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Abstract—In this paper, we propose a two-stage personalized
keyword spotting system. Our implementation consists of a
two-stage keyword spotting system based on query-by-example
spoken term detection and speaker verification. We employ
two different detection algorithms in our proposed keyword
spotting system. The first stage adopts subsequence dynamic time
warping for template matching based on frame-level language-
independent bottleneck feature and phoneme posterior probabil-
ity. We use a sliding window template matching algorithm based
on acoustic word embeddings to further verify the detection from
the first stage. As a result, our KWS system achieves an average
score of 0.61 on the feedback dataset, which outperforms the
baseline system by 0.25.

I. INTRODUCTION

Keyword spotting (KWS), in terms of speech level, is a task
that detects whether a predefined word or phrase has appeared
in continuous speech. It is commonly used as the primary
technique for low resource trigger systems and speech-based
document analysis. More recently, KWS has been widely
applied to our daily life, such as the wake-up word detection
module for speech assistants on mobile phones, vehicles,
and smart speakers. Those speech assistants are triggered by
predefined keywords, like ”Hey, Cortana,” ”Alexa,” and ”Hey,
Siri,” spoken by the owner. Such applications raise the need
for a customized KWS system that could detect the keyword
and identify the target speaker’s voice simultaneously. To this
end, more attention has been paid to develop a KWS system
that responds to a particular speaker in recent research [1].

Conventionally, the KWS system consists of a large vocabu-
lary continuous speech recognition (LVCSR) module, followed
by a keyword spotting module that searches for keywords in
the lattice generated by the LVSCR module [2]. The LVCSR
module uses a large amount of audio-text pairs to train a
traditional automatic speech recognition model that generates
lattice, which contains the decoding information of the given
speech. The following KWS module makes an index for the
lattice in the lattice and searches keywords accordingly. This
method provides a high accuracy approach while allowing
us to customize the keywords without retraining the model.
However, the lattice generated by the LVCSR module could be
very complex with redundant information, which might result
in inefficiency in real applications. Also, this approach has
relatively low performance when it comes to out-of-vocabulary

(OOV) words because of its high dependency on the LVCSR
module.

Another widely used approach for KWS is the query-
by-example spoken term detection (QbE-STD) system. The
QbE-STD method detects keywords through efficient template
matching based on linguistic features extracted from the
speech. Typically, the QbE-STD method contains two steps,
known as feature extraction and template matching. For the
first step, we extract the feature representing the content of
the reference keyword audio segment. Various features have
been investigated as the representation in the literature. For
example, supervised features like language-independent bottle-
neck feature (BNF) and phoneme posterior probability (PPP)
is adopted and yielded relatively good performance [3]. So as
unsupervised features such as Mel-frequency cepstrum coeffi-
cients (MFCC)) [4] and acoustic word embedding (AWE) [5],
[6], [7], [8], [9]. The keyword detection is completed by the
second step using template matching algorithms. Given a pair
of features extracted respectively from the template speech and
the evaluated speech, matching algorithms based on dynamic
time warping (DTW) [10], such as segmental dynamic time
warping [11] and subsequence dynamic time warping (SDTW)
[11], [12], [13], are applied to measure the content similarity
of the pair. The detection result is made according to the
similarity score obtained from the matching algorithms. When
handling the multilingual, multi accent, and various keywords
situation, the QbE-STD is efficient both in time and accuracy.
In this case, we choose the QbE-STD approach to develop our
entry for the personalized keyword spotting system.

Unlike the baseline QbE-STD system proposed in [14]
which only uses a one-stage QbE-STD system, we proposed a
two-stage QbE-STD approach as our KWS system. Each stage
contains a different QbE-STD system that consists of a feature
extraction module and a template matching module. The first
stage uses a BNF+PPP feature extractor in frame-level and an
SDTW template matching algorithm. The second stage uses a
sequence-level AWE feature extractor with a sliding window
template matching algorithm. The search content that passes
through both two stages will be considered the appearance of
the keyword. To achieve personalized keyword spotting, we
employed the SV system proposed in [1] to determine whether
the given speech and the template come from the same speaker.
Our system obtains a final score of 0.61, with an average miss



rate (MR) of 0.29 and an average false alarm rate (FAR) of
0.036 on the feedback dataset.

The paper is organized as follows. The task definition and
proposed dataset are presented in section 2. Section 3 describes
the detailed implementation of our system, and our experiment
is described in section 4. Finally, the conclusion is provided
in section 5.

