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Abstract
This report describes the submission of the DKU-DukeECE
team to the self-supervision speaker verification task of the
2021 VoxCeleb Speaker Recognition Challenge (VoxSRC).
Our method employs an iterative labeling framework to learn
self-supervised speaker representation based on a deep neu-
ral network (DNN). The framework starts with training a self-
supervision speaker embedding network by maximizing agree-
ment between different segments within an utterance via a con-
trastive loss. Taking advantage of DNN’s ability to learn from
data with label noise, we propose to cluster the speaker embed-
ding obtained from the previous speaker network and use the
subsequent class assignments as pseudo labels to train a new
DNN. Moreover, we iteratively train the speaker network with
pseudo labels generated from the previous step to bootstrap the
discriminative power of a DNN. Also, visual modal data is in-
corporated in this self-labeling framework. The visual pseudo
label and the audio pseudo label are fused with a cluster ensem-
ble algorithm to generate a robust supervisory signal for repre-
sentation learning. Our submission achieves an equal error rate
(EER) of 5.58% and 5.59% on the challenge development and
test set, respectively.
Index Terms: speaker recognition, self-supervised learning,
multi-modal

1. Introduction
This report describes the submission of the DKU-DukeECE
team to the self-supervision speaker verification task of the
2021 VoxCeleb Speaker Recognition Challenge (VoxSRC).

In our previous work on self-supervised speaker represen-
tation learning [1], we proposed a two-stage iterative labeling
framework. In the first stage, contrastive self-supervised learn-
ing is used to pre-training the speaker embedding network. This
allows the network to learn a meaningful feature representa-
tion for the first round of clustering instead of random initial-
ization. In the second stage, a clustering algorithm iteratively
generates pseudo labels of the training data with the learned
representation, and the network is trained with these labels in a
supervised manner. The clustering algorithm can discover the
intrinsic structure of the representation of the unlabeled data,
providing meaningful supervisory signals comparing to con-
trastive learning which draws negative samples uniformly from
the training data without label information. The idea behind the
proposed framework is to take advantage of the DNN’s ability
to learn from data with label noise and bootstrap its discrimina-
tive power.

In this work, we extend this iterative labeling framework
to multi-modal audio-visual data, considering that complemen-
tary information from different modalities can help the cluster-
ing algorithm generate more meaningful supervisory signals.

Specifically, we train a visual representation network to en-
code face information using the pseudo labels generated by au-
dio data. With the resulted visual representations, clustering is
performed to generate pseudo labels for visual data. Then, we
employ a cluster ensemble algorithm to fuse pseudo-labels gen-
erated by different modalities. This fused pseudo-label is then
used to train speaker and face representation networks. With
the clustering ensemble algorithm, information in one modal-
ity can flow to the other modality, providing more robust and
fault-tolerant supervisory signals.

2. Methods
This section describes the proposed iterative labeling frame-
work for self-supervised speaker representation learning us-
ing multi-modal audio-visual data. We illustrate the proposed
framework in figure 1.

• Stage 1: contrastive training

– Train an audio encoding network using contrastive
self-supervised learning.

– With this encoding network, extract representa-
tions for the audio data. Perform a clustering al-
gorithm on these audio representations to generate
pseudo labels.

• Stage 2: iterative clustering and representation learning

– With the generated pseudo labels, train audio and
visual encoding network independently in a super-
vised manner.

– With the audio encoding network, extract audio
representations and perform clustering to generate
audio pseudo labels.

– With the visual encoding network, extract visual
representations and perform clustering to generate
visual pseudo labels.

– Fuse the audio and visual pseudo labels using a
cluster ensemble algorithm.

– Repeat stage 2 with limited rounds.

2.1. Contrastive self-supervised learning

We employ the contrastive self-supervised learning (CSL)
framework similar to the framework in [2, 3] to learn an ini-
tial audio representatoion. Let D = {x1, · · · ,xN} be an un-
labeled dataset with N data samples, CSL assumes that each
data sample defines its own class and perform instance discrim-
ination. During training, we randomly sample a mini-batch
B = {x1, · · · ,xM} of M data samples from D. For data
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Figure 1: The proposed iterative framework for self-supervised speaker representation learning using multi-modal data.

point xi, stochastic data augmentation is performed to gener-
ate two correlated views, i.e., x̃i,1 and x̃i,2, resulting 2M data
points in total for a mini-batch. Two different audio segments
are randomly cropped from the original audio before data aug-
mentation. x̃i,1 and x̃i,2 are considered as a positive pair and
other 2(M − 1) data points {x̃j,k|j 6= i, k = 1, 2} are negative
examples for x̃i,1 and x̃i,2.

