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ABSTRACT

In this paper, we present the speaker diarization system for the Multi-
channel Multi-party Meeting Transcription Challenge (M2MeT)
from team DKU DukeECE. As the highly overlapped speech exists
in the dataset, we employ an x-vector-based target-speaker voice
activity detection (TS-VAD) to find the overlap between speakers.
Firstly, we separately train a single-channel model for each of the 8
channels and fuse the results. In addition, we also employ the cross-
channel self-attention to further improve the performance, where
the non-linear spatial correlations between different channels are
learned and fused. Experimental results on the evaluation set show
that the single-channel TS-VAD reduces the DER by over 75% from
12.68% to 3.14%. The multi-channel TS-VAD further reduces the
DER by 28% and achieves a DER of 2.26%. Our final submitted
system achieves a DER of 2.98% on the AliMeeting test set, which
ranks 1st in the M2MET challenge. In this challenge, our team is
denoted as A41.

Index Terms— Target-speaker voice activity detection, Multi-
channel speaker diarization

1. INTRODUCTION

Meeting scenario is one of the most valuable scenarios for speech
technologies and becomes increasingly important as the meeting is
taking place every day. However, such a scenario is also one of the
most challenging scenarios due to the highly overlapped speech and
far-field signals with noise and reverberation. In addition, a fixed
microphone array is usually equipped as the recording device in such
a scenario, providing the multi-channel signals which do not only
increase the difficulty but also improve the performance.

As the conventional clustering-based speaker diarization sys-
tem assumes that a segment only contains one speaker, it is not
easy to recognize the overlapped speech without additional modules.
Therefore, previous research focuses on reducing the error brought
by overlapped speech, including the speech separation [1] as pre-
processing, the target-speaker voice activity detection (TS-VAD) [2]
as post-processing, and the end-to-end neural diarization (EEND) as
post-processing [3] or directly producing the overlap-aware diariza-
tion results [4].

Recently, the cross-channel attention has been successfully em-
ployed for multi-channel speech signals in speech enhancement [5],
speech separation [6, 7], speech recognition [8] and speaker diariza-
tion [9] and achieves good results on these tasks. Cross-channel at-
tention can learn the non-linear contextual relationship across chan-
nels both within and across time steps. The outputs of the cross-
channel attention are usually fused by global average pooling or con-
catenation for subsequent processing.
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In this paper, we present our speaker diarization system on the
Alimeeting dataset for M2MeT challenge [10, 11]. Considering that
the average speech overlap ratio is over 30% in this dataset, overlap
detection is important to reduce the DER. Since TS-VAD achieved
the state-of-the-art (SOTA) results in several diarization tasks [12,
13], we select it as our post-processing module for overlap detection
and diarization results refinement. In addition, we employ cross-
channel self-attention to fuse the speaker embedding of different
channels during TS-VAD training to improve the performance fur-
ther.

The rest of this paper is organized as follows: Section 2 intro-
duces the speaker embedding training. Section 3 presents the details
of the diarization system. Section 4 gives the experimental results
and discussion. Finally, Section 5 concludes this paper and presents
the future work.

2. DEEP SPEAKER EMBEDDING EXTRACTION

2.1. Dataset

The experiments are conducted on the CN-Celeb dataset [14] and
AliMeeting dataset [10]. We adopt the two-stage training method to
optimize the speaker embedding model. In the pre-training stage, the
CN-Celeb dataset is employed as the training set. Next, the model is
separately fine-tuned on two different datasets, one is the AliMeeting
training set, and another is the combination of the CN-Celeb and Al-
iMeeting training set. As the AliMeeting dataset does not provide the
single-speaker utterances, we select all non-overlapped speech seg-
ments for speaker embedding training, where the segments shorter
than 2 seconds are dropped. Finally, we build a trial set from the Al-
iMeeting evaluation set to evaluate the performance of the speaker
embedding system. The trial set contains 10692 trials from 25 speak-
ers.

2.2. Data Augmentation

We perform online data augmentation [15] with MUSAN dataset
[16]. We only augment the speech with ambient noise for the back-
ground additive noise, as noise with speech is not allowed in this
challenge. In addition, 40,000 simulated room impulse responses
(RIRs) from small and medium rooms are used for the reverberation
[17]. To further enrich the training samples, we adopt the amplifica-
tion and tempo (change audio playback speed but do not change its
pitch) to audio signals.

