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Abstract
The ongoing ASVspoof 2017 challenge aims to detect re-

play attacks for text dependent speaker verification. In this
paper, we propose multiple replay spoofing countermeasure
systems, with some of them boosting the CQCC-GMM base-
line system after score level fusion. We investigate different
steps in the system building pipeline, including data augmen-
tation, feature representation, classification and fusion. First,
in order to augment training data and simulate the unseen re-
play conditions, we converted the raw genuine training data
into replay spoofing data with parametric sound reverberator
and phase shifter. Second, we employed the original spectro-
gram rather than CQCC as input to explore the end-to-end fea-
ture representation learning methods. The spectrogram is ran-
domly cropped into fixed size segments, and then fed into a
deep residual netowrk(ResNet). The utterance level classifica-
tion result is obtained by score level mean pooling. Third, upon
the CQCC features, we replaced the subsequent GMM classi-
fier with deep neural networks including fully-connected deep
neural network (FDNN) and Bi-directional Long Short Term
Memory (BLSTM) neural network. Experiments showed that
data augmentation strategy can significantly improve the sys-
tem performance. The final fused system achieves to 16.39 %
EER on the test set of ASVspoof 2017 for the common task.
Index Terms: ASVspoof, replay attack, data augmentation,
end-to-end, representation learning, ResNet

1. Introduction
Automatic speaker verification (ASV) refers to automatically
accept or reject a claimed identity by his or her voice, and nowa-
days it is widely used in real-world biometric authentication
applications such as access control systems, mobile payment
systems[1, 2, 3]. However, a growing number of studies have
confirmed the severe vulnerability of state-of-the-art ASV sys-
tems under a diverse range of intentional fraudulent attacks on
various databases[4, 5, 6]. The initiative of the series ASVspoof
challenge aims to promote the development of spoofing counter-
measure studies[7]. The task in previous ASVspoof 2015 chal-
lenge was to discriminate genuine human speech from speech
produced using text-to-speech and voice conversion attacks[8].
Arguably, however, replay attacks might be the most com-
mon spoofing technique to ASV especially for text dependent
speaker verification, as it does not require the attackers to have
any speech technology knowledge and can be mounted with
greater ease using common consumer devices[9, 10].

The ongoing ASVspoof 2017 challenge is to assess au-
dio replay spoof attack detection ’in the wild’, and the data

is based primarily on the Reddots data collection project pro-
cessed through various replay conditions[11]. The task is to de-
termine whether a given speech audio is genuine human voice
or replayed recording. The challenge is focused on the develop-
ment of generalized and robust spoofing attack detectors with
the capability of detecting various of replay attacks with both
known and unknown conditions[12].

Recently, a new constant Q cepstral coefficient(CQCC)
feature based on the constant Q transform(CQT), which is a
perceptually-inspired time-frequency analysis tool popular in
the music study, was proposed to detect various kinds of spoof-
ing attacks[13, 14]. It is shown in [14, 15] that CQCC out-
performs many previously reported features by a significant
margin against both known and unknown attacks. It is fur-
ther studied that there is more gain that could be achieved
by designing effective feature representations rather than in-
vestigating more advanced or complex classifiers with com-
mon features. Concretely, the standard Gaussian Mixture
Model(GMM) trained with maximum likelihood criterion has
been shown to yield among the best performances, compared
with various kind of generative and discriminative methods in-
cluding GMM-UBM[1], GLDS-SVM[16], GMM-SVM[16], i-
vectors[17], etc., given the short duration audio inputs.

Based on the state-of-the-art CQCC-GMM method, we
have investigated different steps in the countermeasure system
building pipeline, including data augmentation, feature repre-
sentation, classification and fusion. The motivation behind is
that introducing multiple diverse, competitive, and complemen-
tary methods could potentially boost the baseline performance
significantly after score level fusion.

