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ABSTRACT

In this paper, we propose an end-to-end target-speaker voice activ-
ity detection (E2E-TS-VAD) method for speaker diarization. First,
a ResNet-based network extracts the frame-level speaker embed-
dings from the acoustic features. Then, the L2-normalized frame-
level speaker embeddings are fed to the transformer encoder which
produces the initialization of the speaker diarization results. Later,
the frame-level speaker embeddings are aggregated to several target-
speaker embeddings based on the output from the transformer en-
coder. Finally, a BiLSTM-based TS-VAD model predicts the re-
fined diarization results. Several aggregation methods are explored,
including soft/hard decisions with/without normalization. Results
show that E2E-TS-VAD achieves better performance than the origi-
nal TS-VAD method with the clustering-based initialization.

Index Terms— End-to-end speaker diarization, target-speaker
voice activity detection

1. INTRODUCTION

Speaker diarization is the task of partitioning an audio file into ho-
mogeneous segments that belong to the same speaker, and it aims to
determine “who spoke when” in an audio recording.

A conventional modular speaker diarization system consists of
several independent modules. First, some pre-processing techniques
are employed, such as speech enhancement [1], speech separa-
tion [2] and dereverberation [3]. Next, voice activity detection is ap-
plied to remove the non-speech region [4], and the speech regions are
split into several short speaker-homogeneous segments by uniform
segmentation [5] or speaker change detection (SCD) [6]. Speaker
representations like i-vector [7] or x-vector [8] are then extracted
from these segments, where PLDA [5] or cosine distance can be
used to measure the pairwise similarities between the speaker repre-
sentations. Finally, these speaker representations can be partitioned
into several groups by the clustering algorithms. Besides, some post-
processing methods can be employed to refine the clustering-based
diarization results, such as overlap detection, VBx resegmenta-
tion [9], target-speaker voice activity detection (TS-VAD) [10], and
diarization output voting error reduction (DOVER) [11].

One limitation of the conventional speaker diarization system
is that it cannot handle the overlapped speech since it assumes that
each segment only contains one speaker. Various methods are pro-
posed to solve this problem, such as aforementioned speech separa-
tion, overlap detection, and TS-VAD. TS-VAD has been proved to
be successful in many noisy domains, such as CHIME6 [12] and DI-
HARD III [13] challenge. Another limitation is that the modules of
the conventional modular speaker diarization system are separately
optimized, which needs carefully tuning on each module. Recently,
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a self-attentive end-to-end neural diarization (SA-EEND) framework
has been proposed to solve these two problems in an end-to-end
manner [14].

Considering that both TS-VAD and EEND are good at handling
the overlapped speech, we try to combine the EEND and TS-VAD
models into a single model. We treat the speaker embedding learned
by the EEND model as the target-speaker embedding, and the out-
put from the EEND model can be refined by the TS-VAD model.
The key is to learn a good representation and obtain a robust target-
speaker embedding, which is the connection between the EEND and
TS-VAD model. Fig. 1 shows the architecture of the proposed end-
to-end TS-VAD (E2E-TS-VAD) model, where the whole model is
jointly optimized.

2. RELATED WORKS

2.1. End-to-end neural diarization

Speaker diarization can be formulated as a multi-label classifica-
tion problem under the framework of end-to-end neural diarization
(EEND) [14], where the permutation-invariant training (PIT) loss is
employed to avoid permutation ambiguity [15]. The self-attentive
EEND (SA-EEND) [14] is one of the state-of-the-art models which
shows great performance on the highly overlapped speech data.
Later, an encoder-decoder-based attractor (EDA) is introduced to
the SA-EEND, which can handle flexible numbers of speakers and
further improve the performance [16]. Similar to EEND-EDA, we
also generate speaker embeddings from EEND and generate results
based on frame-wise embeddings and speaker embeddings. But the
difference is that we process these embeddings in a TS-VAD manner
to further improve the performance.

For the SA-EEND, considering an acoustic feature sequence
X ∈ RT×F where T is the length and H is the dimension of the
acoustic feature, the Transformer encoder extracts the frame-level
embeddings S ∈ RT×D where D is the dimension of the embedding.
Next, a linear layer with a sigmoid function predicts the posterior ex-
istence probabilities of each speaker, and the PIT loss minimizes the
smallest loss of all permutations computed over all speakers.

2.2. Target-speaker voice activity detection

Target-speaker tracking has been successfully applied to many
multi-speaker task, including target-speaker automatic speech recog-
nition (TS-ASR) [17],Voice Filter [18], Personal VAD [19] and
TS-VAD [10]. In general, a pre-enrolled target-speaker embedding
is calculated, and the speech or activity of that speaker is extracted
based on that target-speaker embedding.

