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Abstract—In this paper, we describe our submitted DKU-
Tencent system for the oriental language recognition AP18-
OLR Challenge. Our system pipeline consists of three main
components, including data augmentation, frame-level feature
extraction, and utterance-level modeling. First, we perform speed
perturbation to increase the diversity and amount of training
data. Second, we extract several kinds of frame-level features,
including the hand-crafted acoustic features as well as the deep
phonetic features. Third, we aggregate the frame-level features
into fixed-dimensional utterance-level representation through i-
vector and x-vector modelings. We also propose a deep residual
network to obtain the utterance-level language posteriors in
an end-to-end manner. Our submitted primary system achieves
Cavg of 0.0499, 0.0146, and 0.0135 for the corresponding short-
utterance, confusing language and open-set tasks on the evalua-
tion set.

I. INTRODUCTION

Language identification (LID) can be considered as a task
of utterance-level speech attribute recognition whose goal is
to identify the language category of a given variable-length
speech. Different from the “sequence-to-sequence” tagging
tasks like speech recognition, LID is a “sequence-to-one”
summary task, which requires us to consider the entire audio
content for decision.

To further boost the research and improve the techniques on
LID, the center for speech and language technologies (CSLT)
at Tsinghua University organizes the series Oriental Language
Recognition (OLR) Challenge [1–3]. In this year, the organiz-
ers put forward three challenging tasks in LID, including short-
utterance identification, confusing-language identification, and
open-set recognition [3].

The performance of the LID system for short utterances
usually degrades severely due to the insufficiency of language
information in short audio segments. Short-utterance identifi-
cation task focuses on this problem and provides the evaluation
utterances as short as one second long. Confusing-language
identification task requires us to develop systems identifying
three confusing languages, containing Cantonese, Korean, and
Mandarin. In real-world scenarios, sometimes we also need
to reject speech from out of set languages in the open-set
recognition task [3].

Generally, the focus of the LID task is to find out the
discriminative and robust utterance-level representation for the
variable-length audio sequence. The LID processing pipeline

usually contains the following steps, including frame-level
feature extraction, utterance modeling, and classification.

Given the raw waveform, considering the quasi-stationary
property of speech, we typically convert it into a frame-
level feature sequence. Several hand-crafted acoustic level
features, such as log mel-filterbank energies (Fbank), mel-
frequency cepstral coefficient (MFCC), perceptual linear pre-
diction (PLP) [4], or shifted delta coefficients (SDC) fea-
tures [5] are commonly adopted. We can also extract the
phonetic features automatically from the phoneme decoder
trained with deep neural network (DNN). The phonetics fea-
tures include the bottleneck feature [6], the phoneme posterior
probability (PPP) feature [7], and the tandem feature [8].

The feature sequence only describes the local frame-level
pattern. The remaining question is how to aggregate the feature
sequence into a global utterance-level representation. One of
the most popular representative approaches is i-vector model-
ing. Variable-length speech utterances can be transformed into
fixed-dimensional supervectors by accumulating the sufficient
statistics over time, and then projected into a low-dimensional
i-vector representation [9–11]. The process to extract the i-
vector representation covers a series of separated models,
and they are commonly trained in an unsupervised manner.
In recent years, due to the excellent performance of deep
learning approaches, many supervised methods managed to
discriminate between language categories [12–15] directly.
Among them, the x-vector [15] modeling based on the time-
delay neural network (TDNN) [16] has become popular due
to its superior performance. Recently, Cai et al. has built a
deep residual network (ResNet) architecture for end-to-end
LID, and yielded state-of-the-art performance [17–19].

After i-vectors and x-vectors are extracted, back-end clas-
sifiers such as logistic regression (LR) [20], support vector
machine (SVM) [21] are employed to do the final decisions.
For the deep ResNet methods, the final fully-connected layers
can act as a classifier, and the utterance-level decision can be
directly generated from the network output [19].

In AP18-OLR challenge, our primary system is built upon
different types of frame-level features, including MFCC,
Fbank, Bottleneck, PPP, and Tandem features. To extract
utterance-level representations and make the final decisions,
we adopt several kinds of utterance-level modeling schemes,
including i-vector modeling, x-vector modeling, and end-to-
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Fig. 1. The Process of extracting the PPP, BNF, Tandem features.

end ResNet modeling.
Our paper is organized as followed. Section 2 presents the

data augmentation strategy. Section 3 introduces the frame-
level features extraction computed in our system, and section
4 describes the modeling algorithms. Our experiments and re-
sults are presented in section 5, and the final section concludes
the paper.

