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Abstract
This report describes the submission of the DKU-DukeECE-
Lenovo team to the VoxCeleb Speaker Recognition Challenge
(VoxSRC) 2021 track 4. Our system includes a voice activ-
ity detection (VAD) model, a speaker embedding model, two
clustering-based speaker diarization systems with different sim-
ilarity measurements, two different overlapped speech detec-
tion (OSD) models, and a target-speaker voice activity detection
(TS-VAD) model. Our final submission, consisting of 5 inde-
pendent systems, achieves a DER of 5.07% on the challenge
test set.
Index Terms: Speaker Diarization, Target-Speaker Voice Ac-
tivity Detection

1. Introduction
As the speaker embedding becomes more and more robust,
the conventional diarization system also achieves good perfor-
mance since the speaker confusion has been significantly re-
duced. To further improve the performance and reduce diariza-
tion error rate (DER), many researches focus on overlapped
speech detection (OSD) to reduce the missed speaker error, in-
cluding speech separation [1], overlap detection [2], end-to-end
neural speaker diarization (EEND) [3] and target-speaker voice
activity detection (TS-VAD) [4].

We also explore many different OSD models in this chal-
lenge. First, a ResNet-based model with LSTM back-end is
employed for overlap detection, where the output is 1 for over-
lapped speech and 0 otherwise. Second, an x-vector- and
ResNet-based TS-VAD model is used to refine the output from
the conventional diarization systems. Finally, we propose a
2-speaker TS-VAD model for overlap detection, where a pair
of speaker embeddings are fed to the TS-VAD model, and the
overlapped speech regions between these two speakers are de-
tected. Compared with the original TS-VAD, this method is not
restricted to the number of speakers.

2. Dataset Description
Since our TS-VAD model takes a long time for inference, we
only use the last 46 recordings in the test dataset as our vali-
dation dataset, referred to as VAL46. The development dataset
with the remaining data in the test dataset is used as our devel-
opment dataset, which contains 402 recordings and is referred
to as DEV402. The detailed dataset used in this challenge for
each model include:

• Voice activity detection (VAD): AMI [5], ICSI [6], ISL
(LDC2004S05), NIST (LDC2004S09), SPINE1&2

(LDC2000S87, LDC2000S96, LDC2001S04,
LDC2001S06, LDC2001S08), AISHELL-4 [7],
DIHARD II [8] and DIHARD III [9] are the mixed
training set. DEV402 and VAL46 is used for fine-tuning
and validation, respectively.

• Speaker embedding: We use Voxceleb 1 & 2 [10] as the
training set.

• Agglomerative hierarchical clustering (AHC): We di-
rectly tune the parameters on DEV402.

• LSTM-based similarity measurement with spectral clus-
tering: We use the same dataset as VAD does.

• Overlap detection: We use DEV402 for training and
VAL46 for validation.

• 2-speaker TS-VAD & TS-VAD: These models are first
trained on the data simulated by Librispeech [11]. Then
we transfer the model to VoxConverse [12] dataset with
the data simulated by DEV402. Finally, we fine-tune the
model on DEV402 and validate it on VAL46.

• Data augmentation: We perform data augmentation with
MUSAN [13] and RIRs [14] corpus.

3. Detailed Model Configuration
The model architectures of VAD, overlap detection, and TS-
VAD are very similar, including a ResNet34 [15], a statistical
pooling layer, two BiLSTM [16] layers and two fully-connected
layers with sigmoid function. For ResNet34, the channel width
is {32, 64, 128, 256} with kernel size of 3. Each BiLSTM layer
contains 256 units per direction with a dropout rate of 0.1. The
two fully connected layers contain 128 and 1 unit, respectively.

3.1. VAD

We use a ResNet34 as the front-end model to extract the frame-
level feature map. Next, a statistical pooling layer is employed
on the feature map every S frames. Finally, two BiLSTM lay-
ers and two fully-connected layers with a sigmoid function pro-
duce the posterior probability of speech. In our experiments,
the input is 8s chunked wav, and the acoustic feature is 80-dim
log Mel-filterbank energies with a frame length of 25ms and a
frameshift of 10ms.

The model is first trained on the mixed training set for 100
epochs with a learning rate of 0.0001 and then fine-tuned on
DEV402 for 100 epochs with a learning rate of 0.00001 with
binary cross-entropy (BCE) loss and Adam optimizer. We train
four models with different S = {1, 2, 4, 8} to obtain the VAD
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Figure 1: The data simulation strategy for TS-VAD.

outputs with different resolutions. Finally, we average the out-
puts from these four models in frame level. The threshold for
speech decision is set to 0.6. Table 1 shows the false alarm (FA)
and miss detection (MISS) on VAL46.

