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Abstract
This paper describes our DKU-OPPO system for the 2022
Spoofing-Aware Speaker Verification (SASV) Challenge. First,
we split the joint task into speaker verification (SV) and spoof-
ing countermeasure (CM) these two tasks which are optimized
separately. For ASV systems, four state-of-the-art methods are
employed. For CM systems, we propose two methods on top
of the challenge baseline to further improve the performance,
namely Embedding Random Sampling Augmentation (ERSA)
and One-Class Confusion Loss(OCCL). Second, we also ex-
plore whether SV embedding could help improve CM system
performance. We observe a dramatic performance degradation
of existing CM systems on the domain-mismatched Voxceleb2
dataset. Third, we compare different fusion strategies, includ-
ing parallel score fusion and sequential cascaded systems. Our
submitted cascaded system obtains a 0.21% SASV-EER on the
challenge official evaluation set.
Index Terms: Anti-spoofing, Speaker verification, Spoofing
Countermeasure, Spoofing-Aware Speaker Verification

1. Introduction
Although audio spoofing countermeasure (CM) [1] is highly
related to Automatic Speaker Verification (ASV)[2], most of
the research on these two tasks has been carried out indepen-
dently in recent years. This may lead to CM systems not be-
ing well suited to some ASV scenarios due to overfitting or do-
main mismatch [3]. To address this gap, the organizers of the
ASVspoof Challenge [4, 5] proposed the tandem detection cost
function (t-DCF) metric [6], which is highly correlated to both
the ASV system and the CM system, to replace the Equal Error
Rate (EER) metric, which relied only on the CM system itself.
However, the ASVspoof Challenge still focuses on designing
and optimizing a stand-alone CM system to calculate the min t-
DCF metric in combination with a given official black-box ASV
system. This prevents participants from improving the overall
performance by enhancing the ASV system or leveraging joint
optimization. Therefore, the first spoofing-aware speaker verifi-
cation (SASV) challenge [7], which aims to promote the devel-
opment of integrated systems that can perform both ASV and
CM tasks, has been organized this year. The goal of this chal-
lenge is to build a hybrid system that can detect both zero-effort
impostor access attempts and spoofing attacks simultaneously.

The 2022 SASV challenge focuses on logical access spoof-
ing attacks (LA), such as text-to-speech (TTS) and voice con-
version (VC), rather than physical access spoofing attacks (PA),
such as record and play-back. Due to the lack of large scale
dataset with both speaker and spoofing labels available, few
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studies involving joint ASV and CM optimization have been
conducted in the past. Two categories of jointly optimized so-
lutions have been summarized in the evaluation plan [7]. The
first is ensemble systems based on a fusion of separate ASV
and CM systems. Gomez et al. [8] use an embedding concate-
nation strategy to construct an ensemble classification system.
Another approach is to build a single integrated system. Li et
al. [9] propose a single model using multi-task learning with
contrastive loss function.

We investigated and implemented different dual-system
score combination methods, including score-fusion and cas-
caded system. Since the ensemble kind of solutions highly re-
lies on the performance of the pre-trained subsystems, we in-
vestigate two innovative schemes to improve the CM system
performance. The one-class confusion loss aims to reduce the
intra-class Euclidean distance of bonafide audio embeddings.
The random embedding sampling augmentation mechanism is
also proposed for improving the model’s generalization to un-
seen attacks. Moreover, we found that the performance of CM
systems trained on ASVspoof 2019 LA data degraded substan-
tially on Voxceleb2, making the CM system more challenging
to utilize the speaker embeddings trained by Voxceleb2 data.
Among our explorations, the cascaded system still achieves the
lowest error rate without considering the computational cost and
real-time latency.

The rest of this paper is organized as follows. In section
2, our submitted system for the SASV challenge is represented,
which mainly focuses on the CM system structure and score
combination strategies. Implementation details in terms of the
dataset usage and model hyperparameters are provided in Sec-
tion 3. Section 4 describes and discusses the results based on
our experiments. Conclusions are provided in Section 5.

