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Abstract

This paper describes the systems developed by the DKU-
Duke-Lenovo team for the Fearless Steps Challenge Phase III.
For the speech activity detection (SAD) task, we employ the
U-Net-based model which has not been used for SAD before,
observing a DCF of 1.915% on the eval set. For the speaker
identification (SID) task, we adopt the ResNet-SE and ECAPA-
TDNN model, and we obtain a Top-5 accuracy of 86.21%. For
the speaker diarization (SD) task, we employ several different
clustering methods. Besides, domain adaptation, system fu-
sion, and Target-Speaker Voice Activity Detection (TS-VAD)
significantly improve the SD performance. We obtain a DER
of 12.32% on track 2, and the major contribution is from our
ResNet-based TS-VAD model. We finally achieve a first-place
ranking for SD and SID and a second-place for SAD in the chal-
lenge.

Index Terms: Speech Activity Detection, Speaker Identifica-
tion, Speaker Diarization, Target-Speaker Voice Activity De-
tection

1. Introduction

Fearless Steps Challenge 2021 Phase-3 (FS3) [1, 2, 3] is a
speech challenge hosted by the Center for Robust Speech Sys-
tems (CRSS) at the University of Texas at Dallas. This chal-
lenge is designed for the digitization, recovery, and diariza-
tion of 19,000 hours of original analog audio data, as well as
the development of algorithms to extract meaningful informa-
tion from this multichannel naturalistic data resource [1, 2, 3].
Different from the previous Fearless Steps Challenge, FS3 in-
cludes more tracks in this competition: Speech Activity De-
tection (SAD), Speaker Identification (SID), Speaker Diariza-
tion (SD), Automatic Speech Recognition (ASR), and Conver-
sational Analysis (CONV). In this paper, we focus on the SAD,
SID, and SD tasks.

SAD is used for tagging the speech regions in the audio
streams and often serves as the front-end of other speech pro-
cessing modules. Recently, U-Net has shown excellent perfor-
mance in image segmentation [4]. Considering that the SAD is
to segment the speech and the nonspeech region in audio, which
is similar to the image segmentation task, we adopt the U-Net in
our SAD system. Furthermore, SpecAugment [5] is introduced
as a data augment method to improve the performance. Finally,
the result is smoothed by a Hidden Markov Model (HMM).

The SID task aims at the identification of a person from
characteristics of voices. In the past few years, the performance
of SID has been significantly improved with the i-vector-based
method [6] and the speaker embedding modeling using deep
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neural networks [7, 8]. In the SID task, we employ the ResNet-
SE [8, 9] and ECAPA-TDNN [10] model to get a robust speaker
embedding.

SD is the task of splitting audio into homogeneous pieces
which belong to the same speaker, and it aims to determine
“who spoke when” in an audio or a video recording [11, 12, 13].
Generally speaking, the traditional SD system contains several
sub-modules: SAD, segmentation, speaker embedding extrac-
tion and clustering, etc. For the SD task, we first employ the
LSTM-based model [14] and the attention-based model [15]
with spectral clustering. In addition, we also perform agglom-
erative hierarchical clustering (AHC) directly on the speaker
embedding. Finally, we employ target-speaker voice activity
detection (TS-VAD) [16, 17, 18] and system fusion [19, 20]
to further improve the SD performance. The major contribu-
tion is our ResNet-based TS-VAD model, which takes the Deep
ResNet vector as the speaker embedding.

The rest of this paper is organized as follows. Section 2, 3
and 4 introduce the SAD, SID, and SD task, respectively. Ex-
perimental results are presented in Section 5. Conclusion is pro-
vided in Section 6.

2. Speech Activity Detection
2.1. U-Net-based SAD

Although U-Net [21] has been used in multi-task learning for
speech enhancement (SE) and SAD, the SAD module relies on
the time-frequency masks obtained by U-Net-based SE. Here
the SAD is regarded as a classification task and the U-Net is
adopted to learn from the spectrum.

Figure 1 shows the structure of the U-Net, it consists of two
paths: the encoding path (left side) and the decoding path (right
side). In the encoding path, the input feature is firstly passed
into the CNN block. It consists of 2 convolution layers with the
kernel size of 3 x 3, the number of the kernel is 16. Batch Nor-
malization (BN) [22] and Rectified Linear Unit (ReLU) [23] is
applied after each convolution layer. The output of the block is
passed to a 2 X 2 max-pooling layer, then the subsampled feature
maps are passed to the next CNN block with the kernel number
doubled. In the decoding path, the feature maps are passed to
a deconvolution layer with the number of kernels halved and
concatenate with the feature maps from the encoding path, then
passed to the next CNN block with the kernel number halved.
After the decoding path, a 1 X 1 convolution layer followed by
a linear layer and softmax layer is applied to obtain the proba-
bility.

http://dx.doi.org/10.21437/Interspeech.2021-235
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Figure 1: Block diagram of the U-Net used for SAD [21]
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2.1.1. SpecAugment

SpecAugment [5] is a simple data augmentation method and has
shown high effectiveness in enhancing the performance of the
ASR task. By viewing the input features as an image, SpecAug-
ment applies three basic augmentations: 1. time warping: A
random point along the timeline passing through the center of
the image is to be warped either to the left or right. 2. frequency
masking: several consecutive frequency channels are masked.
3. time masking: several time steps are masked. In this paper,
we only apply the frequency masking to the input feature.

