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Abstract—Nowadays, there is a strong need to deploy the
target speaker separation (TSS) model on mobile devices. While
the existing open-source datasets, single-channel or dual-channel
simulated by simple addition from single ones, are not suitable for
the mobile communication scenario, and the available computa-
tional resource is constrained strictly in mobile devices. To better
perform TSS for mobile voice communication, we first make a
dual-channel dataset based on a specific scenario with two people
chatting on the phone, LibriPhone. Specifically, LibriPhone is
made by simultaneously replaying pairs of utterances from
LibriSpeech by two professional artificial heads and recording
by two built-in microphones of the mobile. Then, to fit the
restriction of computational resource on mobile devices, we
propose a lightweight time-frequency domain separation model,
LSTMFormer, which is based on the LSTM module with source-
to-noise ratio (SI-SNR) loss. For the experiments on the re-
recorded dataset, we explore the dual-channel LSTMFormer
model and a single-channel version by a random single channel
of LibriPhone. Experimental result shows that both versions
work well on LibriPhone, and the dual-channel LSTMFormer
outperforms the single-channel LSTMFormer with relative 25%
improvement. This work provides a feasible solution for the TSS
task on the mobile devices, playing back and recording multiple
data sources in real application scenarios for getting dual-channel
real data can assist the lightweight model to achieve higher
performance.

Index Terms—Target speaker separation, dual-channel,
lightweight, LibriPhone

I. INTRODUCTION

In mobile voice communication scenario, the speech quality
is always degraded because of the existence of interference
signals, such as background noise and people talking around.
There are a lot of studies on integrating the speech enhance-
ment algorithms into mobile devices [1]–[3] to suppress the
regular noise, while the voice of unwanted people could not
always be suppressed that well, especially when the volume
level of interpreted voice is close to the clean speech. That
calls for a technique to separate the human utterance properly.

Speech separation is such a technique that decomposes the
given mixed utterance into individual sources. Thanks to the
development of deep learning, these years have witnessed great
progress in this area, such as deep attractor network (DANet)
[4], [5], permutation invariant training (PIT) [6], [7], time-
domain audio source separation (Tas-Net) [8]–[11]. While
these methods all require the number of speakers to be known
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in advance, which limits the usage of speech separation in
real-world applications. In recent years, a new technique called
target speaker separation (TSS) [12], [13] or speaker extraction
[14]–[17] is brought up. It could separate the target speaker’s
voice from the mixed utterance when the reference of the target
speaker is available. TSS avoids the permutation and output
dimension problems in traditional speech separation method
simultaneously, making it more suitable in the mobile voice
communication scenario.

Studies on TSS technique have achieved impressive and
heuristic performance. Single-channel work like the time-
frequency domain model VoiceFilter [13] and time-domain
model SpEx+ [16] use the speaker embedding extracted from
the reference utterance to help the model learn whom to
separate. Multi-channel work like [18] makes use of the
location information of the target speaker to get the utterance
wanted. In the multi-modal domain, researchers incorporate
visual information into the speech separation system for better
separation performance [19].

The mentioned studies do achieve state-of-the-art results
on public speech separation datasets. However, there are still
some limitations when it comes to real-world applications.
First, due to the restriction of computational resources on
mobile phones, the model size, and computing complexity
are often constrained strictly. And the real constriction is
on the separation module rather than the speaker verification
module. Specifically, the target speaker’s utterance is usually
enrolled in advance, thus the speaker embedding could be
extracted and saved beforehand. So only the parameters and
multiply-accumulate operations (MACs) cost of the separation
module are considered and reported. However, to improve
the separation accuracy, speech separation modules always
have a large number of parameters and deep network design.
For instance, the MACs costs of the well-known separation
models, TasNet [8]–[11] and even its light version [22], are
of the order of G. The Atss-Net [20] do decrease the number
of parameters significantly compared to VoiceFilter, while the
computational complexity is even higher. Another issue is
the need for causal and real time processing which many
attention based models can not satisfy. The third difficulty for
the application on mobile is that there is a domain mismatch
between the real scenario of mobile voice communication
and that of the simulated available public corpus. Moreover,
the dual-channel data used for dual-channel separation is



always simulated from the single-channel public corpus [21]
by simple addition. The domain gaps caused by both the
simulation and the difference of the scenarios may lead to
the degradation of the real-case inference performance.