As the first contribution of this paper, we proved the ef-
fectiveness of artificial data augmentation strategy. We gen-
erated a set of ”spoof-liked” audio samples through different
parametric reverberators and phase shifters to simulate the real
world replay attack channel characteristics. It is shown that
the GMM trained with pooled ’real’ spoofing data and ’simu-
lated’ spoofing data can capture more pattern of unknown con-
ditions. The second contribution is that we introduced an end-
to-end representation learning framework rather than following
the conventional handcrafted feature based methods. We di-
rectly fed the original audio spectrogram into a deep residual
network(ResNet), thus the feature descriptor and classifier can
be learned in an aggregated end-to-end manner. To the best of
our knowledge, there are only few existing end-to-end spoof
countermeasure systems and the proposed ResNet framework
presents a potentially new direction for automatic feature learn-
ing especially with large amount of training data which might be
available in future. Last but not least, we came to the same con-



clusion as[14, 18] that although GMM back-end can’t achieve
the best performance on development dataset, it has strong ca-
pability in anti-overfitting and always superior on the test set,
which contains a number of data from various kinds of unknown
conditions.

2. Methods
2.1. Data augmentation

In order to simulate the probably unseen replay condition, we
converted the raw genuine training data to simulated replay
spoofing data by some parametric sound reverberator and phase
shifter for data augmentation.

Compared to the genuine human voice, the replayed speech
generally has some special acoustic characteristics related to the
loudspeaker, the room reverberation and the microphone. Since
our training data can not cover all the replay conditions, our
model should have good generability for unseen conditions.

In general, when people directly speak to the microphone,
the strong air flow coming out of the mouth makes the col-
lected speech contain high percentage of directly arrived sound
with less reverberation[19]. However, the common loudspeak-
ers used in the replaying attacks do not have the acoustic vo-
cal effect of human talking head. The replayed speech will in-
evitably introduce more reverberation unless the line-out to line-
in recording channel is used. This motivates us to use a para-
metric reverberator to artificially simulate ”spoof-liked” speech
from the genuine speech.

Moreover, since the original speech signal went through
a complex replay pipeline, there might be some distortions
brought by the imperfect playing and recording devices or en-
vironments. Therefore, we also adopt a phaser[20] to simulate
some distorted speech as a part of the simulated spoofing data.

We use the Adobe Audition CC software with the de-
fault parameter setup to simulate the effects of reverberator and
phaser. For each genuine speech, we generate two simulated
spoofing data using the parameters shown in Table 1. By adding
these simulated replay spoofing data in the training set, the sys-
tem becomes less over-fitting.

Table 1: Parameters of studio reverberation effect and phaser
effect in the Adobe Audition software

studio reverberation phaser
Room Size 100 Intensity 100%

Decay 2000ms Depth 72%
High Frequency Cut 897 Hz Mod Rate 2.43 Hz
Low Frequency Cut 385 Hz Upper Freq 54 Hz

Damping 80% Feedback 64 %
Diffusion 20% Output Gain -3.3dB

2.2. Feature representation

2.2.1. Handcrafted CQCC feature

The so-called CQCC feature is obtained by perceptually-aware
CQT coupled with traditional cepstral analysis. The extraction
framework is shown in Fig. 1, more details of CQCC can be
found in [14].
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Figure 1: Block diagram of CQCC feature extraction

2.2.2. Representation learning upon ResNet

As shown in Fig. 2, traditional machine learning methods might
have to build classifiers on hand-designed features, which re-
quires extensive domain knowledge from human experts. Rep-
resentation learning, on the opposite, tries to represent the signal
as a nested hierarchy of concepts, with each concept defined in
relation to simpler concepts, and more abstract representations
computed in terms of less abstract ones[21].
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Figure 2: Flowcharts of handcrafted feature modeling and end-
to-end representation learning

Deep residual networks have emerged as a family of very
deep architectures showing competitive accuracy and nice con-
vergence behaviors in many computer vision tasks such as ob-
ject recognition, face identification, emotion recognition[22,
23]. They are neural networks in which each layer consists of
a residual module fi and a skip connection bypassing fi. Since
layers in residual networks can compromise multiple convolu-
tional layers, they are referred to as residual block, which is
shown in Fig. 3.