2. System Description
2.1. ASV subsystem

Four speaker verification subsystems with different network
structures have been adopted in our experiments, includ-
ing ResNet [10], SE-ResNet [11], SimAM-ResNet [12] and
ECAPA-TDNN [13]. The global statistic pooling (GSP) is used
for the ResNet subsystem while the attentive statistics pool-
ing (ASP) [14] is used for the other three apporaches. The
ArcFace[15] which could increase intra-speaker distances while
ensuring inter-speaker compactness is utilized as the classifier.

2.2. CM subsystem

This subsection describes the basic network structure of our CM
subsystems and the two proposed methods, namely one-class



confusion loss and embedding random sampling augmentation.

2.2.1. Basic network architecture

We choose AASIST [16] which is the challenge CM baseline
as our backbone network. It contains a RawNet2 [17] based
encoder and an attention network based graph module. AA-
SIST utilizes raw waveforms as the input to learn meaningful
high-dimensional spectro-tempora feature maps and then ex-
tract graph nodes of feature maps in temporal and frequency
domains respectively [16]. With a stack node that learns in-
formation from all nodes, the final CM embedding is attained
by concatenating various nodes’ mean and maximum values.
Moreover, as mentioned in [18], Tak et al. provide an improved
architecture in which the max pooling layer of the encoded fea-
ture maps is replaced by a 2D self-attentive pooling [19], named
as AASIST-SAP.

2.2.2. One-Class Confusion Loss function

Although the basic models, AASIST and AASIST-SAP, obtain
great results in the development and evaluation set, there is still
a large performance gap since there are unseen attack algo-
rithms in the evaluating set. Therefore, it is necessary to en-
hance the generalization of our system. The space of bonafide
audios is relatively stable while the domain of the attack algo-
rithms are very diverse and unpredictable. Inspired by one-class
learning [20, 21], we proposed a One-Class Confusion Loss
(OCCL), which is similar to the pairwise confusion loss defined
in [22].

The binary cross-entropy loss can be defined as follows:

Lce =
∑
i

−(yi log(pi) + (1− yi) log(1− pi))

where yi ∈ {0, 1} is the class label and pi is the probability
output of the classifier. The anti-spoofing CM model is trained
using a combined objective with the cross-entropy loss and the
proposed one-class confusion loss, which is defined as:

Locc =
∑
i

∑
j 6=i

||ei − ej ||2

where ei denotes the embedding vector extracted from the
bonafide audios. The purpose of this loss function is to make
the Euclidean distance of all bonafide samples more compact in
the embedding space. The one-class confusion loss is only ap-
plied on bonafide audios during the training process. Therefore,
the final combination loss function is defined as follows:

L = Lce + λLocc

where lambda is a constant hyperparameter.

2.2.3. Embedding Random Sampling Augmentation

Considering that the evaluation set contains many unseen logi-
cal attacks [23], we propose a fine-tuning Embedding Random
Sample Augmentation (ERSA) strategy that aims to improve
the robustness of the model for unknown scenarios inspired by
[24]. The key idea is to generate random embedding samples
from the Gaussian distributions with boundary spoof embed-
ding centers as the mean, and labeled as spoofed speech. Firstly,
we initialize the embedding centers of bonafide audio and each
type of spoofing audio in the development set separately based
on the pre-trained model. The boundary embedding center for
each type of spoofing audio are defined as the average of the

bonafide embedding center and spoofing embedding centers.
During fine-tuning, the boundary embedding centers are dy-
namically updated based on the embeddings of current iteration.
Then we randomly generated samples from N(µ̂,Σ) where N
is a Gaussian distribution, µ̂ is the boundary spoof embedding
center and Σ is the covariance matrix of spoofing embeddings
calculated in advance. After each 5 epoch training, the mean
and covariance matrix of embedding centers are updated. A de-
tailed algorithm description can be found in [25].

