGBmodel
by 4.71%, 3.40%, and 3.30%, respectively. Moreover, they improve the
F1 score with respect to the RGB model by 4.95%, 3.00%, and 3.49%,
respectively. Therefore, all the RGBP architectures have a notice-
able better performance than the RGBmodel and the corresponding
two-stream RGB architectures.
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Figure 7: Visualization of the feature maps from each block
of the pseudo depth model after 100, 1100, and 11100 itera-
tions, and the featuremaps from the depth andRGBmodels.

4.4 Comparison with Other Frameworks
We compare our RGBP framework with the other two frameworks
shown in Figure 1 (a), (b). We use the same pre-trained RGB and
depth models to implement MTUT [1] by ourselves, and we train it
with the standardAdadelta optimizer on our Elevator RGBDDataset.
We choose the state-of-the-art depth estimation model [29] on the
NYU-Depth V2 dataset [34] and combine it with our three RGBD
architectures. The inputs of this depth estimation model are RGB
videos, and its output predictions are put into the depth streams of
our three RGBD architectures. Then, these three RGBDs models are
finetuned for 2200 iterations with a learning rate of 10−4, whose
results are shown in the rows of 𝐷𝐸𝐿𝑎𝑡𝑒 , 𝐷𝐸𝐶𝑒𝑛𝑡𝑒𝑟 , and 𝐷𝐸𝐿𝑒𝑓 𝑡 ,
respectively. Table 5 lists the performance of these two frameworks
on the Elevator RGBD Dataset and the best performance of our
RGBP framework. It shows that our RGBP framework improves
the accuracy by 1.78% with respect to the MTUT model and 2.43%
with respect to 𝐷𝐸𝐿𝑎𝑡𝑒 . Moreover, our RGBP framework improves
the F1 score by 2.20% with respect to the MTUT model and 2.73%
with respect to 𝐷𝐸𝐿𝑎𝑡𝑒 .

As shown in Figure 1 (a), the 𝐷𝐸𝐿𝑎𝑡𝑒 , 𝐷𝐸𝐶𝑒𝑛𝑡𝑒𝑟 , and 𝐷𝐸𝐿𝑒𝑓 𝑡 use
the depth data for training and the estimated depth data for infer-
ence. Therefore, part of the final prediction error is contributed by
the error coming with the estimated depth data. As shown in Table
5, the performance of 𝐷𝐸𝐿𝑎𝑡𝑒 and 𝐷𝐸𝐶𝑒𝑛𝑡𝑒𝑟 are relatively more
robust to the error in the estimated depth. One reason accounting
for this is that the four RGB blocks in 𝑅𝐺𝐵𝐷𝐿𝑎𝑡𝑒 and 𝑅𝐺𝐵𝐷𝐶𝑒𝑛𝑡𝑒𝑟

provide better representations of the input data, which thus neutral-
ize the error in the estimated depth inputs. However, in 𝑅𝐺𝐵𝐷𝐿𝑒𝑓 𝑡 ,
the features from the depth model are concatenated with those
from the RGB model as early as after the second block. Therefore,
the error in the depth inputs can influence a large portion of the
RGBD model, resulting in poor performance of the 𝐷𝐸𝐿𝑒𝑓 𝑡 .

5 CONCLUSION
In this work, we present the RGBP framework, a new method for
"multimodal training and unimodal inference," which takes RGB
data alone as input while can make a prediction based on both
the RGB features and the predicted depth features. The proposed

Table 4: Performance of different RGBP architectures and
the comparison with corresponding RGBD architectures.
The 𝐴𝑣𝑔 𝑇𝑖𝑚𝑒 represents the averaged inference time on
Nvidia GTX-1080Ti.

Method Acc. F1 score Avg Time FLOPs
RGB model 83.12 82.69 7.31ms 3.97G
𝑅𝐺𝐵𝐷𝐿𝑎𝑡𝑒 89.08 88.87 14.23ms 7.22G
𝑅𝐺𝐵𝑃𝐿𝑎𝑡𝑒 87.83 87.64 14.95ms 7.94G

𝑅𝐺𝐵𝐷𝐶𝑒𝑛𝑡𝑒𝑟 88.37 87.97 38.99ms 28.17G
𝑅𝐺𝐵𝑃𝐶𝑒𝑛𝑡𝑒𝑟 86.52 85.69 43.34ms 28.89G
𝑅𝐺𝐵𝐷𝐿𝑒𝑓 𝑡 87.85 87.53 15.66ms 7.58G
𝑅𝐺𝐵𝑃𝐿𝑒𝑓 𝑡 86.42 86.18 15.57ms 8.29G

Table 5: Comparison of our RGBP frameworks with other
frameworks on the Elevator RGBD Dataset.

Method Acc. F1 score Avg Time FLOPs
MTUT 86.05 85.44 7.31ms 3.97G
𝐷𝐸𝐿𝑎𝑡𝑒 85.40 84.91 1068.64ms 604.84G
𝐷𝐸𝐶𝑒𝑛𝑡𝑒𝑟 85.17 84.64 1093.20ms 625.79G
𝐷𝐸𝐿𝑒𝑓 𝑡 70.56 69.72 1069.87ms 605.19G

𝑅𝐺𝐵𝑃𝐿𝑎𝑡𝑒 (Ours) 87.83 87.64 14.95ms 7.94G

method aims at utilizing rich training data to improve the model
performance in the case of limited data, which is valuable in many
practical applications. In future work, the proposed technique for
generating pseudo depth features from RGB data is expected to
applications beyond the current elevator scenario and abnormal
event recognition domain.
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