With x as input, the output of the ith block is recursively
defined as

yi ≡ fi(x) + x (1)

where fi(x) is a sequence of operations convolutions, batch
normalization, and rectified linear units(RELU). In the most re-
cent formulation of residual networks, fi(x) is defined by

fi(x) ≡ (B(Wi · σ(B(W
′
i · x)))) (2)

where Wi and W
′
i and are weight matrices,· denotes con-

volution, B(x) is batch normalization and σ(x) ≡ max(x, 0).
As for ResNet, we randomly cropped multiple fix sized im-

ages (224x224) from the Short-time Fourier transform(STFT)
based spectrogram and then fed them into a standard 34 layer
ResNet as shown in Table 2.
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Figure 3: An example of typical block

Table 2: ResNet Configuration

layer name output size 34-layer
conv1 112x112 7x7, 64, stride 2

conv2 x 56x56 3x3 max pool, stride 2[
3× 3, 64
3× 3, 64

]
× 3

conv3 x 28x28
[
3× 3, 128
3× 3, 128

]
× 4

conv4 x 14x14
[
3× 3, 256
3× 3, 256

]
× 6

conv5 x 7x7
[
3× 3, 512
3× 3, 512

]
× 3

1x1 average pool, 2-d fc, softmax

2.3. Classification

After obtaining the feature representation of each utterance, we
need to train a robust classifier to detect the replay recordings.
In this section, we investigate different classification methods
based on CQCC feature.

2.3.1. GMM

GMM is a stochastic generative model, and is widely used to
model the probability distribution of audio features.

In the test phase, given the models, λgenuine and λspoof ,
and the feature vectors of the test utterance Y = [y1, ...yT ], the
detection score is computed as follows[18]:

Λ(Y ) = Γ(Y |λgenuine))− Γ(Y |λgenuine)). (3)

where Γ(Y |λ) = (1/T )
∑T

t=1 log p(yt|λ) is the average log-
likelihood of Y given GMM model λ. λgenuine and λspoofare
the GMMs for genuine and spoofed classes, respectively.

For the baseline system, we followed the matlab imple-
mentation of CQCC extraction together with GMM classifier
provided by[14]. Every audio sample is converted to a 90 di-
mensional CQCC feature sequence. Then, two 512-component
GMMs are trained on the genuine and spoofed speech utter-
ances, respectively. The score for a given test utterance is com-
puted as log-likelihood ratio between these two GMM models.

2.3.2. FDNN

Although GMM can model the probability distribution of given
features, as a kind of generative model,it may not be optimum
in terms of discrimination[24]. Besides, the feature vectors for

GMM are assumed to be independent and identically distributed
which might not be true in our case. As a result, it can’t exploit
the correlated information embedded in the context. With this
consideration, we keep the CQCC as input feature, replacing
GMM with FDNN, as shown in Fig. 4. Each feature vector
is concatenated with its partial left 4 context window and right
4 context window feature vectors. These feature vectors are
then flattened into a single 810 dimension vector as input of
the FDNN. The output layer has 1 units, and the binary cross-
entropy loss is adopted. Similar to GMM system, the ultimate
score was computed from the mean pooling of the frame level
posterior probabilities.
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Figure 4: FDNN arthitecture for input CQCC feature

2.3.3. BLSTM

The third classifier investigated is BLSTM. Given an input
sequence x = [x1, ..., xT ] and the hidden vector h =
[h1, ..., hT ], for a standard recurrent neural networks(RNNs),
the output vector y = [y1, ..., yT ] can be computed from t = 1
to T according to the following iterative equations:

ht = H(Wxhxt +Whhht−1 + bh) (4)

yt = Whtht + by (5)

where H is the activation function of hidden layer, W is the
weight matrix, and b is the bias vectors.

Bidirectional RNNs(BRNNs) were proposed to make full
use of the context of feature sequences in both forward and
backward directions[25]. Furthermore, an LSTM structure con-
sists of memory blocks was proposed to learn the long term
dependencies[26, 27]. Every block contains self-connected
memory cells and three adaptive and multiplicative gate units
i.e. input, output,and forget gates. These gates can respectively
provide write, read, reset operations for the cells. After combin-
ing the advantages of BRNN and LSTM, BLSTM[28], designed
as Fig. 5, can deal with long-range context in both preceding
and succeeding directions.