2.2.4. Integrating Speaker Verification Embeddings

In addition, we also explore the possibility of integrating SV
embeddings into the CM model. In this case, the final CM
embedding is obtained by concatenating the original CM em-
bedding and the SV embedding together followed by two linear
layers.

2.3. System Combination

2.3.1. Score Fusion System

The baseline 1 provided by the challenge organizers just gener-
ates the final SASV score by a simple score summation. How-
ever, the score distribution of the SV system and the CM system
are quite different. Thus, we explore two different strategies to
combine the scores, namely the normalized score multiplication
approach the same way as in [25, 26] and the score calibration
and fusion approach based on the Bosaris toolkit [27].

2.3.2. Cascaded System

Figure 1: The illustration of the ASV followed by CM cascaded
system. ε represents the minimum CM score in the development
set. The CM followed by ASV cascaded system is built in the
same way, but switching the SV and CM systems in the pipeline.

As is shown in Figure 1, the cascaded system consists of
two tandem modules: a) the first module generates a hard de-
cision based on a threshold, the threshold is determined by the
Equal Error Rate (EER) on the development set; b) the second
module directly outputs the raw scores if the decision of module
1 is positive; c) the second module generates the fixed minimum
score on the development set when the decision of module 1 is
negative. Therefore, once the test audio is tagged as negative by
the first module, the score of the second module is not useful.

For the cascaded system, two designs are considered in this
work: the first one is ASV module followed by CM module,
named as Cascade-ASV-CM; and the other one is CM module
followed by ASV module, named as Cascade-CM-ASV. The
thresholds of the first system were determined by the EER cri-
teria on the development set.



3. Experimental setup
3.1. Data Usage and Evaluation Metrics

All datasets we used for training and validation are the training
and development set of the ASVspoof2019 [23] LA database
and the VoxCeleb 2 [28] as requested by the organizers. The
ASVspoof2019 LA database consists of bonafide and spoofing
audios. Although the database contains both the speaker and
spoofing labels, in general it was only used for anti-spoofing
countermeasure due to the low number of speakers. The Vox-
Celeb 2 database contains 1128246 audios from 6112 speakers
and has been widely used for ASV training. However, it is dif-
ficult to directly train a multi-speaker TTS or VC system just
using Voxceleb2. The official SASV evaluation trial consists of
audios from the ASVspoof2019 LA evaluation partition, with
unseen logical access spoofing attacks compared with audios in
the train and development partitions.

The SASV-EER [7], which represents the EER between tar-
get and both nontarget and spoof samples, is the primary metric.
SPF-EER and SV-EER are adopted as secondary metrics [7].

3.2. Domain Mismatch between ASVspoof2019 LA and
VoxCeleb 2

Although the AASIST-based CM system has excellent perfor-
mance on the ASVspoof2019 evaluation set, it performs poorly
on VoxCeleb 2 based on our experiments. Most audios in Vox-
Celeb 2 are classified as spoofing ones. We summarize two rea-
sons that may lead to this phenomenon.

1. Most audio in VoxCeleb 2 contain various kinds of
noises and have been coded and transmitted through
some codecs and channels.

2. The CM model trained based on the ASVspoof2019
LA dataset may learn the priori information of silent
segments[3].

The great domain mismatches between ASVspoof2019 LA and
VoxCeleb 2 datasets makes it difficult to improve the perfor-
mance of the CM system using the VoxCeleb 2 dataset. Hence,
we keep those audio files in VoxCeleb 2 that are classified as
bonafide by our CM system as the Vox-sub dataset with ap-
proximately 20000 audio files in total.

3.3. Model setup

3.3.1. ASV subsystem

For feature extraction, logarithmical Mel-spectrogram is ex-
tracted by applying 80 Mel filters on the spectrogram com-
puted over Hamming windows of 20ms shifted by 10ms. The
on-the-fly data augmentation [29] is employed to add additive
background noise or convolutional reverberation noise for the
time-domain waveform. The MUSAN [30] and RIR Noise [31]
datasets are used as noise sources and room impulse response
functions, respectively. We apply amplification or speed change
(pitch remains untouched) to audio signals to further diversify
training samples. Also, we apply speaker augmentation with
speed perturbation [32, 33, 34]. We adopt the Reduceonplateau
learning rate (LR) scheduler with 0.1 initial LR. The SGD opti-
mizer is adopted to update the model parameters.