2.1.2. HMM Smoothing

An HMM is used for final smoothing. It consists of 1 consecu-
tive state for noise and 40 for speech, the probability of staying
in the state and switching are both 0.5. The output of the U-Net
is regarded as the emission probability of the HMM.

3. Speaker Identification

We train two neural network-based systems for the speaker
identification task, i.e., ResNet-SE [8, 9] and ECAPA-TDNN
[10]. The two systems are firstly trained on a large-scale speaker
recognition dataset and then fine-tuned on the FS3 SID training
data.

3.1. ResNet-SE

The ResNet-based system has the same network architecture
as [24]. It contains a ResNet34 front-end pattern extractor, a
global statistic pooling layer, and two fully connected (FC) lay-
ers to extract the 128-dimensional speaker embedding and clas-
sify speakers in the training set. Besides, we apply the Squeeze-
and-Excitation [9] operation to explicitly model channel inter-
dependencies. We train the network with additive angular mar-
gin (AAM) loss [25]: the re-scaling factor s is set to 32 and
angular margin m is set to 0.2.

3.2. ECAPA-TDNN

We also adopt the same ECAPA-TDNN model as proposed in
[10] with 1024 channels in the convolutional frame layers. The
dimension of the speaker embedding is set to 128. AAM loss
is used to train the network with a re-scaling factor s of 30 and

1045

angular margin m of 0.2.

3.3. Fine-tuning

The neural network-based system requires a large training
dataset to obtain good model generalizability. The FS3 train-
ing data with only 218 speakers is not able to learn discriminant
speaker representations. To improve model capacities and learn
good speaker representations, we pre-train the systems on Vox-
celeb [26, 27] with 7323 speakers and then fine-tuned on the
FS3 SID training data. During fine-tuning, we replace the final
FC layer to classify 218 speakers in FS3 SID data. We firstly
freeze other model parameters to solely train this FC layer until
convergence. In the remaining training epoch, all parameters of
the network are jointly optimized.

4. Speaker Diarization
4.1. Preprocessing

For SAD, we use the same method as mentioned in Section 2.
The SAD model is trained from the data in the SD task.

For SID, we use the same ResNet-SE system from Section
3.1. We split the SD training and dev data into small segments
that only contain a single speaker and remove those segments
shorter than 2.0 seconds. Then we fine-tune the model on this
split training set and evaluate it on the split dev set.

For segmentation, we perform uniform segmentation for all
speech regions to generate the speaker-homogeneous segments.
The most talkative speaker in each segment is assigned as the
label.

After uniform segmentation, we try to merge two consecu-
tive segments pair to a longer segment if the cosine similarity
of these two segment embeddings is greater than a predefined
stop threshold. Then, for those merged segments, we calculate
the new speaker embedding by taking the mean of these merged
segments embedding and merge the consecutive segments iter-
atively until the cosine similarity of any two consecutive seg-
ments is lower than the pre-defined stop threshold.

4.2. LSTM/Attention-based Similarity Measurement and
Spectral Clustering

We only use uniform segmentation in this system. We em-
ploy an LSTM-based and an attention-based neural network to
measure the similarity between two segments, respectively. For
LSTM-based similarity measurement, the architecture and net-
work configuration are the same as the LSTM model in [14].
For attention-based similarity measurement, the network archi-
tecture and training process is the same as the attentive vector-
to-sequence (Att-v2s) scoring in [15]. In addition, we em-
ploy the augmentation method [28] on the training embedding,
which can rotate the 12-normalized embedding by multiplying
an orthonormal matrix. Finally, after we get the affinity matrix,
we can employ the spectral clustering [29] to obtain the diariza-
tion results. Details can be found in [14, 15].

4.3. AHC-based Clustering

For agglomerative hierarchical clustering (AHC), we use co-
sine distance to measure the similarity between the embedding
of two segments. Then we perform AHC on the similarity ma-
trix with a relatively high stop threshold and get several clus-
ters. The number of these clusters is greater than the number of
speakers in most cases. Next, we split these clusters into ‘long
clusters’ and ‘short clusters’ by setting a duration threshold,
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Figure 2: The architecture of the TS-VAD model

and then compute the mean of the embedding in each cluster as
the center embedding, so that we can assign these short clusters
to long clusters. Finally, if a short cluster is too different from
all long clusters, which means that the distance between them
is lower than a speaker threshold, we treat it as a new speaker.
We employ grid search to find the best thresholds to obtain the
lowest DER.