II. DATA AUGMENTATION

Data augmentation is a common scheme to increase the
quantity of training data and improve the robustness of the
machine learning system. Recently, following the x-vector
system [15], many works in speaker and language community
prefer to augment the training data with additive noise and
simulated room impulse responses (RIRs) [22]. However, it
relies on additional noise source dataset, which is not allowed
for the challenge.

To comply with the requirements of the fixed training con-
dition of the evaluation, we adopt a simple speed perturbation
strategy to augment the training set. Speed perturbation [23]
is proven to be an effective augmentation method in speech
recognition. It is easily implemented and does not need to
rely on any external data. Following [23], in this challenge,
we adopt speed perturbation with factor 0.9, 1.0, and 1.1 to
augment the training data. We pool all of them together and
obtain training data three times larger than the original one.

III. FRAME-LEVEL FEATURE EXTRACTION

This section describes our frame-level features in our sys-
tem, including the hand-crafted acoustic features like MFCC,
Fbank, and the phoneme discriminant features learned from
DNN such as PPP, BNF, Tandem features. The extraction of
deep phonetic features is illustrated in Fig. 1.

A. MFCC feature

A 25 ms window with 10 ms shifts is applied to compute the
20-dimensional MFCCs and their first and second derivatives.

The filter banks are selected within the range of 20 to 7600
Hz. A simple energy-based voice activity detector (VAD),
which classifies a frame as speech or non-speech based on
the average log-energy with a given window centered at the
current frame, is used. Before VAD, a short-time cepstral mean
subtraction (CMS) is applied on the MFCC features over a 3-
second sliding window.

B. Fbank feature

To get MFCCs, we need to perform the discrete cosine
transform (DCT) operation on the Fbank features. Compared
with the Fbank, MFCC is much more compressible and a bit
more decorrelated, which is beneficial for linear models like
Gaussian mixture models (GMMs).

However, for the end-to-end DNN modeling, especially for
the convolutional neural network (CNN), the correlated infor-
mation might be helpful. Therefore, our end-to-end ResNet
system adopts Fbank feature as input. Each utterance is
converted to 64-dimensional Fbank with a frame length of
25 ms. A short-time CMS is applied over a 3-second sliding
window, and an energy-based VAD is used to drop the non-
speech frames.

C. PPP feature

The PPP feature extractor utilizes a phoneme recognizer
trained with the Chinese corpus, Thchs30 dataset [24]. First,
we extract the 39-dimensional MFCC feature for each ut-
terance to train GMM-HMM acoustic models. Then, the
alignment of tri-phones is generated with the GMM-HMM
model for each utterance. With the alignments, we train a DNN
acoustic model with 3328 tied tri-phones states (or senones).
The PPP feature is a low-dimensional representation of the
frame-level phoneme posterior probability. After logarithm and
Principal Component Analysis (PCA), we get the resulted 52-
dimensional PPP features.
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Fig. 2. Structures of the x-vector system and ResNet system.

D. Tandem feature

The resulted 52-dimensional PPP feature is fused with
the 60-dimensional MFCC at the feature level to get the
112-dimensional tandem feature. Then a short-time CMS is
computed followed by an energy-based VAD.

E. Bottleneck feature

The same as the process in the PPP feature extraction, a
DNN acoustic model is trained on Thchs30 dataset. The BNF
is directly extracted from the bottleneck layer of the DNN
acoustic model rather than the output layer.

IV. UTTERANCE-LEVEL MODELING

We adopt three utterance-level modeling schemes for LID,
including i-vector modeling, x-vector modeling, and end-to-
end ResNet modeling. LR follows i-vector and x-vector ex-
traction to produce final decisions, and the end-to-end ResNet
directly generate the posteriors for each language from its
output layer. The x-vector modeling and ResNet modelings
are detailedly illustrated in Fig. 2.

A. i-vector + LR

I-vector system, which is the baseline system in OLR2018,
has long dominated the speaker recognition task as well as
the LID task for its excellent performance and high-efficiency
[9, 10].