To overcome the aforementioned problems for the applica-
tion on mobile devices, we first record a dual-channel dataset
called LibriPhone to mimic the mobile voice communication
scenario. Specifically, instead of simulating mixed data by
direct addition, LibriPhone is collected in a relatively real
setting in which two random utterances from LibriSpeech are
simultaneously played by two professional artificial heads and
recored by two built-in microphones in a cell phone.

Based on our previous work in Atss-Net [20], we design
a lightweight time-frequency domain separation model and
share the same speaker verification module with Atss-Net.
The reason for choosing the time-frequency domain model
is that it has a smaller input dimension than the time-domain
model, which means smaller model size. Inspired by the effort
made in lightweight model development in speech separation
domain [22], [23] and the introduction of the SI-SNR loss
[8], we design a lightweight target speaker separation model,
LSTMFormer, based on the LSTM network and incorporate
SI-SNR loss for better performance. Nonetheless, re-recording
will inevitably introduce delays between the original clean
utterance sent to artificial mouth and the one received by
the microphones caused by the recording equipment. This
may cause the non-convergence problem for training. The
reason is that the computation of the SI-SNR loss is not
robust to the time delay. Therefore, we perform generalized
cross-correlation [24] based alignment as a training strategy
to address this problem.

For the experiments on LibriPhone, we explore both the
dual-channel and single-channel versions of LSTMFormer.
Specifically, both single- and dual-channel versions work well
on LibriPhone, and the MACs costs of both versions are
less than 200M. Moreover, we discover that the dual-channel
model outperforms the single-channel one significantly when
they have similar model size. It shows that the dual-channel
data is easier for the lightweight model to learn and to achieve
better performance, which provides a feasible solution when
the available computational resource is constrained on some
mobile devices.

II. DATASET DESCRIPTION

The LibriPhone is a dual-channel dataset re-recorded from
LibriSpeech for mobile voice communication scenario. There
are 25 hours 16 kHz sampled mixed utterances in total and
split with 15 hours for training, 5 hours for validating, and
5 hours for testing. The subsets for training and validating is
made from train-clean-100, the test subset is made from dev-
clean. In each subset, we respectively playback and record the
mixed utterance and target utterance. Specifically, for each
mixed utterance, we select a pair of utterances, the target
speaker utterance, and the other speaker utterance, with non-
repetition of the target speaker identity. And then, two artificial
heads separately replay two clean utterances simultaneously. A

cell phone with two microphones is used to record the mixed
sound. Likewise, we also record the target speaker utterances
as the ground truth for supervised learning with the similar
setup but only one artificial head replaying the target speaker
utterance.

The detailed setup is shown in Figure 1. The recording
equipment is an Android phone placed in the center of the
room. The room is 3.3 meters wide and 3.5 meters long
with a height of 2.3 meters. Two artificial heads are used to
mimic people talking. The one closer to the phone is the target
speaker, the other is the interference. The specific locations of
both artificial heads are illustrated in Figure 1. The mouths of
both artificial heads are placed at 1.5m height, the screen of
the phone is horizontal and orients towards the target speaker.
By measuring the acoustic parameters of the recording room,
the background noise level is 25 dBA, the reverberation time
T60 is 0.45s to 0.55s.

Fig. 1. The recording setup of our proposed LibriPhone database.

III. MODEL DESIGNING

Our TSS framework shares the same speaker verification
module with our previous work in [20]. Due to the high
computational complexity of the Transformer-encoder-based
separation module, when designing LSTMFormer, we replace
the self-attention in the Transformer encoder with a single
direction LSTM and keep the idea of skip connection and
layernorm.

In this work, we want to explore whether the real-collected
dual-channel data in our simulated acoustic studio can achieve
superior separation perforamance. Hence, we first designed a
dual-channel version LSTMFormer on the LibriPhone. And
then, for comparison, we also design a single-channel version
LSTMFormer trained by using the random single channel
of LibriPhone. The two versions of the LSTMFormer are
respectively introduced in section III-A and section III-B.

A. Dual-channel LSTMFormer

As shown in Figure 2, an STFT Conv1D layer is used to
transform the mixed dual-channel waveform x ∈ R2×L into
magnitude and phase spectrogram, where L is the length of
sample points, and x is a linear combination of C sources
s1(t), . . . , sc(t). The mixed dual-channel utterance is first



split into two channels and passed through the Conv1D layer
separately.

Mi, Pi = Conv1D (channeli) i = 1, 2 (1)

where Mi, Pi ∈ RT×F stand for magnitude and phase
spectrogram respectively. T and F are the dimension of frames
and spectrogram bin axes.