2.3. Deep Speaker Embedding Model

We employ the ResNet34 [18] as our speaker embedding model, and
the structure of the model is the same as that in [19]. The encoding
layer is based on global statistic pooling (GSP), and the dimension



of the speaker embedding layer is 128. The ArcFace [20] with a mar-
gin of 0.2 and softmax prescaling of 32 is used to train the speaker
embedding model. During the evaluation phase, cosine similarity is
employed for scoring.

3. MULTI-CHANNEL SPEAKER DIARIZATION

3.1. Dataset

We only use the Alimeeting dataset in the speaker diarization system.
For the clustering-based system, the model is trained on the training
set and evaluated on the evaluation set. For the TS-VAD model, we
create a simulated dataset from the Alimeeting training set, and the
simulation process is as follows:

1. As each speaker in the AliMeeting dataset has a unique identi-
fication, we select all non-overlapped speech for each speaker
from the AliMeeting training set for simulation.

2. Extract the labels from the transcript of the AliMeeting train-
ing set and remove all silence regions.

3. During the training stage, the simulated data is generated in
an online manner, where we randomly choose a segment of
the label and fill the active region with the continuous non-
overlapped speech segments.

The more detailed simulation process can be found in [13]. Finally,
the Alimeeting evaluation set is adopted as the validation and evalu-
ation set.

3.2. Clustering-based System

The clustering-based system is the same as that in [21], where we
use an LSTM-based network to extract the affinity matrix. First,
we perform the uniform segmentation on all speech regions with a
length of 1.28s and a shift of 0.64s. Next, the speaker embedding is
extracted from all segments and augmented with Diac-augmentation
[22] with a probability of 0.8. The speaker embedding sequences
are then fed to the network for training. The training details can
be found in [21, 13]. Finally, we employ spectral clustering to get
the initialized diarization result, which is the input of the TS-VAD
system.

3.3. Single-channel TS-VAD

Unlike the original TS-VAD [2] that takes i-vector as target-speaker
embedding, we use the deep speaker embedding extracted by ResNet
to detect the target-speaker. Figure 1 shows the architecture of our
single-channel TS-VAD model. First, a ResNet, which has the same
architecture as the speaker embedding model, extract the frame-level
speaker embeddings. Next, the target-speaker embeddings are con-
catenated with the frame-level speaker embeddings. An encoder
layer separately extract the detection state of each target-speakers.
These detection states are concatenate and process by a BiLSTM to
find the relationship between each speaker. Finally, a linear layer
with a sigmoid function produce the final decision for each target
speaker. The encoder can be a multi-layer BiLSTM or a Transformer
encoder that can encode the contextual information across time, and
the Transformer encoder is adopt in out experiments.

The training step is as follows:

1. Copy the parameters of the pre-trained speaker embedding
model to the front-end model in the TS-VAD model. We keep
the front-end model frozen and only train the back-end model
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Fig. 1. The architecture of the single-channel TS-VAD model

on the simulated data for 10 epochs with a learning rate of
10−4.

2. Next, after the back-end model converges, we unfreeze the
front-end model and jointly train the whole model for another
10 epochs with a learning rate of 10−4.

3. Finally, we fine-tune the model on the AliMeeting training
set for 200 epochs with a learning rate of 10−5. The 5 best
models with the lowest validation loss are averaged as the
final model for evaluation and inference.

The model is optimized by the Adam optimizer with binary cross-
entropy loss. The input is 16s chunked waves, and the acoustic
feature is 80-dim log Mel-filterbank energies (Fbank) with a frame
length of 25ms and a frame shift of 10ms. The dimension of the
output is a 4-dimensional vector that represents the existence proba-
bilities for each speaker at each time step as the maximum number of
speakers in the AliMeeting dataset is 4. We separately train a model
for each channel, producing 8 single-channel TS-VAD models.

These three training steps are very important to obtain a good
result in our experiments. We also try to directly train the whole
model, but the model cannot converge for a very long time no mat-
ter we train from scratch or copy the parameters of the pre-trained
speaker embedding model to the front-end ResNet. If we directly
train the whole model, the parameters of the front-end model will be
changed when the back-end model does not converge, which makes
the training difficult.



