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Abstract

In this paper, we present our CRMI-DKU system descrip-
tion for the Short-duration Speaker Verification Challenge
(SdSVC) 2021. We introduce the whole pipeline of our cross-
lingual speaker verification system, including data preprocess-
ing, training strategy, utterance-level speaker embedding extrac-
tor, domain-adaptation, and score calibration. We also propose
methods to learn language-invariant features and perform do-
main adaptation to reduce the cross-lingual mismatch. In addi-
tion, we explore a semi-supervised method to utilize the unla-
beled training data. The final submitted score level fusion sys-
tem achieves 0.0476 minDCF and 0.98% EER on the evaluation
set.
Index Terms: speaker verification, short duration, cross-
lingual, domain adaptation

1. Introduction
In recent years, the X-Vector[1] based deep learning system has
achieved great success in the field of automatic speaker veri-
fication (ASV). The existence of large-scale datasets (such as
VoxCeleb1&2[2, 3]) and powerful modeling framework (such
as ResNet[4], TDNN and ECAPA-TDNN[5] based backbone
module) improve the performance of speaker verification sys-
tems significantly. The application of the Softmax Cross-
Entropy loss function and its angular margin variants[6, 7] fur-
ther reduce the variability of intra-class and enlarge the inter-
class distance to obtain more discriminative features. How-
ever, speaker verification system is sensitive to the cross-
domain mismatch. The issues of cross-dataset, far-field[8,
9] or cross-lingual[10] scenarios will degrade the ASV sys-
tem performance. Although Probability Linear Discriminant
Analysis(PLDA)[11], adversarial learning, and domain adapta-
tion methods[12, 13] are proposed to address these issues, it is
still a very challenging task and needs further investigation.

The SdSV Challenge[14, 15] proposes two tasks based on
the DeepMine[16] dataset to explore these challenges. In this
paper, we focus on task2: Text-Independent Speaker Verifica-
tion. There are two partitions in this task. The first partition
consists of typical text-independent trials where the enrollment
and test utterances are from the same language (Persian). The
second partition consists of text-independent cross-language tri-
als where the enrollment utterances are in Persian, and the test
utterances are in English[15]. The training data is fixed and
consists of the VoxCeleb 1&2[2, 3], LibriSpeech[17], Mozilla
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Common Voice Farsi[18], and DeepMine (Task 2 Train Par-
tition). It should be noted that most of the aforementioned
datasets are in English except DeepMine. Moreover, although
the language of the Common Voice dataset is Persian, it has no
speaker labels. For solving these problems, we propose meth-
ods to learn language-invariant features and perform domain
adaptation to cope with the cross-lingual trial file. We also train
a language recognition system to divide the test trials into the
same-lingual trial set and the cross-lingual trial set. In order
to utilize the unlabeled in-domain data (Persian data), we also
introduce a semi-supervised method to create the pseudo-label
for the Common Voices data and include those data into train-
ing data. In addition, we also apply gradient reversal layer and
domain adversarial training methods to make the speaker veri-
fication system less sensitive to the language mismatch.

The rest of the paper is organized as follows: Section2 de-
scribes the usage of databases. Section 3 will show the de-
tails of our speaker verification system, include data processing
and utterance-level speaker embedding extractor. The training
strategies and proposed robust methods are shown in Section 4.
Section 5 and 6 provide the experimental results and conclusion,
respectively.

2. Training dataset
Same as SdSVC 2020, the predefined fixed training set of
SdSV 2021 consists of the following databases: VoxCeleb 1&2,
LibriSpeech, Mozilla Common Voice Farsi, DeepMine Task 2
Train Partition.

2.1. VoxCeleb1&2 and LibriSpeech

The well-known VoxCeleb1&2 and LibriSpeech are mainly em-
ployed as the pre-train data. The majority utterances of these
two databases are in English.

2.2. DeepMine

The DeepMine dataset is the in-domain data, which is from the
same resource as the evaluation data. There are 588 speakers in
Task 2 Train Partition of DeepMine, among them, 498 speakers
have both Persian and English utterances. The in-domain data
are utilized in several ways to reduce the domain mismatch:

• Mixed into pre-train data to fine-tune the model;

• Fine-tuning the pre-train model only with the in-domain
data.