As the yellow block in Figure 2 shows, the two magni-
tude spectrogram are firstly concatenated along the feature
dimension and then compressed using fully-connected layer
for feature extraction. The speaker embedding is repeated for

Fig. 2. Solid part + Dashed part: Model achitecture of Dual-channel LSTM-
Former. Solid part only: Model achitecture of Single-channel LSTMFormer.
Mag1 and Mag2 represent the magnitude spectrogram of the split two channels
of mixed utterance. Pha1 is the phase spectrogram of the first channel used to
reconstruct the target utterance. The box in yellow is used to compress Mag1
and Mag2.

T times for the ease of concatenation. The extracted feature
map and the repeated speaker embedding are then concate-
nated along the feature dimension and fed into the following
LSTMFormer. The backbone network of our proposed LSTM-
Former model is shown in Figure 3. Motivated by the idea
of residual learning [25], there is a skip connection between

the compressed magnitude spectrogram and the Layer Norm
output. This design makes our network better remember the
information of compressed magnitude spectrogram.The fully-
connected layers (FC) are used for deeper feature extraction
as well as the flexible dimension changes between different
modules of the whole model. An extra FC layer in the end
serves as the compress layer to reduce the dimension to
match with the time-frequency mask for a single reference
channel. Specifically, we choose the first channel as the
reference channel. The estimated magnitude spectrogram is
calculated by performing the element-wise product between
the mixed magnitude spectrogram of the first channel M1 and
the estimated mask R ∈ RT×F . With the estimated magnitude
spectrogram and phase spectrogram of the first channel, the
iSTFT Conv-Trans1D outputs the estimated target speaker’s
utterance ŝ ∈ R1×L.

ŝ = Conv-Trans1D (M1 �R,P1) (2)

where � denotes the element-wise product operation.

Fig. 3. The backbone network of the LSTMFormer model.

As the input and output of this whole separation module
are both waveform, we choose scale-invariant source-to-noise
ratio (SI-SNR) as our training target, to directly optimize the
separation performance [8]. The SI-SNR is defined as follows:

starget =
〈ŝ, s〉s
‖s‖2

(3)

enoise = ŝ− s (4)



TABLE I
THE MODEL CONFIGURATIONS OF SINGLE- AND DUAL- CHANNEL LSTMFORMER MODELS. SINGLE-CHANNEL (HALF) AND SINGLE-CHANNEL (EQUAL)

REFER TO HALF AND EQUAL MODEL PARAMETERS IN BACKBONE NETWORK OF THE DUAL-CHANNEL MODEL, RESPECTIVELY.

Layer Dual-channel Single-channel (half) Single-channel (equal)

Conv1D [514 × 400, 2] [514 × 400, 1] [514 × 400, 1]

FC [1 × 1, 256] [1 × 1, 128] [1 × 1, 256]

FC1 [1 × 1, 256] [1 × 1, 128] [1 × 1, 256]

LSTM1 hidden statenum = 256 hidden statenum = 128 hidden statenum = 256

FC2 [1 × 1, 200] [1 × 1, 100] [1 × 1, 200]

FC3 [1 × 1, 256] [1 × 1, 128] [1 × 1, 256]

LSTM2 hidden statenum = 256 hidden statenum = 128 hidden statenum = 256

FC4 [1 × 1, 180] [1 × 1, 90] [1 × 1, 180]

FC5 [1 × 1, 256] [1 × 1, 128] [1 × 1, 256]

FC6 [1 × 1, 514] [1 × 1, 257] [1 × 1, 514]

Compress Layer [1 × 1, 257] N/A N/A

Conv-Trans1D [514 × 400, 1] [514 × 400, 1] [514 × 400, 1]

SI-SNR := 10 log10
‖starget ‖2

‖enoise ‖2
(5)

where s ∈ R1×L is the ground truth target speaker’s utterance.

B. Single-channel LSTMFormer

For the single-channel version, as shown in Figure 2,
removing modules with the dashed line, including one STFT
Conv1D layer and one compress layer of the dual-channel
version. There are two kinds of single-channel LSTMFormer
with the same architectures but different model size. One of
the model size of single-channel LSTMFormer is decreased
to half by halving the hidden numbers of the LSTM and the
output dimension of the FC layer. Another one’s model size
is close to the dual-channel LSTMFormer.