To train an i-vector extractor [8, 25], first, a 2048 com-
ponents UBM model is trained on the MFCC, PPP, Tandem
or BNF features with diagonal covariance matrices at the
beginning. Then, with the initialization of the diagonal UBM,
we train a full covariance UBM of 2048 components. The
zero-order and first-order Baum-Welch statistics are computed
on the UBM for each recording to obtain a supervector.

Moreover, to reduce the dimensionality of supervectors, single
factor analysis is employed to extract 600-dimensional i-
vectors.

After the utterance-level i-vectors are extracted, a general
logistic regression (LR) model is trained to get the utterance-
level decisions.

B. x-vector + LR

The x-vector system [15] is developed using the data recipe
available at Kaldi.

For the acoustic features, we extract 23-dimensional MFCC
features (including c0) from 25 ms frames with a shift of
10 ms using a 23-channel mel-scale filter bank spanning the
frequency range of 20 Hz to 7600 Hz. Besides the hand-crafted
acoustic features, we also extract phoneme features including
BNF and PPP feature for x-vector model training.

For x-vector extraction, a TDNN (Time-Delay Neural Net-
work) is trained to discriminate among ten languages in the
training set. The first five hidden layers, which are time
delayed layers, operate at frame-level. Then a statistics pooling
layer is employed to compute the mean and standard deviation
over all frame-level outputs for each input segment. The
resulted segment-level representations are then fed into two
fully connected layers to classify the languages labels. After
training, utterance-level x-vectors are extracted from the 512-
dimensional affine component of the first fully-connected
layer. Finally, an LR model is trained to obtain the final
posteriors for each utterance.

C. End-to-end ResNet

Our end-to-end network structure is the same as [19] and is
trained to identify ten target languages directly. The procedure



TABLE I
OUR END-TO-END RESNET MODEL ARCHITECTURE.

Layer Output size Structure #Params
Conv1 16×64×T 3×3, stride 1 176

Res1 16×64×T
[

3×3, 16
3×3, 16

]
×3 , stride 1 14K

Res2 32×32× T
2

[
3×3, 32
3×3, 32

]
×4 , stride 2 70K

Res3 64×16× T
4

[
3×3, 64
3×3, 64

]
×6 , stride 2 427K

Res4 128×8× T
8

[
3×3, 128
3×3, 128

]
×3 , stride 2 821K

GAP 128 Global average pooling 0
FC 64 Fully-connected 8K

Output 10 Fully-connected 650

can be divided into three main components, local pattern
extractor, global average pooling, and classifier.

1) Local pattern extractor: Deep Convolutional Neural
Network (DCNN) structure can capture the high-level abstract
patterns from local feature descriptors. Our DCNN structure
is based on the well known ResNet-34 [26] architecture
illustrated in Table I. It learns high-level features from frame-
level Fbank, PPP, and Tandem features.

2) Global average pooling: The output of pattern extractor
is still variable, and temporal pooling is necessary for generat-
ing utterance-level features. A global average pooling (GAP)
layer [27] is then designated on top of our DCNN structure
and transforms the local feature maps into a 256-dimensional
utterance-level representation.

The GAP layer takes the means along with the time-
frequency axis to accumulate the statistics. Given an output
feature map F from the pattern extractor with the size of
C × H × W , the accumulating process can be formulated
as:

uk =
1

H ×W
×

i=1∑
H

j=1∑
W

Fi,j,k, (1)

where k ∈ [1, C]. With this structure, we can obtain a fix-
dimensional utterance-level feature u = [u1, u2, . . . , uC ] of
each audio sample for further classification.

3) Classifier: The utterance-level representation is then
processed by two fully-connected layers and finally connected
with an activation output layer. Each unit in the output layer is
represented as a target language category. This structure acts
as a back-end classifier and directly gives the final decisions.

V. EXPERIMENTS

A. Dataset and metric

For the training data, we have AP16-OL7, AP17-OL3,
including AP16-OL7-train, AP16-OL7-dev, AP16-OL7-test,
AP17-OL3-train, and AP17-OL3-dev. There are 72234 utter-
ances and ten target languages [3].

We leave AP17-OLR-test as our development set, and there
are 22051 utterances. The dataset contains audio files with
different durations of 1 second and full length.