During training, a neural network encoder Φ extracts repre-
sentations for the 2M augmented data samples,

zi,j = Φ(x̃i,k), k ∈ {1, 2} (1)

After that, contrastive loss identifies the positive example
x̃i,1 (or x̃i,2) among the negative examples {x̃j,k|j 6= i, k =
1, 2} for x̃i,2 (or x̃i,1). We adapt the contrastive loss from Sim-
CLR [2] as:

LCSL =
1

2M

M∑
i=1

(li,1 + li,2) (2)

li,j = − log
exp(cos(zi,1, zi,2)/τ)∑M

k=1

∑2
l=1 1k 6=i

l 6=j
exp(cos(zi,j , zk,l)/τ)

(3)

where 1 is an indicator function evaluating 1 when k 6= i and
l 6= j, cos denotes the cosine similarity and τ is a temperature
parameter to scale the similarity scores. li,j can be interpreted
as the loss for anchor feature zi,j . It computes positive score
for positive feature zi,(j+1)mod2 and negative scores across all
2(M − 1) negative features {zk,j |k 6= i, j = 1, 2}.

2.2. Generating pseudo labels by clustering

2.2.1. K-means clustering

Given the learned representations of the training data, we em-
ploy a clustering algorithm to generate cluster assignments and
pseudo labels. In this paper, we use the well-known k-means
algorithm because of its simplicity, fast speed, and capability
with large datasets.

Let the learnt representation in d-dimensional feature space
z ∈ Rd, k-means learns a centroid matrix C ∈ Rd×K and the
cluster assignment yi ∈ {1, · · · ,K} for representation zi with
the following learning objective

min
C

1

N

N∑
i=1

min
yi
‖zi −Cyi‖

2
2 (4)
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Figure 2: Within-cluster sum of square W of a clustering pro-
cedure versus the number of clusters K employed.

where Cyi is the yth
i column of the centroid matrix C. The

optimal assignments {y1, · · · , yN} are used as pseudo labels.

2.2.2. Determine the number of clusters

To determine the optimal number of clusters, we employ the
simple ‘elbow’ method. It calculates the total within-cluster
sum of squaresW for the clustering outputs with different num-
bers of clusters K:

W =

N∑
i=1

‖zi −Cyi‖
2
2 (5)

The curve of the total within-cluster sum of squares W is plot-
ted according to a sequence of K in ascending order. Figure 2
shows an example of such a curve. W decreases asK increases,
and the decrease of W flattens from some K onwards, forming
an ‘elbow’ of the curve. Such ‘elbow’ indicates that additional
clusters beyond such K contribute little intra-cluster variation;
thus, the K at the ‘elbow’ indicates the appropriate number of
clusters. In figure 2, the number of clusters can choose between
5000 to 7000.

This ‘elbow’ method is not exact, and the choice of the op-
timal number of clusters can be subjective. Still, it provides



a meaningful way to help to determine the optimal number
of clusters. A mathematically rigorous interpretation of this
method can be found in [4].

2.3. Learning with pseudo labels

Given a multi-modal dataset with audio-modalityDa = {xa,1,
xa,2, · · · ,xa,N} and visual-modality Dv = {xv,1,xv,2, · · · ,
xv,N}, an audio encoder Φa and a visual encoder Φv are dis-
criminatively trained with an audio classifier gWa(·) and a vi-
sual classifier gWv (·) respectively using the generated pseudo
labels {y1, · · · , yN}. For each modality, the representation can
be extracted as

za = Φa(xa)

zv = Φv(xv)
(6)

For a single modality, the parameters {Φa,Wa} or
{Φv,Wv} are jointly trained with the cross-entropy loss:

Lclassifier = −
N∑
i=1

K∑
k=1

log (p(k|xi)q(k|xi)) (7)

p(k|xi) =
exp(gWk(zi))∑K
j=1 exp(gWj(zi))

(8)

where q(k|xi) = δk,yi is the ground-truth distribution over
labels for data sample xi with label yi, δk,yi a Dirac delta
which equals to 1 for k = yi and 0 otherwise, gWj(zi) is
the jth element (j ∈ {1, · · · ,K}) of the class score vector
gW (zi) ∈ RK , K is the number of the pseudo classes.