3.3.2. CM subsystem

In contrast to the baseline training strategy, our trained
AASIST-SAP network receives random length audio between

3-5 seconds as input. The initial learning rate is 0.001 with a
Reduceonplateau learning rate scheduler. Adam optimizer is
used to update the weights in models. The embedding random
sample augmentation is only used during fine-tuning with two
generated embeddings per center. Since there are six boundary
spoof embedding centers, there will be 12 generated embed-
dings per batch. The batch size is set as 64 in this phase. And
for the one-class confusion loss, λ is set as 1 during training.
For fusing SV embedding into the CM model, considering the
great mismatch mentioned in section 3.2, we adopt SV embed-
dings generated by the Resnet-GSP model trained by Voxceleb2
and Voxsub as SV-embd-V1 and SV-embd-V2, respectively.

4. Results and discussion
4.1. Results of the ASV Subsystem

Table 1 reports the results of different speaker verification mod-
els. Our used models achieve state-of-the-art results on the Vox-
Celeb1 original test set. The ResNet with GSP achieves the best
single model performance on the SASV dataset which might be
because the generalization of ResNet with statistic pooling is
better on this ASVspoof dataset.

Table 1: The performances of different speaker verification sub-
systems on the VoxCeleb1 original test set and the SASV chal-
lenge dataset.

Model Vox-O EER[%] SV-EER[%]

Dev Eval

ECAPA (Baseline) - 1.86 1.64

ResNet GSP 0.851 0.135 0.192
SE-ResNet34 ASP 0.776 0.404 0.410

SimAM-ResNet34 ASP 0.643 0.404 0.252
ECAPA-TDNN 0.734 0.225 0.228

Table 2: Comparison of different single CM systems based on
SPF-EER used in SASV challenge. The 19LA denotes using
both train and dev sets of ASVspoof2019 for training. The Vox-
sub represents sub-bonafide audios selected from VoxCeleb 2 as
mentioned in Sec 3.2. The SV-embd-V1 and V2 are defined in
Sec 3.3.2.

Model Data SPF-EER[%]

Dev Eval

AASIST(Baseline) 19LA train 0.07 0.67

AASIST 19LA 0.067 0.668
AASIST-SAP 19LA 0.067 0.570

AASIST-SAP+ERSA 19LA 0.067 0.510
AASIST-SAP+SV-embd-V1 19LA 0.058 4.320
AASIST-SAP+SV-embd-V2 19LA 0.067 1.229

AASIST-SAP 19LA+Vox-sub 0.049 1.564
AASIST-SAP+OCCL 19LA+Vox-sub 0.000 0.360

4.2. Results of the CM Subsystem

Table 2 shows the anti-spoofing performance of different CM
subsystems. It can be seen from the table that the AASIST
based model achieves a great performance improvement by re-
placing the max pooling layer with SAP. In addition, the model



Table 3: Performance of different systems evaluated in the SASV Challenge. Due to a large number of combinations, only selected
combinations are listed. The σ denotes sigmoid normalization and × denotes multiplication.

ID Model Fusion SV-EER[%] SPF-EER[%] SASV-EER[%]

Dev Eval Dev Eval Dev Eval

CM System
1 AASIST(Baseline) - 46.01 49.24 0.07 0.67 15.86 24.38
2 AASIST-SAP+ERSA - 47.304 47.188 0.067 0.510 15.963 24.655
3 AASIST-SAP+OCCL - 50.644 55.161 0.000 0.360 16.328 26.872

ASV System
4 ECAPA-TDNN (Baseline) - 1.86 1.64 20.28 30.75 17.31 23.84
5 ResNet34 GSP - 0.135 0.192 14.084 23.069 11.616 17.449
6 SE-ResNet34 ASP - 0.404 0.410 11.540 22.402 9.745 16.888
7 ECAPA-TDNN - 0.225 0.228 14.420 21.899 12.354 16.795
8 SimAM-ResNet34 ASP - 0.404 0.252 12.011 22.500 10.512 16.994