C. Model Training

All of our systems are implemented using PyTorch [26].
Adam serves as the optimizer during training [27] with an
initial learning rate of 0.0001. All models are trained with
the batch size of 64 and stopped till the model performance
didn’t improve on the validation set any longer. The model
configurations of all the models related to LSTMFormer
are shown in table I. The single-channel model shares the
same architecture with the dual-channel one using half of the
parameters in the dual-channel LSTMFormer module. To find
out the impact of increasing model parameters and validate
the advantage of dual-channel complementary information in
the TSS task, we trained another single-channel model with
as much parameters as the dual-channel model. During the
training of the single-channel model, we randomly chose
one channel of the mixed utterance. Signal-to-distortion ratio
(SDR) is used as the evaluation metric for the TSS task.

D. Alignment

The unstable time delay between the target and mixed
utterances in our LibriPhone dataset is found to be a big barrier

during the training stage. To overcome it, we compute the time
delay of each target and mixed utterance pairs based on the
generalized cross-correlation method implemented in Matlab1

for better alignment.

IV. RESULTS AND DISCUSSION

For the performance of different models on the LibriPhone
dataset, Table II shows the before-separated, after-separated
SDR values and the relative improvement, the information on
the model size and computational complexity are also reported.

From Table II, we can see that both dual- and single- LSTM-
Former achieve an over 4.8dB SDR improvement, which
means alignment can well address the problem that the SI-
SNR loss can not converge because of the delay introduced by
the re-recording. We can also find that the MACs cost2 of any
model with 1 second input speech is very low, which requires
less computation resources of the application platforms.

TABLE II
PERFORMANCE OF DIFFERENT MODELS ON THE LIBRIPHONE TEST SET.

THE MODEL SIZE AND MACS COST ON 1-SECOND INPUTS OF DIFFERENT
MODELS ARE ALSO REPORTED.

Model Params MACs
Mean SDR

Before After Improved

Single-channel (half) 0.37M 36.32M 3.12 7.97 4.85

Single-channel (equal) 1.31M 128.45M 3.22 8.34 5.12

Dual-channel 1.57M 154.29M 2.69 10.40 7.71

Specifically, the improvement of single-channel (half) with
36.32M MACs is 4.85dB, and the improvement of single-
channel(equal) with 128.45M MACs is 5.12dB. The increase
of the model size for single-channel LSTMFormer only im-
proves 0.27dB SDR. However, the dual-channel LSTMFormer
with 154.29M MACs achieves a 7.71dB improvement, a

1https://www.mathworks.com/help/phased/ref/gccphat.html
2Calculated by open-source toolbox: https://github.com/Lyken17/pytorch-
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relative 25% improvement compared with the single-channel
model. It shows that dual-channel data can help the lightweight
model LSTMFormer to achieve better performance. This moti-
vates us to explore whether the multi-channel data can improve
the lightweight model further than the dual-channel data. In
a similar way we performed, we can re-record multi-channel
data to mimic more complex application scenarios. Without
explicitly using the location and direction information, our
work provides a feasible solution to the dual-channel TSS task.

V. CONCLUSIONS

In this paper, to reduce the domain gap of dual-channel
TSS systems for mobile voice communication, we first design
and collect a dual-channel dataset, LibriPhone. Specifically, to
better mimic the real application scenario, instead of directly
mixing the single-channel dataset, LibriPhone is made by
simultaneously replaying pairs of utterances from LibriSpeech
by two artificial heads and recording by two microphones of
the mobile device. And then, we propose a lightweight time-
frequency domain separation model, LSTMFormer for the
experiments on LibriPhone. We explore both the dual-channel
and the single-channel LSTMFormer model. Experimental re-
sult shows that the dual-channel model outperforms the single-
channel significantly when they have the similar model size,
and when the former is twice bigger than the latter, showing
that the dual-channel data are complementary and easier for
the lightweight model to learn. Our proposed lightweight
model, and corresponding training strategies demonstrate the
promising prospects of deep-learning-based TSS models being
applied on real-world low-resource platforms.

REFERENCES

[1] J.-M. Valin, “A hybrid dsp/deep learning approach to real-time full-band
speech enhancement,” in MMSP, pp. 1–5, IEEE, 2018.

[2] J.-M. Valin, U. Isik, N. Phansalkar, R. Giri, K. Helwani, and A. Krish-
naswamy, “A perceptually-motivated approach for low-complexity, real-
time enhancement of fullband speech,” arXiv preprint arXiv:2008.04259,
2020.