Table 1. The performance of speaker embedding model.

Training data Training stage CN-Celeb trial AliMeeting trial

EER[%] mDCF0.01 EER[%] mDCF0.01

CN-Celeb Pre-train 12.65 0.6751 - -
CN-Celeb + AliMeeting Fine-tune - - 3.199 0.353
AliMeeting Fine-tune - - 3.816 0.382
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Fig. 2. The architecture of the multi-channel TS-VAD model

3.4. Multi-channel TS-VAD

The training set and training process are the same as that of the
single-channel TS-VAD, and the only difference is the architecture
and the input of the model. Figure 2 shows the architecture of the
multi-channel TS-VAD, where a cross-channel self-attention layer
is employed on the concatenated embeddings to learn the cross-
correlation between different channels.

Given C-channels of Fbank sequence X = (X1, ...,Xi, ...,XC)

and the target-speaker embedding from N target speakers S̃ =
(S̃1, ..., S̃i, ..., S̃C), the corresponding target speaker decision is
Y = (y1, ...,yt, ...,yT ), where Xi ∈ RT×F is of T frames,
S̃i ∈ RN×D is the D-dimensional speaker embedding from N tar-
get speakers, and yt ∈ {0, 1}N is the target speaker decision at
time step t with dimension of N. Next, the front-end ResNet takes

the C-channels of Fbank sequence as input and produce a frame-
level speaker embedding sequence Ŝ = (Ŝ1, ..., Ŝi, ..., ŜC), where
Ŝi ∈ RT×D is the frame-level speaker embedding from the ith chan-
nel. Later, the target-speaker embedding is repeated T times and
the frame-level speaker embedding is repeated N times. These two
speaker embedings are concatenated at the embedding dimension:
S = (S1, ...,Si, ...,SC), where Si ∈ RT×N×2D .

The cross-channel self-attention takes the concatenated speaker
embedding Sin as input:

Sin = concat(S) ∈ RT×N×C×2D (1)

Qi = Wi
QSin + bi

Q (2)

Ki = Wi
KSin + bi

K (3)

Vi = Wi
V Sin + bi

V , (4)

where Qi, Ki and Vi denotes the query, key and value matrices for
the ith head. Wi ∈ RE×2D and bi ∈ RE are the weight and bias
for the ith head. Next, the scaled dot-produce attention is applied to
the query, key and value:

Attention(Qi,Ki,Vi) = softmax
Qi(Ki)⊺√

n
Vi, (5)

where n = E. Next, a positional-wise feed-forward layer with a
ReLU activation is applied to generate the output, where layer norm
and residual connections are employed between each layer. The out-
put is denoted by Sout ∈ RT×N×C×2D . Finally, the output is aver-
aged over channel dimension by a global average pooling layer:

S′ =
1

C

C∑
i=1

Sout,i, (6)

where S′ ∈ RT×N×2D . Finally, the back-end model processes this
fused speaker embedding S′ in the same way as the singel-channel
TS-VAD processes the concatenated speaker embedding. In our ex-
periments, we employ a 2-layer and 2-head Transformer Encoder as
the cross-channel self-attention layer.

3.5. Fusion

We employ the DOVER-Lap [23] to fuse the systems that we men-
tioned above.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Speaker Embedding

The performance of the speaker embedding model is reported in Ta-
ble 1. As the model fine-tuned with CNCeleb + AliMeeting training
set shows the best performance, it is adopted as the speaker embed-
ding model for the speaker diarization task.



Table 2. The performance of speaker diarization model on the AliMeeting evaluation set. For TS-VAD model, we report the DER of the 3rd
round, where the input is the diarization results from the previous round.
∗ The result is from the MC-TS-VAD model initialized by ground-truth label.