2.4. Clustering audio-visual data

Clustering on the audio representations {za,i|i = 1, · · · , N}
and the visual representations {zv,i|i = 1, · · · , N} gives audio
pseudo labels {ya,i|i = 1, · · · , N} and visual pseudo labels
{yv,i|i = 1, · · · , N} respectively.

Considering that the audio and the visual representations
contain complementary information from different modalities,
we apply an additional clustering on the joint representations
to generate more robust pseudo labels. Given the audio repre-
sentation za and the visual representation zv , concatenating za
and zv gives the joint representation z = (za, zv). The pseudo
labels {y,i|i = 1, · · · , N} is then generated by clustering on
joint representations.

2.5. Cluster ensemble

We use simple voting strategy [5, 6] to fuse the three clustering
outputs, i,e., {ya,i}, {yv,i} and {y,i}. Since the cluster labels
in different clustering outputs are arbitrary, cluster correspon-
dence should be established among different clustering outputs.
This starts with a contingency matrix Ω ∈ RK×K for the refer-
enced clustering output {yref,i} and the current clustering out-
put {ycur,i}, whereK is the number of clusters. Each entry Ωl,l′

represents the co-occurence between cluster l of the referenced
clustering output and cluster l′ of the current clustering output,

Ωl,l′ =

N∑
i=1

ω(i), ω(i) =

{
1 yref,i = l, ycur,i = l′

0 otherwise
(9)

Cluster correspondence is solved by the following optimization
problem,

max
Θ

K∑
l=1

K∑
l′=1

Ωl,l′Θl,l′ (10)

where Θ ∈ RK×K is the correspondence matrix for the two
clustering outputs. Θl,l′ equals to 1 if cluster l in the reference
clustering output corresponds to cluster l′ in the current cluster-
ing output, 0 otherwise. This optimization can be solved by the
Hungarian algorithm [7].

We select the joint pseudo labels as the reference clustering
output and calculate cluster correspondence for the audio and
visual pseudo labels. A globally consistent label set is obtained
after the re-labeling process. Majority voting is then employed
to determine a consensus pseudo label for each data sample in
the multi-modal dataset.

2.6. Dealing with label noise: label smoothing regulariza-
tion

One problem with the generated pseudo labels is label noise
which degrades the generalization performance of deep neural
networks. We apply label smoothing regularization to estimate
the marginalized effect of label noise during training. It pre-
vents a DNN from assigning full probability to the training sam-
ples with noisy label [8, 9]. Specifically, for a training example
x with label y, label smoothing regularization replaces the label
distribution q(k|x) = δk,y in equation (7) with

q′(k|x) = (1− ε)δk,y +
ε

K
(11)

where ε is a smoothing parameter and is set to 0.1 in the exper-
iments.

3. Experiments
3.1. Dataset

The experiments are conducted on the development set of Vox-
celeb 2, which contains 1,092,009 video segments from 5,994
individuals [10]. Speaker labels are not used in the proposed
method. For evaluation, the development set and test set of
Voxceleb 1 are used [11]. For each video segment in VoxCeleb
datasets, we extracted image six frames per second.

3.2. Data augmentation

3.2.1. Data augmentation for audio data

Data augmentation is proven to be an effective strategy for both
conventional learning with supervision [12] and contrastive
self-supervision learning [13, 14, 2] in the context of deep learn-
ing. We perform data augmentation with MUSAN dataset [15].
The noise type includes ambient noise, music, and babble noise
for the background additive noise. The babble noise is con-
structed by mixing three to eight speech files into one. For
the reverberation, the convolution operation is performed with
40,000 simulated room impulse responses (RIR) in MUSAN.
We only use RIRs from small and medium rooms.

With contrastive self-supervised learning, three augmenta-
tion types are randomly applied to each training utterance: ap-
plying only noise addition, applying only reverberation, and ap-
plying both noise and reverberation. The signal-to-noise ratios
(SNR) are set between 5 to 20 dB.

When training with pseudo labels, data augmentation is per-
formed at a probability of 0.6. The SNR is randomly set be-
tween 0 to 20 dB.