[3] K. Tan, X. Zhang, and D. Wang, “Real-time speech enhancement for mo-
bile communication based on dual-channel complex spectral mapping,”
in ICASSP, IEEE, 2021, pp. 6134–6138.

[4] Z. Chen, Y. Luo, and N. Mesgarani, “Deep attractor network for single-
microphone speaker separation,” in ICASSP. IEEE, 2017, pp. 246–250.

[5] Y. Luo, Z. Chen, and N. Mesgarani, “Speaker-independent speech sep-
aration with deep attractor network,” IEEE/ACM TASLP, vol. 26, no. 4,
pp. 787–796, 2018.

[6] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation invariant
training of deep models for speaker-independent multi-talker speech
separation,” in ICASSP. IEEE, 2017, pp. 241–245.

[7] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech
separation with utterance-level permutation invariant training of deep
recurrent neural networks,” IEEE/ACM TASLP, vol. 25, no. 10, pp. 1901–
1913, 2017.

[8] Y. Luo and N. Mesgarani, “Tasnet: time-domain audio separation network
for real-time, single-channel speech separation,” in ICASSP. IEEE, 2018,
pp. 696–700.

[9] Y. Luo and N. Mesgarani, “Real-time single-channel dereverberation and
separation with time-domain audio separation network.” in Interspeech.
IEEE, 2018, pp. 342–346.

[10] Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time–
frequency magnitude masking for speech separation,” IEEE/ACM TASLP,
vol. 27, no. 8, pp. 1256–1266, 2019.

[11] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path rnn: efficient long
sequence modeling for time-domain single-channel speech separation,”
in ICASSP. IEEE, 2020, pp. 46–50.

[12] J. Du, Y. Tu, Y. Xu, L. Dai, and C. H. Lee, “Speech separation of a
target speaker based on deep neural networks,” in ICSP. IEEE, 2014,
pp. 473–477.

[13] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. R. Hershey,
R. A. Saurous, R. J. Weiss, Y. Jia, and I. L. Moreno, “Voicefilter:
Targeted voice separation by speaker-conditioned spectrogram masking,”
in Interspeech. IEEE, 2019, pp. 2728–2732.

[14] C. Xu, W. Rao, E. S. Chng, and H. Li, “Time-domain speaker extraction
network,” in ASRU. IEEE, 2019, pp. 327–334.

[15] C. Xu, W. Rao, E. S. Chng, and H. Li, “Spex: Multi-scale time domain
speaker extraction network,” IEEE/ACM TASLP, vol. 28, pp. 1370–1384,
2020.

[16] M. Ge, C. Xu, L. Wang, E. S. Chng, J. Dang, and H. Li, “Spex+: A
complete time domain speaker extraction network,” in Proc.Interspeech,
vol. 28. IEEE, 2020, pp. 1406–1410.

[17] M. Ge, C. Xu, L. Wang, E. S. Chng, J. Dang, and H. Li, “Multi-stage
speaker extraction with utterance and frame-level reference signals,” in
ICASSP. IEEE, 2021, pp. 6109–6113.

[18] G. Li, S. Liang, S. Nie, W. Liu, M. Yu, L. Chen, S. Peng, and C. Li,
“Direction-aware speaker beam for multi-channel speaker extraction,” in
Interspeech. IEEE, 2019, pp. 2713–2717.

[19] R. Gu, S. Zhang, Y. Xu, L. Chen, Y. Zou, and D. Yu, “Multi-modal
multi-channel target speech separation,” IEEE JSTSP, vol. 14, no. 3, pp.
530–541, 2020.

[20] T. Li, Q. Lin, Y. Bao, and M. Li, “Atss-net: Target speaker separation via
attention-based neural network,” in Proc. Interspeech, 2020, pp. 1411–
1415.

[21] C. Li, J. Xu, N. Mesgarani, and B. Xu, “Speaker and direction inferred
dual-channel speech separation,” in ICASSP. IEEE, 2021, pp. 5779–
5783.

[22] Y. Luo, C. Han, and N. Mesgarani, “Ultra-lightweight speech separation
via group communication,” in ICASSP. IEEE, 2021, pp. 16–20.

[23] E. Tzinis, Z. Wang, and P. Smaragdis, “Sudo rm-rf: Efficient networks
for universal audio source separation,” in MLSP. IEEE, 2020, pp. 1–6.

[24] C. Knapp and G. Carter, “The generalized correlation method for
estimation of time delay,” IEEE TASLP, vol. 24, no. 4, pp. 320–327,
1976.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.