II. TASK DEFINITION AND PROPOSED DATASET

A. Task Definition

All the task settings completely follow the Auto-KWS 2021
challenge description in [14]. We are focusing on building a
personalized keyword spotting system that will be triggered
if and only if the predefined keyword spoken by the target
speaker is detected. This task consists of multilingual, multi-
accent, and various keywords scenarios. The computational
resources are also limited. The evaluation process uses a four-
core CPU with 26G memory, 100G disk, and an NVIDIA Tesla
P100 GPU. The computational budget during the evaluation
process is 30 mins of initialization, 5 mins of enrollment, and
1 min + 0.25 * total test duration. More details about the task
definition and baseline implementation could be found in [14].

B. Proposed Dataset

The training dataset provided by the Auto-KWS challenge
organizer contains speech from 100 speakers recorded by
mobile phones at a near-field around 0.2 meters. The audio has
a single-channel 16-bit stream, and the sample rate is 16kHz.
For each speaker, there are 10 enrollment utterances which
contain the keyword, and a few others utterance that does not
contain the keyword. Data augmentation is applied during the
experiment to obtain more training data and improve the model
accuracy and robustness. The data augmentation methods
include perturbing the speed and the volume of the speech,
adding noise, and splicing processing for the short speech
audios during enrollment. The practice dataset, which contains
speech audio from 5 speakers, is used in the evaluation. We
will also show the evaluation result on the feedback dataset,
which contains 20 speakers given by the automatic evaluation
system provided by the Auto-KWS challenge organizer. There
is no restriction on using other datasets in this task. Therefore
we also include multiple Chinese corpora on OpenSLR. More
details could be found in the experiments section.

III. SYSTEM DESCRIPTION

A. KWS System

We adopted a two-stage QbE-STD structure for our KWS
system. In each stage, we applied a separated QbE-STD
system with different feature extractors and template matching
algorithms. When the first-stage model detects the keyword,
the speech segment containing the keyword is fed to the
second-stage model for another check. The second stage uses
a sequence-level model with higher accuracy, but the output
keyword time stamps of the second stage model are not as
accurate as those of the first stage. Hence when the second
stage also confirms the detection of the keyword, the keyword

segment detected by the first-stage model is sent to the speaker
verification module as its timing information is more accurate.

1) First-stage Model: In general, feature extraction and
template matching are used in the QbE-STD based KWS
system. In the first stage, we use an acoustic model to extract
the BNF and PPP feature. The time delay neural network
(TDNN) based acoustic model has usually been applied in
automatic speech recognition (ASR) tasks and achieves state-
of-the-art performance. Therefore, we employ an acoustic
modeling method based on the TDNN trained with frame-level
training criteria.

2) SDTW Template Matching Module: In the template
matching step, a DTW-based multiple templates strategy is
used in the first-stage KWS system[15]. Since the QbE-STD
tasks usually interfere with extraneous factors like channel
variance, the templates fusion method has been widely used
in the QbE-STD based system. Firstly, one of the prepared
templates is chosen randomly as the master template, and
then we apply the DTW algorithm to align the rest templates
and get the shortest path. Finally, we compute the average of
these aligned points in the shortest path and get the example
template of the keyword. This fusion method allows us to
obtain a more representative template though combining all
the templates.

Traditional DTW [11] requires the start and the end time
point of two sequences must be strictly aligned. In this task,
we employ SDTW based algorithm [12], [13]. It can find a
subsequence that does not necessarily go through the end time
point, which optimally fits the spoken query in the search
content. The Euclidean distance is used in this SDTW template
matching module. The alignment result is used as a keyword
time stamp in future steps as the features we extracted in
frame-level usually provide higher accuracy in the time axis
during template matching.

3) Second-stage Model: The second-stage keyword de-
tection is activated after a successful trigger by the first
stage. Similarly, we use two modules: an AWE system for
feature extraction and a sliding window template matching
method. Our AWE system uses a similar structure in [9]. It
is trained with sequence-level training criteria. The network
consists of a combination of a convolutional neural network
(CNN), a global average pooling layer (GAP), and a fully
connected layer in order. The log filter-bank energies (Fbank)
of individual words are extracted and fed into the network.
The CNN structure is based on a residual neural network
(ResNet) as it has been proved efficient in structuring deep
neural networks. A global average pooling (GAP) layer is
applied as an aggregator over the three-dimensional output
sequence. It computes the global mean feature values over
the time and frequency axes. The output of the GAP layer
then goes through the fully-connected (FC) layer. We use the
cross-entropy loss to optimize the system. The block softmax
layer is also introduced in each ResNet block to better handle
the multilingual scenario [3], [16]. After the system is well-
trained, we obtain the acoustic embedding feature from the
output of the GAP layer.
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Fig. 1. The overview framework of the proposed system.