In addition, the in-domain data are also used in the score
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Figure 1: The t-SNE plot of speaker embeddings in different
datasets .

normalization, domain-adaptation, and language-invariant fea-
ture learning.

2.3. Mozilla Common Voice Farsi

The Mozilla Common Voice Farsi dataset in total has 285867
utterances without the speaker label. We adopt the pre-train
model to extract the speaker embeddings from those 285k+ ut-
terances. We use the K-Means clustering to estimate the opti-
mal K as the estimated speaker member. As shown in Fig.1,
although the language of the Common Voice dataset is also Per-
sian, it is not the in-domain data completely. However, we also
try to add the Common Voice data into the model training and
score normalization.

3. Speaker Verification System

In this section, We will introduce our baseline speaker verifica-
tion system pipeline, including the acoustic feature extraction,
data augmentation, utterance-level speaker embedding extrac-
tor, language recognition system, etc.

3.1. Data processing

Acoustic Feature. The acoustic features are 80-dimensional
log Mel-filterbank energies with a frame length of 25ms and
hop size of 10ms. The extracted features are mean-normalized
before feeding into the deep speaker network.
Data Augmentation. We perform online data
augmentation[19] using the MUSAN dataset[20]. Fur-
thermore, we adopt the speed perturbation based on the SoX
speed function to augment the speaker labels. The strategy also
has a successful application in speech and speaker recognition
tasks[21, 22]. The size of training data is tripled since two new
versions of the original signal are created with speed factors
of 0.9 and 1.1. The newly generated pitch-shifted data are
considered as from new speakers. Therefore, we have in total
21795 virtual speakers in the speaker verification pre-training
model.

3.2. Utterance-level Speaker Embedding Extractor

3.2.1. ResNet34 and ResNet34SE with Statistic Pooling

For the ResNet34 module, we adopt the same structure as
in[23]. The network structure contains three main components:
a front-end pattern extractor, an encoder layer, and a back-
end classifier. The ResNet34[4] structure is employed as the
front-end pattern extractor, the 128-dimensional fully connected
layer following the encoder layer based on global statistic pool-
ing (GSP) is adopted as the speaker embedding layer. The
ArcFace[7] (s=32,m=0.2) is used as a classifier. The detailed
configuration of the neural network is the same as in[24].

In addition, we also adopted the Squeeze-and-Excitation
Module(SE)[25] which has been popular application in speaker
verification system. Different from the ResNet34 system, we
increase the widths from {32, 64, 128, 256} to {64, 128, 256,
512}. The output dim of the bottleneck layer is 256. The
pooling layer and the classifier is the same as ResNet34 System.

3.2.2. ECAPA-TDNN with ASP

The ECAPA-TDNN Network[5] achieves great success in re-
cent speaker verification tasks and provides the start-of-the-art
performance. For this model, 1024 feature channels are used
to scale up the network. The dimension of the bottleneck in
the SE-Block is set to 256. The front-end feature extractor is
followed by an attentive statistics pooling (ASP) layer[26] that
calculates the mean and standard deviations of the final frame-
level features. The classifier is the same as the ResNet system
in Section 3.3.1.

3.3. Language Recognition

Considering there are two different trial cases, we train a lan-
guage recognizer to separate them and further enhance the sys-
tem performance. We employ the ECAPA-TDNN backbone as
a front-end feature extractor. English and Persian are the output
of binary language classification. We only adopt the Softmax
Cross-Entropy as loss function in this task. The accuracy of
language recognition reaches 100% in the dev dataset.

4. Training Strategy
In this section, we will introduce our training strategy, in-
cluding mix-training, fine-tuning, domain adaptation, learn-
ing language-invariant features, semi-supervised learning, and
score calibration.

4.1. Mix-training and Fine-tune

Based on our previous studies[8, 24, 27], the mix-training and
fine-tune strategy are effective methods to improve the system
performance.

Mix-training. Although the data are in different domains,
mix-training is a direct and effective method to improve the
system performance with reasonable amount of cross-domain
data. We mix the DeepMine data into the VoxCeleb1&2 and
LibriSpeech data to train a cross-lingual model; the pre-train
model has been trained by VoxCeleb1&2 and LibriSpeech for
20 epochs before adding DeepMine data.