Baseline 1 (official) Sum 32.89 35.33 0.07 0.67 13.06 19.31
Baseline 2 (official) Back-end ensemble 7.94 9.29 0.07 0.80 3.10 5.23

Score-fuse ID 5+6+7 & ID 1+2+3 Sum 19.694 23.706 0.000 0.186 8.630 13.892
ID 5+6+7 & ID 1+2+3 σ and × 0.202 0.317 0.000 0.186 0.103 0.279
ID 5+6+7 & ID 1+2+3 Bosaris 0.134 0.298 0.009 0.577 0.067 0.487

Cascade ID 5 & ID 1 Cascade-ASV-CM 0.134 0.204 0.202 0.477 0.202 0.428
Cascade-CM-ASV 0.202 0.335 0.067 0.684 0.149 0.503

ID 5 & ID 3 Cascade-ASV-CM 0.135 0.205 0.135 0.410 0.135 0.391
Cascade-CM-ASV 0.135 0.410 0.000 0.298 0.128 0.410

ID 8 & ID 2 Cascade-ASV-CM 0.404 0.390 0.404 0.260 0.404 0.288
Cascade-CM-ASV 0.451 1.359 0.067 1.252 0.202 1.322

ID 5+6+7 & ID 1+2+3 Cascade-ASV-CM (submitted) 0.202 0.462 0.202 0.186 0.202 0.209
Cascade-CM-ASV 0.173 0.242 0.000 0.230 0.096 0.242

achieves a further generalizability improvement in the evalua-
tion set by fine-tuning with ERSA strategy.

It is worth mentioning that although we extracted the Vox-
sub dataset, simply adding these bonafide samples to the CM
training set does not improve the CM performance. However,
after integrating the proposed OCCL loss function, the over-
all CM performance is further enhanced. This improvement
may be attributed to the fact that this loss function makes the
Euclidean distances between embeddings of bonafide audios
in VoxCeleb 2 and ASVSpoof2019 LA closer, and thus the
bonafide embedding space is more compact.

Unfortunately, simply fusing SV embedding into the CM
system seems not useful. This may still be due to the domain
mismatch mentioned in section 3.2, as the CM performance
with SV-embd-V2 has increased considerably compared with
the one with SV-embd-V1.

4.3. Results on the Combined System

The results of score ensemble experiments are summarized in
Table 3. More detailed results can be found in [25].

As can be seen from the score fusion section of the table,
the simple summation method performs poorly due to the dif-
ferences among the score distributions of different subsystems.
This problem can be effectively mitigated by normalizing the
scores through the sigmoid function and multiplying them to-
gether [26]. The optimal result in this part is also obtained by
this method.

The cascaded systems section of the table shows results of
different cascading combinations. We have noted that the AA-
SIST CM system in the baseline is highly complementary to the
systems trained by ourselves. Furthermore, while the Cascade-

CM-ASV approach performed better on the development set,
the Cascade-ASV-CM approach generally performed better on
the evaluation set, possibly because the development set has
appeared in the training data of CM systems. In other words,
for unknown scenarios, the more generalized system with lower
EER is more suitable to be the first module with hard decisions.
Finally, we submit the results of the Cascade-ASV-CM method.

5. Conclusion

In this paper, we describe our submitted system for the 2022
SASV challenge. We mainly focus on the CM subsystem and
propose an embedding random sampling fine-tuning strategy to
improve performance. Besides, by considering the great do-
main mismatch between datasets, we propose the one-class con-
fusion loss, which improves the CM subsystem’s performance
even further. The final cascaded system submitted achieved
0.21% EER on the SASV challenge evaluation set. In the future,
we will try to collect a large scale database with both speaker
and spoofing labels available. So we can explore more advanced
joint learning approaches with sufficient data.
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