B. Speaker Verification System

1) Sliding Window Template Matching Module: We choose
a sliding window method and cosine distance as our template
matching scheme. First, we pad or clip the keyword audio
to 0.8 seconds, and use the same value as the fixed window
size to convert the search content into a segment sequence
y1, y2, ...yt. Then each segment is fed into the AWE feature
extractor we trained to generate a sequence of acoustic word
embedding features f(y) = (f(y1), f(y2), ..., f(yt)). For each
input, the cost is calculated between a segment sequence of
the input f(x) and template f(y) following the equation:

Cost(x, y) = min(1− f(x) · f(yi)
‖f(x)‖2 ‖f(yi)‖2

), i = 1, 2, ..., T

It generates a score sequence with respect to time. The
influence of random noise is removed by applying a simple
moving average which could smooth the sequence by dividing
the sum of a fixed number of continuous scores by the number
of frames for the time involves. In addition, a template fusion
method is also used in this module in order to find a more
representative template. Since the feature extracted by the
AWE system has a fixed length in this stage, we take the
average of the templates as the fusion template.

We use a similar model structure as it is proposed in [17].
Specifically, our speaker verification system consists of a front-
end feature extractor, a statistic pooling layer, and a back-end
classifier. ResNet34 [18] with SE-block [19] is used as the
feature extractor. An attentive statistics pooling (ASP) [20] is
used as the encoding layer, which has been proved efficient in

detecting long-term speaker feature variations. For the back-
end classifier, we use the AM-Softmax [21].

C. Speaker Dependent KWS system

Our proposed system consists of a two-stage KWS system
and a speaker verification system described above. To achieve
personalized KWS, as shown in Figure 1, we design a speaker-
dependent KWS system that only response to the target
speaker when it detects the keyword. We extract three utter-
ances’ embedding by the target speaker during the enrollment
stage and save them as the embedding vector template for the
enrollment speaker.

The general procedure of the system is as follows: First, in
the two-stage KWS system, we save the timing information
generate by the first stage frame-level SDTW alignment result.
We use this information to cut a fixed-length segment of the
speech features vector and fed it into the speaker verifica-
tion system. The SV system then uses this vector to obtain
the speaker embedding by feeding this vector into the SV
model we described above. The cosine similarity between
this speaker embedding and the template we saved during the
enrollment phase is compared with a threshold to determine
if the input speech comes from the enrolled speaker. Together
with the result of the two-stage KWS system and the result
of the SV system, we consider an input speech to be positive
if and only if it can successfully pass both the KWS system
and the SV system. The general system diagram is shown in
Figure 1.



IV. EXPERIMENTS

We separated the training process of the two-stage KWS
system and the SV system. Two systems are optimized sepa-
rately.

A. Implementation Details

1) Keyword Spotting: For our two-stage KWS system, in
the first stage, we trained a frame-level TDNN based acoustic
model on 40-dim MFCC features with a 25ms window length
and a shift of 10ms. The training dataset includes multiple
Chinese corpora on OpenSLR including Aidatatang [22],
Aishell [23], MagicData [24], Primewords [25], ST-CMDS
[26] and THCHS-30 [27]. The datasets we have used for
training the acoustic model are shown in Table I. We trained
a 3-gram language model using all the training transcriptions
we have in the dataset. The lexicon is the CC-CEDIT Chinese
dictionary expanded by Grapheme-to-Phoneme (G2P). The
training starts by using a small part of data to accelerate
the training procedure of the GMM model and then employ
speaker adaptive training using all the datasets listed above.
Finally, a Chain model is trained and evaluated while the PPP
and BNF features are extracted from the final Chain model in
the way of online decoding using Kaldi scripts [28]. We stack
the BNF and PPP features together for the SDTW algorithm
computation. We use a threshold here to decide if the input
speech contains the keyword. We also save the timestamps
on the shortest path for the later SV system as its timing
information is more accurate.

TABLE I
THE DATA USED FOR TRAINING THE ACOUSTIC MODEL

Dataset Total hours

Aidatatang 140
Aishell 151

MagicData 712
Primewords 99
ST-CMDS 110
THCHS-30 26

In the second stage, we use the 64-dimensional Fbank ener-
gies as the input acoustic feature for the AWE model. We use
0.8 seconds as the window length and extract acoustic features
on this window. The proposed neural network architecture is
shown in Table III as L stands for input size.

We train the whole neural network for 80 epochs with
categorical cross-entropy loss optimized by Stochastic Gra-
dient Descent (SGD) with Nesterov momentum equal to 0.9.
We initially set the learning rate equal to 0.1 and gradually
decrease its value every time the loss stops decreasing. The
procedure of the sliding window template matching has been
introduced above. The second threshold is used in the second
stage to decide if the input speech contains the keyword.