Table 1: The false alarm (FA), miss detection (MISS) and accu-
racy of the VAD model

FA [%] MISS [%] Accuracy [%]

S=1 2.57 1.56 96.33
S=2 2.97 1.30 96.17
S=4 3.22 1.32 95.93
S=8 3.40 1.59 95.54
Fusion 2.37 1.66 96.43

3.2. Speaker Embedding

The ResNet34 structure is employed as the front-end pattern ex-
tractor, which learns a frame-level representation from the input
acoustic feature. A global statistic pooling (GSP) layer projects
the variable length input to the fixed-length vector. Next, a 128-
dim fully connected layer is adopted as the speaker embedding
layer. The ArcFace [17] (s=32,m=0.2) is used as a classifier.
The detailed configuration of the neural network is the same as
[18]. Table 2 shows the EER on the Voxceleb1 test set. The
input is 2∼4s chunked wav, and the acoustic feature is 80-dim
log Mel-filterbank energies with a frame length of 25ms and a
frameshift of 10ms.

Table 2: The EER of the speaker embedding model

Training data EER (%)

Voxceleb 2 1.23

3.3. Clustering-based System

3.3.1. AHC

We use a similar AHC method as [1] without speech separation.
First, speaker embeddings are extracted from the uniformly seg-
mented speech with a length of 1.28s and shift of 0.32s, and two
consecutive segments are merged into a longer segment if the
distance is greater than a segment threshold. The pairwise simi-
larity is measured by cosine distance. Next, we perform a plain
AHC on the similarity matrix with a relatively high stop thresh-
old to obtain the clusters with high confidence. These clusters
are split into “long clusters” and “short clusters” by the total du-
ration in each cluster, and the central embedding of each cluster
is the mean of all speaker embeddings in the cluster. Later, each

short cluster is assigned to the closest long cluster by the cosine
distance of central embedding. Finally, if a short cluster is too
different from all long clusters, which means that the distance
between them is lower than a speaker threshold, we treat it as a
new speaker.

All of these parameters are directly tuned on the DEV402
by grid search. In our experiments, the segment threshold is
0.54, the stop threshold is 0.62, the duration for classifying long
and short clusters is 6s, and the speaker threshold is 0.2.

3.3.2. LSTM-based Similarity Measurement with Spectral
Clustering

We use the same LSTM-based model as [19]. The model con-
sists of two BiLSTM and two fully connected layers with a sig-
moid function. Speaker embeddings are also extracted from the
uniformly segmented speech with a length of 1.28s and shift of
0.64s. Next, the speaker embedding sequence [x1,x2, ...,xn]
is concatenated with repeated xi as the input and produce the
i-th row of the affinity matrix S:

Si = [Si,1,Si,2, ...,Si,n] = f(

[
xi

x1

]
,

[
xi

x2

]
, ...,

[
xi

xn

]
), (1)

where f is the LSTM-based neural network, n is set to 64 in our
experiments. More details can be found in [20].

The model is trained on the mixed training set for 100
epochs and fine-tuned on DEV402 for 100 epochs. The model
is optimized with BCE loss and Adam optimizer with a learning
rate of 0.001. After obtaining the affinity matrix S, we employ
spectral clustering (SC) to get the final diarization results.

3.4. Overlap Detection

The overlap detection model and training process are the same
as that of the VAD model except for the training data, labels, and
resolutions. We train the overlap detection model on DEV402,
and we only average the outputs from two models with S =
{1, 2} since the overlapped regions are much shorter than the
speech regions in the VAD task. The label is 1 for overlapped
speech and 0 otherwise. After an overlapped region is detected,
we replace the label with two closest speakers near this region.
The threshold for overlap decision is set to 0.8. The input is
8s chunked wav, and the acoustic feature is 80-dim log Mel-
filterbank energies with a frame length of 25ms and a frameshift
of 10ms.

3.5. TS-VAD

3.5.1. Data Simulation

We simulate two 900-hour pre-training datasets. One is
simulated from LibriSpeech, and another is simulated from



Table 3: The performance of different speaker diarization systems. ∗Since the VAD model used in the 1st submissions is not well
trained, the improvement of DER compared with other systems may come from both overlap detection (OD) and VAD on the test set.

Model Submission VAL46 VoxSRC21 test set

DER[%] JER[%] DER[%] JER[%]

Baseline - - - 17.99 38.72

AHC + Oracle VAD - 2.61 21.93 - -
LSTM-SC + Oracle VAD - 3.16 28.04 - -

1 AHC 1∗ 4.42 26.42 6.77∗ 27.66∗

2 LSTM-SC - 4.97 31.04 - -
3 AHC + OD - 3.98 26.08 - -
4 LSTM-SC + OD - 4.58 30.70 - -
5 AHC + 2-spk TS-VAD as OD 4 3.96 25.82 5.45 27.55
6 LSTM-SC + 2-spk TS-VAD as OD - 4.56 30.51 - -
7 System 3 + TS-VAD - 4.53 28.39 - -
8 System 5 + TS-VAD - 4.51 28.33 - -

Fusion (3+4+7) 2 3.93 25.68 5.36 29.10
Fusion (3+4+5+7) 3 4.02 27.11 5.82 29.78
Fusion (3+4+5+6+8) 5 4.10 30.97 5.07 29.16

DEV402. To obtain a simulated dataset that is similar to
the VoxConverse dataset, we first extract the label from the
DEV402, which is a matrix of size T × N , where T is the
number of frames and N is the number of speakers. Then, for
the label of each speaker, we fill the active regions with a sin-
gle speaker’s speech from LibriSpeech or DEV402. Finally, we
take the sum of all speeches as one simulated recording. Note
that the non-speech regions in the labels are first removed. Fig-
ure 1 shows an example of the process of data simulation.