TABLE II
AP18-OLR DEVELOPMENT SET PERFORMANCE

Feature type Modeling Cavg× 100
Full-length 1 second

MFCC i-vector + LR 3.58 14.23
PPP i-vector + LR 2.23 14.54

Tandem i-vector + LR 2.77 13.21
BNF i-vector + LR 3.17 20.74

MFCC x-vector + LR 3.45 11.85
PPP x-vector + LR 1.78 11.47
BNF x-vector + LR 1.97 15.48

Fbank ResNet 4.63 8.98
PPP ResNet 1.49 11.02

Tandem ResNet 2.08 9.62

Fusion 0.85 5.76

TABLE III
AP18-OLR EVALUATION SET PERFORMANCE

Task Cavg × 100

Short-utterance identification task 4.99
Confusing-language identification task 1.42
Open-set recognition task 1.35

In our ResNet system, all the components in the pipeline
are jointly learned in an end-to-end manner with a softmax
classifier based cross-entropy loss. The model is trained with a
mini-batch size of 256. The network is trained using standard
stochastic gradient descent with momentum 0.9 and weight
decay 1e-4. The learning rate is set to 0.1, 0.01, 0.001, and
is switched when the training loss plateaus. The training is
finished at 30 epochs. Since we have no separated validation
set, the converged model after the last optimization step is
used for evaluation. For each training step, an integer L within
[100, 700] interval is randomly generated, and each data in
the mini-batch is cropped or extended to L frames. After
model have been trained, the utterance-level posteriors can be
directly computed from the output layer of the neural network
for the given variable-length frame-level acoustic or phoneme
features.

The primary evaluation metric in OLR2018 are Cavg [3]
which is calculated by

Cavg =
1

N

∑
Lt

{PTargetPMiss

+
∑
Ln

PNon−TargetPFA(Lt, Ln)}.
(2)

N denotes the number of language. PTarget is the prior
probability of the target language and PNon−Target is com-
puted by PNon−Target = (1− PTarget)/(N − 1). Lt and Ln

are the target and non-target language. PMiss and PFA refer
to the missing rate and false alarm probability.

B. Performance and Analysis

The system performance on the development set is shown
in Table II.



From the perspective of modeling methods, we find that
the ResNet model with PPP features achieves the best per-
formance. The x-vector system obtains lower Cavg than the
i-vector system on MFCC, PPP and BNF respectively. For
full-length audio data, the i-vector system reaches a relatively
satisfying performance while in the scenario of short utterance,
its performance degrades. It shows that the traditional i-vector
method is more suitable for long duration tasks. The end-
to-end ResNet and x-vector system show much better results
in short utterance than the i-vector system, which means the
neural network modeling is less sensitive to the length of the
audio sequence and more robust.

Among different input features, the phoneme discriminant
features automatically learned from DNN, including PPP and
BNF, show excellent performance in the scenario of full-
length utterances. The results reveal that phonetic information
is effective in LID task. We could also find that PPP features
perform better than BNF features. Although the traditional
acoustic features like MFCC and Fbank receive higher Cavg

in full-length, they are still competitive in short utterance
scenario. Our end-to-end ResNet system with Fbank achieves
the best performance in the 1-second development set.

We can observe from the results that, in the full-length
task, phonetic information is dominant and brings superior
performance. And in the 1-second task, traditional acoustic
features are more informative than phoneme features. The
tandem feature fused by MFCC and PPP feature is stable and
robust in both full-length and 1-second scenario.

We evaluate our system performance and fusion parameters
on the development set. Then with the fusion parameters, we
pool all the training and development data together and re-train
all the sub-system again. For evaluation, score-level fusion is
further used to combine the utterance-level sub-system scores
into our final submission. The fusion parameters are calibrated
using the FoCal Multi-class toolkit [28]. The performance on
the evaluation set of three tasks are shown in Table III. The
results show that our system is robust and stable in short-
utterance identification, confusing-language identification, and
open-set recognition tasks.

VI. CONCLUSION

This paper presents our DKU-Tencent system for OLR2018.
We extract MFCC, Fbank, PPP, BNF, and Tandem features as
our input frame-level features. As for modeling, we employ i-
vector/x-vector + LR as well as the end-to-end ResNet system.
Results show that the x-vector and ResNet system obtain better
performance than the baseline i-vector system. We also find
that systems with phoneme features learned by DNN generate
excellent results in full-length task and models trained with the
traditional acoustic features achieve competitive performance
in the short utterance scenario.
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