Considering an acoustic feature sequence X ∈ RT×F , the TS-
VAD model first extract the frame-level speaker information E ∈
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Fig. 1. The architecture of the E2E-TS-VAD model

RT×D and several target-speaker embeddings etarget are concate-
nated with each frame ei separately. Next, several BiLSTM layers
extract the speaker detection for each concatenated feature. Finally,
the detections of each speaker are concatenated again, and a BiL-
STM layer predicts the posterior probabilities for each speaker in
frame-level.

3. END-TO-END TARGET-SPEAKER
VOICE ACTIVITY DETECTION

3.1. Model architecture

As mentioned in [10], some ideas from EEND are adopted in TS-
VAD, e.g., the TS-VAD also predicts speech probabilities for all
speakers simultaneously as the EEND does, and they are both op-
timized by the binary cross-entropy loss function. That is also the
reason that we can combine these two models together since they
take the same inputs and produce the same outputs. However, the
EEND needs to be optimized in a permutation-invariant manner, and
TS-VAD requires pre-enrolled target-speaker embeddings. To cope
with this, we first apply the PIT loss between the EEND output and
label to obtain one optimal permutation of all speakers with the low-
est loss. Later, the output can be sort by that permutation, and we
aggregate the frame-level embeddings based on the output of the
EEND as the target-speaker embeddings. Finally, the target-speaker
embeddings are concatenated with the frame-level embeddings as
the input of the TS-VAD model, which is the same as the original
TS-VAD method in [10].

Fig. 1 shows the model architecture. For the end-to-end model,
we employ a ResNet34 to extract the frame-level speaker embed-
ding, and we treat the transformer encoder with the linear layer as
the classifier. For the TS-VAD model, we employ the same architec-
ture as [10] where the convolutional layers are removed.

3.2. Speaker embedding aggregation

Suppose that the frame-level speaker embedding sequence E =
[e1, e2, ..., eT ] produced by the ResNet is L2-normalized and the
EEND output before the sigmoid function is Ŷ = [ŷ1, ŷ2, ..., ŷT ],
where E ∈ RT×D , Ŷ ∈ RT×N , T is the length of the sequence, D is
the dimension of the embeddings, and N is the number of speakers,
the embeddings can be aggregated in several different ways.

3.2.1. Hard decision

We set a threshold for the EEND output Ŷ and obtain the hard deci-
sions for the frame-level speaker embeddings:

Ĥ = Sigmoid(Ŷ) ≥ threshold, (1)

where Ĥ ∈ {0, 1}T×N is the hard decision matrix whose entry is 1
when the EEND output is great than the threshold and 0 otherwise.
Next, the target-speaker embeddings are aggregated by:

ÊH = ĤᵀE, (2)

where ÊH ∈ RN×D is the target-speaker embeddings for N speak-
ers. Each target-speaker embedding is divided by the number of
active frames of the corresponding speaker in the hard decision ma-
trix. Next, the target-speaker embeddings are L2-normalized and
concatenated with the frame-level speaker embeddings.

3.2.2. Soft decision

For the soft decision, we employ two different strategy: linear and
softmax. The linear soft decision matrix can be obtained by:

Ŝ = Sigmoid(Ŷ), (3)



and the softmax soft decision matrix is calculated by applying soft-
max function along the time axis:

Ŝ = Softmax(Ŷ). (4)
Finally, similar to Eq. 2, the target-speaker embeddings can be

obtained by:

ÊS =
ŜᵀE

T
, (5)

and ÊS is also L2-normalized before concatenation.

3.3. Training objectives

Similar to original EEND [14], we employ the PIT loss [15] for our
ResNet-based EEND model:

LEEND =
1

TN
arg min

Φ∈perm(1,2,...,N)

T∑
t=1

H(yt, Sigmoid(ŷΦ
t )), (6)

where yt is the ground-truth label at time step t, ŷΦ
t is the per-

muted output, T is the length of sequence, N is the number of speak-
ers, perm(1, 2, ..., N) is all permutation sets of all speakers, and
H(yt, ŷ

Φ
t ) is the binary cross-entropy loss.

As obtaining the output from the EEND model, we can get the
target speaker embeddings as mentioned in Sec. 3.2. The loss func-
tion for the TS-VAD model is:

LTS-VAD =
1

TN

T∑
t=1

H((yt), Sigmoid(ỹΦ
t )), (7)

where ỹΦ
t is the output of the TS-VAD model. Since the EEND out-

put is already sorted by the permutation Φ, the target-speaker em-
bedding is also sorted, and so does the output of the TS-VAD model.