4.4. Target-speaker Voice Activity Detection

After we obtain the first round of diarization results, we try
to perform target-speaker voice activity detection (TS-VAD) to
further enhance the performance. The TS-VAD is first proposed
in [16], and has shown a superior performance on the DIHARD
III challenge [17, 18]. Unlike previous methods which use i-
vector as speaker embedding, we employ deep ResNet vector
as speaker embedding for TS-VAD. Previous work [16] show
that x-vector works poorly in the TS-VAD task, but we find that
if use a more complex front-end network to extract the frame-
level speaker information, it also achieves a good performance.
Figure 2 shows the architecture of our TS-VAD model. The
GSP denotes the global statistical pooling layer.

4.5. System Fusion

We employ DOVER-Lap [20] as our fusion strategy, which fur-
ther enhances the performance.

5. Experimental Results
5.1. SAD
5.1.1. Experimental Setup

The SAD model is trained on the FS3 training set. The
input feature is the magnitude spectrum from a Short Time
Fourier Transform (STFT), the window length is 25 ms and the
frameshift is 10 ms, the hamming window is applied to each
frame, and the FFT size is 512, therefore the dimension of the
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input feature of each frame is 257. Features are split into chunks
for training, each chunk contains 400 frames, and the chunk
shift is 200 frames.

Before feeding the feature into the model to train, the
SpecAugment is applied. The maximum width of the frequency
mask is 10, and the number of the mask is 2.

We train the model for 50 epochs with a batch size of 100.
The cross-entropy is adopted to calculate the loss between the
estimated probability and the ground-truth one-hot label. The
Adam [30] optimizer is used with a learning rate of 0.001. The
dev set is used for validation. The learning rate is decreased by
a factor of 0.1 when the validation loss doesn’t decrease for 3
epoch and the training will be terminated when the validation
loss doesn’t decrease for 10 epochs. The model with the lowest
validation loss is selected as the best model and evaluated on
the eval Set.

5.1.2. Results

Table 1 shows the results of the SAD task. The Detection Cost
Function (DCF) on the Eval Set of U-Net is 2.243%, with the
SpecAugment, the DCF reduces to 2.062%, and after HMM
smoothing, the DCF is further reduced to 1.915%. Our best
result ranks 2nd among all submissions. It takes 6.2 s for our
system to process 30-minute audio with one GPU telsa m40, the
Real-Time Factor (RTF) is 0.0034.

Table 1: DCF of the models in SAD task

System Dev(%) Eval(%)
U-Net 1.106 2.243
U-Net+SpecAugment 1.217 2.062
U-Net+SpecAugment+HMM 0.937 1.915
Baseline - 15.610
5.2. SID

5.2.1. Experimental Setup

The pre-training data includes VoxCeleb 1 [26] and VoxCeleb
2 [27] with 1,276,888 utterances from 7,323 speakers. The orig-
inal data with a sampling rate of 16,000 are downsampled to
8,000 to match the FS3 dataset. The FS3 speaker identification
dataset includes 218 speakers with 27,336, 6,373, and 1,4077
utterances in the training, development, and evaluation set re-
spectively.

We perform on-the-fly data augmentation [31] with MU-
SAN dataset [32]. The additive noise includes ambient noise,
music, and babble noise. The babble noise is constructed by
mixing three to eight speech files into one. For the convolu-
tional noise, we use 40,000 simulated room impulse responses
(RIR) from small and medium rooms in MUSAN.

For feature extraction, an 80-dimensional log Mel-
spectrogram with a 25ms Hamming window and 10ms shifts
is used. The duration between 2 to 4 seconds is randomly gen-
erated for each data batch during training.

For both ResNet-SE and ECAPA-TDNN systems, network
parameters are updated using stochastic gradient descent (SGD)
algorithm [33] with a momentum of 0.95. The learning rate is
initially set to 0.1 and is divided by 10 whenever the training
loss reaches a plateau.



5.2.2. Results

Table 2 shows the results of SID task. Top-K accuracy is used
as the evaluation metric. The ResNet-SE and ECAPA-TDNN
systems achieve similar performance. The equally weighted
score-level fusion of the two systems further improves the iden-
tification performance. We obtain top-3 accuracy of 94.35%
and 83.27% on the development and evaluation set respectively.