3.2.2. Data augmentation for visual data

We sequentially apply these simple augmentations for the visual
data: random cropping followed by resizing to 224× 224, ran-



Table 1: Speaker verification performance (EER[%]) on Voxceleb 1 test set. The NMIs of the pseudo labels for each iteration are also
reported.

Model audio NMI audio EER visual NMI visual EER fused label NMI

Fully supervised 1 1.51 - - -

Initial round (CSL) 0.75858 8.86 - - -
Round 1 0.90065 3.64 0.91071 5.55 0.95053
Round 2 0.94455 2.05 0.95017 2.27 0.95739
Round 3 0.95196 1.93 0.95462 1.78 0.95862
Round 4 - 1.81 - - -

Table 2: Speaker verification performance on VoxSRC 2021 de-
velopment and test set.

original score after score norm
minDCF EER[%] minDCF EER[%]

System 1 0.386 6.310 0.341 6.214
System 2 0.375 6.217 0.336 6.057
System 3 0.392 6.224 0.361 6.067
Fusion 0.344 5.683 0.315 5.578

Fusion (test) - - 0.341 5.594

dom horizontal flipping, random color distortions, random grey
scaling, and random Gaussian blur. The data augmentation is
performed at a probability of 0.6. We normalize each image’s
pixel value to the range of [−0.5, 0.5] afterward.

3.3. Network architecture

3.3.1. Audio encoder

We opt for a residual convolutional network (ResNet) to learn
speaker representation from the spectral feature sequence of
varying length [16]. The ResNet’s output feature maps are
aggregated with a global statistics pooling layer, which calcu-
lates means and standard deviations for each feature map. A
fully connected layer is employed afterward to extract the 128-
dimensional speaker embedding.

3.3.2. Visual encoder

We choose the standard ResNet-34 [17] as the visual encoder.
After the pooling layer, a fully connected layer transforms the
output to a 128-dimensional embedding.

3.4. Implementation details

3.4.1. Contrastive self-supervised learning setup

We choose a 40-dimensional log Mel-spectrogram with a 25ms
Hamming window and 10ms shifts for audio data for feature
extraction. The duration between 2 to 4 seconds is randomly
generated for each audio data batch.

We use the same network architecture as in [12] but with
half feature map channels. ReLU non-linear activation and
batch normalization are applied to each convolutional layer in
ResNet. Network parameters are updated using Adam opti-
mizer [18] with an initial learning rate of 0.001 and a batch size
of 256. The temperature τ in equation (3) is set as 0.1.

3.4.2. Clustering setup

The cluster number is set to 6,000 for k-means based on the
‘elbow’ method described in section 2.2.2. The W -K curve
shown in figure 2 is based on the audio representation learned
with contrastive loss. With the dataset size of 100,000, we range
the number of clusters K from 1,000 to 20,000, considering the
average cluster size ranging from 50 to 1,000.

3.4.3. Setup for supervised training

For the audio data, we extract 80-dimensional log Mel-
spectrogram as input features. The duration between 2 to 4
seconds is randomly generated for each audio data batch. The
architecture of the audio encoder is the same as the one used
in[12].

For both audio and visual encoders, dropout is added be-
fore the classification layer to prevent overfitting [19]. Network
parameters are updated using the stochastic gradient descent
(SGD) algorithm. The learning rate is initially set to 0.1 and
is divided by ten whenever the training loss reaches a plateau.

3.5. Robust training on final pseudo labels

Our final submission consists of three systems trained on the
final pseudo labels.

• System 1: the network architecture is the same as the
self-labeling framework; label smoothing regularization
is applied.

• System 2: Squeeze-Excitation (SE) module [20] is added
to the network in the self-labeling framework, AAM-
softmax [21] loss is used to train the network.

• System 3: same as system 2; the single-speaker audio
segment information is used to improve the final pseudo
label: the mode label is used as the final label of the
single-speaker audio segment.

3.6. Score normalization

After scoring with cosine similarity, scores from all trials are
subject to score normalization. We utilize Adaptive Symmet-
ric Score Normalization (AS-Norm) in our systems [22]. The
number of the cohort is 300 for all systems.

3.7. Experimental results

Table 1 shows the results of each clustering iteration on Vox-
celeb 1 original test set. Normalized mutual information (NMI)
is used as a measurement of clustering quality. With four rounds
of training, our method obtains an EER of 1.81%.

Table 2 shows the results of our submission system on the
VoxSRC 2021 development and test set.
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