To further enhance the performance of TS-VAD model, we
may add some constrains on the frame-level embedding, e.g., re-
duce the intra-speaker distance and increase inter-speaker distances
as well. Given the L2-normalized frame-level speaker embedding
E ∈ RT×D and target speaker embedding Ê ∈ RN×D , we compute
the cosine similarities between them by:

Ĉ = EÊᵀ (8)
where Ê is the target speaker embedding aggregated by soft or hard
decision. Then we employ the multi-label soft margin loss on the
cosine similarity matrix Ĉ:

Lspeaker =
1

NT

T∑
t=1

N∑
i=1

(yt,i ∗ log(
1

1 + e−ĉt,i
)

+ (1− yt,i) ∗ log(
e−ŷt,i

1 + e−ĉt,i
)),

(9)

where yt,i is the ground-truth label of ith speaker at time step t,
and ĉt,i is the corresponding cosine distance between the ith target-
speaker embedding and the frame-level speaker embedding at time
step t. Note that for Lspeaker, we can directly use the ground-truth
hard decision matrix for target speaker embedding aggregation since
it is not required at the testing stage.

Finally, the total training objective is the weight sum of all losses
mentioned above:

L = λLEEND + (1− λ)LTS-VAD + αLspeaker (10)

4. EXPERIMENTS

4.1. Data

The experiments are conducted with the 8 kHz data of two speakers.
The training set is simulated on the Switchboard-2 (Phase I, II, III),
Switchboard Cellular (Part 1, 2) (SWBD), and the 2004-2008 NIST
Speaker Recognition Evaluation (SRE) datasets. Unlike the simu-
lation strategy in the original EEND, we simulate the data with the
ground-truth label of the development set, where the audio resources
are from SWBD and SRE. The development and evaluation set is
the communication telephone speech (CTS) data in the DIHARD III
dataset, which contains only two speakers. We directly use the devel-
opment set for finetuning and the evaluation set for testing. Besides,
MUSAN [20] and RIRs [21] corpus are used for data augmentation.
The data simulation process and augmentation are applied on the fly
during training and finetuning.

4.2. Network parameters

The ResNet34 architecture is similar to that in [22, 23] with the sta-
tistical pooling performed at the frame level, and the dimension of
the frame-level speaker embedding is D = 128. We use two trans-
former encoder blocks with four heads and 128 attention units and
a 128-dim feed-forward layer with a sigmoid function to predict the
initialized EEND output. The frame-level embeddings are concate-
nated with the target-speaker embeddings, producing the 2D = 256-
dim vectors as the input of the TS-VAD model. The first BiLSTM
module for speaker detection contains 2 BiLSTM layers with 128
hidden units. The second BiLSTM module contains one layer with
128 hidden units, where the input dimension isN×2D, andN is the
number of speakers. Finally, a linear layer with a sigmoid function
predicts the TS-VAD output.

4.3. Training process

During the pre-training stage, we first copy the parameters of
a speaker embedding network trained on the 8 kHz VoxCeleb
dataset [24] to the ResNet of our E2E-TS-VAD model. Then,
we train the network with the simulated data for three steps:

• First, keeping the front-end ResNet frozen, we only train the
back EEND and TS-VAD model for 5 epochs to obtain a good
initialization. The decision matrix is the ground-truth label
for the target-speaker embedding aggregation.

• Second, the front-end ResNet is jointly trained with subse-
quent models for another 5 epochs. The decision matrix is
still the ground-truth label.

• Third, applying different decision matrices mentioned in 3.2
and training the network for 10 epochs.

Finally, we finetune this model on the CTS data of the DIHARD
III development dataset for 100 epochs and evaluate it on the test set.

The audio length is 16s for pre-training and finetuning, where
silence regions are removed. The acoustic features are the 80-dim
filterbank energies with a frame length of 25ms and a frame shift
of 10ms. The model is optimized by Adam optimizer. The learn-
ing rate is 10−4 in the pre-training stage and 10−5 in the finetuning
stage. For the loss function, λ is 0.5 and α os 0.1. The aggregation
strategies are the same for training and inference.



Table 1. The DER (%) on the CTS data of DIHARD III without the
speaker loss, where both EEND/TS-VAD DERs are reported.