Table 2: Top-K Accuracy [%] of SID task

Topl Top2 Top3 Top4 Top5
Development Set
ResNet-SE 81.50 90.54 92.67 9393 94.55
ECAPA-TDNN 81.26 89.82 9244 93.50 9443
Fusion 81.81 9197 9435 9526 9594
Evaluation Set
Fusion 7193 80.44 8327 85.00 86.21
5.3. SD

5.3.1. Experimental Setup for SID and SAD model

The SAD model is based on U-Net and the SID model is the
ResNet-SE-based system. The SAD model is trained on the SD
training set. The SID model is trained on the Voxceleb 1&2 and
finetuned on the SD training set.

5.3.2. Experimental Setup for LSTM/Att-v2s Scoring

For LSTM- and attention-based model, we use AMI [34],
ICSI [35], voxconverse dev [36], ISL (LDC2004S05), NIST
(LDC2004S09) and SPINE1&2 (LDC2000S87, LDC2000S96,
LDC2001504, LDC2001S06, LDC2001S08) for pre-training.
The FS3 training set is used for finetuning.

‘We only use uniform segmentation with a length of 1.5s and
a shift of 0.75s, and the training process is the same as [14, 15].

5.3.3. Experimental Setup for AHC

For AHC-based clustering, we use both uniform and AHC-
based segmentation. We perform uniform segmentation for all
speech region with length of {1.5s, 1.0s, 0.5s} and shift of
{0.75s, 0.50s, 0.25s}, where length is greater than shift. For
AHC-based segmentation, the stop threshold is 0.4. For AHC-
based clustering, the stop threshold is 0.4, the duration threshold
is 5s, and the speaker threshold is 0.2. All of these parameters
are tuned on the dev set.

5.3.4. Experimental Setup for TS-VAD

The training data of TS-VAD is simulated from SRE-databases
including SRE 2004, 2005, 2006, 2008, and Switchboard. We
first perform VAD on these datasets and extract the segments
longer than 2 seconds. Then, we simulated about 1,600 hours
of data using these segments, and each recording contains 4~8
speakers. After that, we simulated another 200 hours dataset on
the FS3 training set as the finetuning set using the same simu-
lation strategy. Finally, the model is finetuned again on the real
FS3 training set. We employ the same data augmentation strat-
egy with MUSAN corpus [32] as mentioned in the SID task.

In the experiments of TS-VAD, the number of target
speaker N is set to 8. The parameters of the ResNet34 are ini-
tialized from the front-end of our pre-trained SD model. The
acoustic features are 80-dimensional log Mel-filterbank ener-
gies with a frame length of 25ms and a shift of 10ms. The
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duration of signal in each batch is 32s, and the speaker embed-
ding is extracted from 4s segments. We only train the model on
the speech signal. The outputs are several posteriors that repre-
sent the presence probability of a speaker. The learning rate is
set to 0.0001 during the training stage and 0.00001 during two
finetuning stages with Adam [30] optimizer.

During the inference stage, we select the single-speaker
segments from previous round of clustering-based results and
extract embedding for each speaker. For each recording, if the
number of speakers is less than 8, we randomly generate sev-
eral vectors as the fake embeddings. If the number of speak-
ers is greater than 8, we split the speakers into several groups
that contain 8 speakers and obtain output for each speaker. The
chunk size of each wav is set to 32s. Since the FS3 dataset does
not contain many overlapped regions, we select the speaker with
the largest posterior probability as the target speaker.

Table 3: The DER (%) of different SD systems.

Model Dev Eval
Track 1 Track 2 Track 1 Track 2

1 LST™M 21.48 13.56 - -

2 Att-v2s 22.57 15.11 - -

3 AHC (uni-seg) 20.83 13.33 - -

4 AHC (ahc-seg) 21.39 14.21 - -

5 TSVAD (round 0) 20.75 11.88 43.99 13.85
6 TSVAD (round 1) 2094 11.99 - -
Fusion (1+2+3+4) 20.39 1270 44.56 14.63
Fusion (1+2+3+4+5) - 11.81 - 12.83
Fusion (3+4+5) 19.19 1140 4221 1232

5.3.5. Results

Table 3 shows the results of our speaker diarization system. The
TS-VAD system shows the best performance in all tracks. Af-
ter fusing, the performance is further improved, and our final
submission is the fusion of systems 3, 4, and 5.

The results of track 1 show a big gap between the dev and
eval set. The reason is that the SAD doesn’t work well for some
recordings in the eval set, which results in a DER of over 300%
in some recordings.

6. Conclusion

In this paper, we present the SAD, SID, and SD systems for
the FS3 competition. For all tasks, the main challenge is the
low signal-to-noise ratio in some recordings. In addition, the
domain mismatch of speaker embedding can significantly in-
fluence the performance of SD systems. The low SNR can be
solved by data augmentation or fusing the results to get a robust
system, and the domain mismatch can be addressed by finetun-
ing the SID model on the SD training set. Besides, the ResNet-
based TS-VAD also demonstrates a superior performance with
the Deep ResNet-based speaker embedding.
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