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each yt defines a probability distribution over the
K possible states: that is, ykt (the kth element of yt) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

− log Pr(z|x) = −
T∑

t=1

log yztt (13)

Which leads to the following error derivatives at the output
layer

− ∂ log Pr(z|x)
∂ŷkt

= ykt − δk,zt (14)

where ŷt is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

275

Figure 5: Typical BLSTM structure



Since BLSTM is just considered to build up high level rep-
resentation of input features, additional fully-connected layer
is needed to map it into binary categorical output. We chose
a large window contained left 20 frames and right 20 frames
context,compare with FDNN. Therefore, a 41×90 sequential
feature is derived to feed into the BLSTM network.

3. Experiments
3.1. Data protocol

We followed the original data participation protocol provided by
the ASVspoof 2017 challenge organizers. The training dataset
contains 3016 utterances including 1508 genuine utterances
and 1508 spoofing utterances from 10 speakers. The develop-
ment dataset contains 1710 utterances including 760 genuine
utterances and 950 spoofing utterances from 8 speakers. The
test dataset with unknown genuine/spoof label contains totally
14220 audio samples. Most of our implemented systems are
trained in two versions, one is trained by only train data, the
other by using pooled train and development data.

3.2. Results on data augmentation

The results in Fig. 6 reveal that data augmented CQCC-
GMM(DA-CQCC-GMM) outperforms the CQCC-GMM base-
line by approximate 30% relatively on development set. On
test set, 18% relative performance improvement is gained when
trained without development data, meanwhile 14% relative per-
formance gained in pooling development data condition. After
score level fusion, the system achieves to 17.52% EER, which
is a relatively 23% performance improvement.
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Figure 6: Results on data augmentation

3.3. Results on end-to-end representation learning

Here shows the results on end-to-end representation learning in
Fig. 7. It reveals that end-to-end ResNet method outperform
CQCC-GMM significantly on development set. For test set, in
the contrast, CQCC-GMM slightly superior to ResNet, and after
score level fusion, system performance is boosted.

3.4. Results on classifiers

Experiment results in Table 3 show that although deep learn-
ing methods like FDNN and LSTM can achieve significantly
superior performance compared with GMM on development
set, they decline sharply on test set. The BLSTM got 40.08%
EER and the FDNN got nearly almost all the posteriors to
zero(thereby we didn’t submit to the challenge organizer the
FDNN system results on test set), with both of them reveal se-
vere overfitting.
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Figure 7: Results on end-to-end representation

Table 3: System performance by different classifier

Classifier EER on Devel. Set (%) EER on Test Set (%)
GMM 10.35 28.15
FDNN 6.41 -

BLSTM 5.82 40.08

3.5. System fusion results

Finally, as presented in Table 4, after score level fusion on
the results of CQCC-GMM, DA-CQCC-GMM and ResNet, the
proposed method achieve 16.39% EER performance, which
outperforms baseline by 26% relatively .

Table 4: Final system fusion results

System Devel. Set (%) Test Set (%)
CQCC-GMM(baseline) 10.35 22.29

DA-CQCC-GMM 7.01 19.18
ResNet 6.32 25.09

Score level fusion 3.52 16.39

4. Conclusions and future works
This paper investigates different steps in the ASV spoof coun-
termeasure system building pipeline, including data augmenta-
tion, feature representation, classification and fusion. It shows
the effectiveness of simulating the unknown ’spoof-liked’ data,
therefore drives us to pursuit higher generalization ability on
small limited data through various kinds of data augmentation
strategy. Besides, the comparable performance produced by
ResNet reveals a possible good potential of end-to-end repre-
sentation learning, which requires little human experts’ domain
knowledge.

In the future, there remains much to be done: (1)The data
augmentation strategy in this paper is done manually, and quite
rely on human knowledge. It is possible to seek a data driven
generative adversarial models to automatically learn the pattern
of ’spoof-liked’ data; (2)In the experiments, we only use the
STFT based spectrogram as the input of ResNet, it might not
be optimal and we can try to investigate some perceptually-
aware spectrogram like CQT spectrogram ,Gammatone spec-
trogram,etc; (3)Although DNN/BLSTM is inferior to GMM in
the experiment, the significant improvement on development
dataset motivates us to investigate its strong representation abil-
ity on a larger scale datasets.
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