Decision Type Aggregation Strategy L2 DER
linear softmax

Hard 7 7 3 7.66/5.81
7 7 7 6.96/5.68

Soft
3 7 3 9.49/6.61
7 3 3 8.80/6.76
3 7 7 7.35/6.03

EEND - - - 7.74

Clustering [25] - - - 14.19
TS-VAD [25] - - - 7.03

4.4. Inference and evaluation metric

During the inference stage, we use the whole audio sequence as input
with silence regions removed based on the oracle VAD. The EEND
output is first obtained and becomes the initialization of the TS-VAD
model. After we obtain the first round of EEND and TS-VAD output,
we can also use the TS-VAD output as the initialization for the next
round of TS-VAD inference, called iterative inference.

After we obtain the posterior probabilities of each speaker, we
use a threshold of 0.5 to get the final diarization results. We employ
the diarization error rate (DER) as our evaluation metric, where the
oracle VAD is used for evaluation. We follow the evaluation protocol
in the DIHARD challenge [13], where no forgiveness collar will be
applied to the reference segments prior to scoring, and overlapped
speech will be evaluated.

Table 2. The DER (%) on the CTS data of DIHARD III with the
speaker loss, where both EEND/TS-VAD DERs are reported.

Decision Type Aggregation Strategy L2 DER
linear softmax

Hard 7 7 3 6.97/5.75
7 7 7 7.11/5.70

Soft
3 7 3 8.29/6.60
7 3 3 8.20/6.27
3 7 7 7.90/6.17

4.5. Results

In our experiments, the frame-level speaker embedding are always
L2-normalized for aggregation, and we want to find if the L2-
normalization has much influence on the target-speaker embedding.

Tab. 1 shows the results of the DERs on the CTS data of the
DIHARD III dataset without the speaker loss, where different ag-
gregation strategies are employed. Both the EEND/TS-VAD DERs
are reported in Tab. 1. The results show that the hard decision ag-
gregation strategy without L2-normalization achieves the best DER
of 5.68%, which is far better than the clustering-based results and
also better than the original TS-VAD method of the DIHARD III
winner system [25]. The reason is that we have a better initialized
diarization results than the clustering-based method does, therefore
the TS-VAD model also shows better performance with this better

initialization. The TS-VAD can always refine the EEND output and
produce a better result if the aggregation strategy is appropriately
employed.

In addition, unnormalized target-speaker embedding shows bet-
ter performance than other decision strategies with L2-normalization.
From the results we can know that L2-normalization does not have
much importance on the performance, but the aggregation strategy
does. We also remove the TS-VAD model and only train the ResNet
with the EEND model, result shows that it only achieves a DER
of 7.74%. This means that TS-VAD model doesn’t only refine the
EEND output, but also helps the EEND achieve better performance.

Next, Tab. 2 shows the performance of the speaker loss. It can
increase the EEND performance for most systems, but the improve-
ment of TS-VAD is moderate. For unnormalized aggregation strate-
gies, the performance becomes worse. The reason may be that the
model can only learn the identity information from the speakers in
a recording, which is not enough to learn the discriminative speaker
representations.

Besides, we perform iterative inference on all systems, where we
use the TS-VAD output as the input of the next round of TS-VAD
inference, and we iteratively perform it until the DER converges.
Generally, it takes 2 or 3 rounds for convergence. Tab. 3 shows that
iterative inference can further improve the performance, especially
for the normalized target-speaker embedding compared with Tab. 1.

Table 3. The DER (%) on the CTS data of DIHARD III dataset
using iterative inference without the speaker loss, where only TS-
VAD DER is reported.

Decision Type Aggregation Strategy L2 DER
linear softmax

Hard 7 7 3 5.64
7 7 7 5.66

Soft
3 7 3 6.32
7 3 3 6.53
3 7 7 5.97

5. CONCLUSION

In this paper, we propose an end-to-end framework for target-
speaker voice activity detection (E2E-TS-VAD). Unlike the original
TS-VAD method which needs the initialization from the clustering-
based results, we use an end-to-end model to obtain the initialized
diarization results and feed them to the TS-VAD model in an end-to-
end manner. Experimental results also show that the E2E-TS-VAD
outperforms the original TS-VAD with clustering-based initializa-
tion. Some limitations also exist. First, we do not use the standard
EEND framework since it is not compatible with our TS-VAD
implementation. Therefore, the EEND performance of the E2E-
TS-VAD is worse than the state-of-the-art EEND model. We will
extend this method to the standard SA-EEND model and perform
experiments on the data with more than two speakers in the future.
In addition, speaker loss does not show much improvement in the
final diarization results. In the future, we are going to build a global
speaker embedding dictionary for our E2E-TS-VAD, which makes
it possible to be used for the online speaker diarization.
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