2) Speaker Verification: The general experimental of our
SV system has the same procedure as in [1]. We pre-train our
model by using data from SLR38 [26], SLR47 [25], SLR62
[22], SLR82 [29], SLR85 [30] on OpenSLR. The datasets we
have used for pre-training the SV system are shown in Table

IV. We also add MUSAN [31] and RIRs-NOISES [32] as
noise in the training set to make our model more robust. We
set the signal-to-noise ratio (SNR) between 0 to 20 dB while
pre-training and 0 to 15 dB while fine-tuning. The method in
[17] is also applied to add reverberation to the data. We trained
our model for 50 epochs during the pre-training process with
an SGD optimizer together with a batch size of 256 and set
the initial learning rate equal to 0.01 and decreases 0.1 after
every 20 epochs. We fine-tuned our model for 20 epochs with
a learning rate of 0.001. The third threshold is used here to
decide if the input speech comes from the target speaker.

B. Evaluation

1) Evaluation Metrics and Determination of Thresholds:
The metrics defined by the Auto-KWS organizers calculate the
final score from a weighted sum of the MR and the FAR by
using the equation below:

scorei =MR+ α× FAR

where α is a factor used to adjust the cost of MR and FAR.
The lower the scorei, the better we consider the model is.
Since we can adjust our three thresholds to make the trade-
off between the MR and FAR, we fine-tune our model to
achieve lower scorei and higher performance. We designed a
development dataset in order to fine-tune our three thresholds.
For the KWS system, for each target speaker in the Auto-
KWS challenge training set, we directly select 5 enrollment
utterances that contain the keyword and 20 other utterances
that do not contain the keyword and randomly splice them
together to create a new development dataset. For the SV
system, we generate around 2800 trials using the Auto-KWS
challenge training set to determine the threshold according
to EER (Equal Error Rate) and minDCF [33] performance.
We finally choose α = 9, which is determined under the
assumption that the positive samples account for 10 percent
of all samples. We determine the thresholds of our system by
using the development set to find the optimal thresholds which
could minimize our scorei.

2) SV Result: The performance of our SV system on devel-
opment data is shown in Table V. We use the development set
to determine the threshold of the speaker verification system.
The mean threshold of EER and minDCF[33] denoted as
(thresholdEER + thresholdminDCF )/2 have been used in
our system.

3) Results of the Overall System: Our proposed system on
the feedback dataset achieves an average score of 0.611. The
detailed result is shown in Table II. From the table, we can
obtain the following observations from our system. First, using
a more complex structure in the KWS system can achieve
better results than the baseline systems. Our system achieves
better performance than the baseline systems because we adopt
the complex system structure of two-stage KWS models and
large-scale speaker verification models. Second, only using
the original training data to train our model makes it hard
to generalize the model to the development and evaluation
sets, resulting in a very low recall. Thus, the method to



TABLE II
DETAILED RESULT ON PRACTICE AND FEEDBACK DATASET

Model Dataset Average Score Average MR Average FAR

Our System Practice Dataset 0.240 0.240 0
Feedback Dataset 0.611 0.289 0.0359

Baseline System 1 Practice Dataset - - -
Feedback Dataset 0.859 0.443 0.046

Baseline System 2 Practice Dataset - - -
Feedback Dataset 1.695 0.481 0.135

TABLE III
THE ARCHITECTURE FOR AWE SYSTEM

Layer Output Size Downsample Channels Blocks
Conv1 16× L

4
False 64 -

Res1 16× L
4

False 64 3
Res2 8× L

8
True 128 4

Res3 4× L
16

True 256 6
Res3 2× L

32
True 512 3

GAP 512 - - -
Output Number of Words - - -

TABLE IV
THE DATA USED FOR PRE-TRAINING

Number of Speakers Total hours Utterances

SLR38 855 100+ 102600
SLR47 296 100+ 50384
SLR62 600 200 237265
SLR62 274 1000 130108
SLR85 340 1500 108678

determine the threshold is an important factor affecting the
final score. The ad-hoc average threshold of EER and minDCF
can improve system performance.

V. CONCLUSIONS

In this paper, we introduced a personalized keyword spotting
system. Our system consists of a two-stage KWS system
and an SV system. Although the two systems are optimized
separately, we managed to find an efficient way to work
together and achieve personalized KWS. For the two-stage
KWS system, we employed a BNF and PPP feature extractor
and an SDTW template matching method as the first stage
and an AWE feature extractor with a sliding window template
matching method as the second stage. Different fusion meth-
ods are applied to produce templates in different stages to
improve performance. We also introduced data augmentation
to improve the accuracy and robustness of the system and
designed the development dataset to optimize our score. Under
the restriction of computational resources, we successfully
outperform the baseline system by 0.25 on the average score,
and our system reaches the average score of 0.61 on the
feedback dataset.
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