3.5.2. Training details

TS-VAD has achieved an excellent performance on CHIME6
[4] and DIHARD III [21] challenge. Unlike the previous
method using i-vector, we employ ResNet-based x-vector as the
target-speaker embedding.

The TS-VAD model is also similar to the VAD model ex-
cept that the feature maps produced by ResNet need to be
concatenated with a target speaker embedding. The concate-
nated features are then fed to the BiLSTM layers and fully con-
nected layers. Since TS-VAD training needs large computing
resources, we only train a model with S = 2 for statistical
pooling. The number of target speakers embedding N is set
to 8. The parameters of front ResNet34 are initialized from our
speaker embedding model.

The model is first trained on the simulated LibriSpeech for
10 epochs with front ResNet34 frozen, and then it is trained
for another 10 epochs with all parameters. Next, we transfer
this model to VoxConverse data by training on the simulated
DEV402 for 10 epochs. Finally, we fine-tune the model on
DEV402 for 200 epochs and validate on VAL46. The learn-
ing rate is 0.0001 when training on simulated data and 0.00001
during the fine-tuning stage. The model is optimized by BCE
loss and Adam optimizer. The input is 16s chunked wav, and
the acoustic feature is 80-dim log Mel-filterbank energies with
a frame length of 25ms and a frameshift of 10ms.

3.5.3. Inference

For inference, the non-speech regions are first removed by
VAD, and the wavs are split into 16s chunks. Next, speaker em-

beddings are extracted given the results from a clustering-based
method. We only consider those speaker embeddings with 16s
or longer speech. If the number of speakers is less than 8, we use
zero-vectors as the fake embeddings. If it is greater than 8, we
discard the speaker embeddings with shorter speech, but their
labels are kept in the final results. The threshold for speaker
decision is set to 0.8.

3.6. 2-speaker TS-VAD for Overlap Detection

The training data, model configuration, and training process are
the same as the TS-VAD in Sec. 3.5 except that the number of
target speaker N is 2. For each recording, we select at most 5
speakers with the longest speech for inference, which provides
at most

(
5
2

)
= 10 pairs of target speaker embeddings. After

obtaining the speaker decision of each pair of speakers by a
threshold of 0.8, we update the results with the detected over-
lapped speech regions. This 2-speaker TS-VAD method can be
applied to any data without considering the number of speak-
ers. In this challenge, we only consider modifying the over-
lapped speech regions, but the single speaker region can also be
iteratively refined according to the output from this 2-speaker
TS-VAD model. And we will do more experiments later.

3.7. Data Augmentation

We perform online data augmentation [22] with MUSAN and
RIRs corpus. For background additive noise, we use ambient
noise, music, television, and babble noise. For reverberation,
we perform convolution with 40,000 simulated room impulse
responses from small and medium rooms. The data augmenta-
tion is employed for all models which take acoustic features as
input.

3.8. System Fusion

To further improve the performance and robustness, we fuse our
systems by DOVER-Lap [23].



4. Experimental Results
Table 3 shows the results on both VAL46 and the challenge test
set. For the clustering-based system, the AHC method achieves
a DER of 4.42% on VAL46 and 6.77% on the test set, which
is our first submission. We employed our best VAD model for
all systems on VAL46, but our first submission includes a poor
VAD model, and it may not correctly reveal the improvements
brought by OSD.

For the 2nd submission, we fused systems 3, 4, and 7 us-
ing DOVER-Lap with custom weight tuned on VAL46, and we
obtained a DER of 4.41% on VAL46 and 5.36% on the test set.

For the 3rd submission, we fuse systems 3, 4, 5, and 7 using
DOVER-Lap with custom weight tuned on VAL46. However,
the DER on the test set goes lower. We did not know if it was
system 5 that reduced the performance, so we directly submitted
system 5, and it shows a DER of 5.45%. Therefore, the reason
may be that we tuned the weights so aggressively, and the fused
system is over-fitted on VAL46.

Finally, we fused systems 3, 4, 5, 6, and 8 with rank-based
weighting and achieve a DER of 5.07% on the test set, which
ranked 1st at the VoxSRC 2021.

5. Conclusions
In this report, we describe our system for the VoxSRC 2021. To
achieve better performance, we mainly focus on the overlapped
speech detection. We employ overlap detection and TS-VAD
to reduce the missed speaker error. In addition, we propose a
2-speaker TS-VAD framework to detect the overlapped speech
between each pair of speakers. Our experiments show that de-
tecting the overlapped speech regions can significantly improve
performance.
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