Model AliMeeting evaluation set AliMeeting test set

MISS[%] FA[%] SpkErr[%] DER[%] JER[%] DER[%] JER[%]

Clustering
channel 1 10.6 1.2 1.9 13.80 27.03 - -
channel 2 10.5 1.4 1.0 12.86 24.19 - -
channel 3 11.0 1.2 1.0 13.27 25.56 - -
channel 4 10.8 1.4 0.9 13.13 24.77 - -
channel 5 10.9 1.3 1.1 13.38 25.06 - -
channel 6 10.7 1.3 1.0 12.97 23.86 - -
channel 7 10.8 1.3 1.0 13.08 23.67 - -
channel 8 10.6 1.2 0.6 12.68 23.09 - -

DOVER-Lap fusion 11.6 0.8 0.8 13.23 24.89 - -

SC-TS-VAD
channel 1 2.5 1.0 0.7 4.12 12.43 - -
channel 2 2.6 1.1 0.6 4.26 12.82 - -
channel 3 2.8 1.0 0.4 4.21 12.78 - -
channel 4 2.5 0.9 0.5 3.93 12.56 - -
channel 5 2.6 0.9 0.4 3.95 12.08 - -
channel 6 2.5 0.9 0.4 3.90 11.86 - -
channel 7 2.3 0.9 0.4 3.61 11.55 - -
channel 8 2.4 0.8 0.3 3.49 11.28 - -

DOVER-Lap fusion 2.3 0.5 0.3 3.14 11.08 - -

MC-TS-VAD 1.1 1.1 0.1 2.26 8.27 2.98 9.24
MC-TS-VAD∗ 1.1 1.1 0.1 2.32 8.34 - -

Official baseline [11] - - - 15.24 - 15.6 -

4.2. Speaker Diarization

During the inference stage of the TS-VAD model, we first select
all non-overlapped speech regions for each speaker based on the
initialized results from the clustering-based system and extract the
target-speaker embeddings. Next, we remove all silence regions and
break the audio signals into 16s chunked waves with a 4s shift. Af-
ter obtaining the probabilities from the TS-VAD model, we apply
the median filtering with a window size of 7 to smooth the probabil-
ity sequences. This results can also be the initialization of the next
round of TS-VAD inference, and we infer it for 3 rounds.

Table 2 shows the results of all systems on the AliMeeting eval-
uation set. The missed speaker time (MISS), false alarm speaker
time (FA), speaker error time (SpkErr), DER, and JER are reported
for the evaluation set. In addition, for the clustering-based system
and single-channel TS-VAD (SC-TS-VAD) system, the performance
of each channel is reported, and the results of all channels are fused
by DOVER-Lap. Results show that the model trained on the data of
the 8th channel achieves the lowest DER, and fusion degrades the
performance. For the SC-TS-VAD model, the fused system shows
the best performance, and the MISS error is significantly reduced
compared with the clustering-based method. The multi-channel TS-
VAD (MC-TS-VAD) can further reduce the MISS error and achieve
the lowest DER of 2.26% on the evaluation set and 2.98% on the test
set according to the chanllenge results [11]. We also try to fuse this
system with other systems, but the performance always goes worse.
Therefore, our submitted system is this single system (MC-TS-VAD)
without any fusion.

In our experiments, we also find that the initialized results are

not very important for TS-VAD in this challenge. The reason is that
each of the recordings lasts over 30 minutes, which can produce a
very long single-speaker segment for each speaker. If the number
of speakers is correctly estimated, the TS-VAD model can always
achieve the same results after several rounds even the initialized re-
sults are different. We also report the Multi-channel TS-VAD results
initialized by the ground-truth label. It is interesting to note that even
using the ground-truth label as initialization, the results are still sim-
ilar to the results initialized by clustering-based results. Therefore,
we do not explore the multi-channel clustering-based system.

5. CONCLUSION AND FUTURE WORK

In this paper, we present our submitted system for the M2MeT chal-
lenge. As the dataset contains highly overlapped speech, most of the
error of our clustering-based system is from the MISS error. Next,
we employ the single-channel TS-VAD model to refine the diariza-
tion results and reduce the MISS error. Results show that the DER
is significantly reduced by 75%. In addition, we also apply cross-
channel attention to the TS-VAD model to further improve the per-
formance by 28%.

In the future, we will train a speaker embedding model on the
multi-channel data and evaluate the performance of the diarization
system. Also, we will perform some ablation studies on the cross-
channel self-attention layer, e.g., applying the cross-channel self-
attention on the detection states instead of the speaker embedding
or increasing the number of parameters of the cross-channel self-
attention.
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