Fine-tune. The fine-tune strategy achieves good results in
2020 far-field speaker verification challenge[8, 28]. Given lim-
ited target domain data, the pre-train model can learn speaker
information and the discriminative speaker embeddings, since
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Figure 2: Learning language-invariant features. The Fig.2 (a)
stands for the training pipeline of Learning language-invariant
features with Within Sample Method, and the Fig.2 (b) stands
for the training pipeline of Learning language-invariant fea-
tures with Batch Language Sample Method.

Table 1: The performance of different training strategy in SdSV
dev set. Mix-training is mix the DeepMine data into the Vox-
Celeb1&2 and LibriSpeech data to train a cross-lingual model.

Model ECAPA-TDNN SdSV21 Dev

EER[%] mDCF0.01

Pre-training (Vox1&2 + Librispeech) 4.497 0.165

Mix-training 1.839 0.076
+ Common Voice (pseudo labels) 1.769 0.077

Fine-tune 1.909 0.079
+ GRL 11.3027 0.3622
+ Lang-invariant 1.8996 0.099(With-in sample)
+ Lang-invariant 1.6384 0.079(Batch Language sample)
+ Mean-Sub 1.699 0.074

we feed the target-domain data into the pre-train model with a
small learning rate to make the speaker verification model also
perform well on the target domain. Different from mixed train-
ing, fine-tuning is an effective and efficient method when only
limited in-domain data are available.

4.2. Domain adaptation

Due to the existence of the domain gap (cross-lingual mis-
match), we adopt multiple domain adaptation methods. Al-
though there are many adversarial learning methods to make
domain adaptation, these methods do not significantly improve
or even degrade the system performance in our experiments for
this task. In model training, for the methods of gradient reversal
layer (GRL) and domain adversarial layer, although the accu-
racy increases, EER and minDCF becomes worse. As shown
in Table.1, the proposed language-invariant feature learning
method has a slight and stable improvement. However, Mean
Subtraction is more effective in this task.

4.2.1. Learning language-invariant features

We design the two methods for learning language-invariant fea-
tures.

Within Sample Method. Inspired by [29], we apply the
within-sample language-invariant loss for cross-lingual speaker
verification. The DeepMine dataset in the task2 part has 498
speakers with both Persian and English utterances. Therefore,
we set the size of one batch as B = N × 2. B stands for batch
size with a number of N speakers in one batch. Each speaker
random chose one English utterance and one Persian utterance

Table 2: The performance of various speaker verification sys-
tems in the SdSV dev set.

Model SN Mean- SdSV21 Dev

Sub EER[%] mDCF0.01

ECAPA-TDNN
1 + Mix-training - - 1.839 0.076
2 + Mix-training - 1.909 0.070
3 + Mix-training 1.578 0.067
4 + Fine-tune - - 1.909 0.079
5 + Fine-tune - 1.699 0.070
6 + Fine-tune 1.699 0.074
7 + Lang-invariant - - 1.830 0.079
8 + Lang-invariant - 1.717 0.072
9 + Lang-invariant 1.647 0.069

ResNet34-SE
10 + Mix-training - - 1.569 0.059
11 + Mix-training - 1.359 0.055
12 + Mix-training 1.307 0.056
13 + Fine-tune - - 1.4989 0.075

ResNet34
14 + Mix-training - - 1.438 0.065
15 + Mix-training - 1.499 0.059
16 + Mix-training 1.359 0.049

Fusion
3+6+9+12+16(Average) 1.020 0.042
3+6+9+12+16 (Bosaris) 1.020 0.043
1+2+...+16 (Average) 1.020 0.041
1+2+...+16 (Bosaris) 0.950 0.040

in each batch. The loss function consists of the following for-
mula:

Lloss = LCE(Ŷpre, Ylabel)+
1

N

N

i=0

LMSE(X
i
En, X

i
Fa) (1)

The LCE stands for the Cross Entropy Loss and the LMSE de-
notes the Mean Squared Error between the English embedding
and the Persian embedding for per speaker. Xi

En/Fa denotes
the English or Persian speaker embedding for the ith speaker.

Batch Language Sample Method. This method does not
depend on the selection of speakers. One batch samples are
formed by half English and half Persian utterances. One batch
is formed by B = 2×N samples. N is the utterances number of
English/Persian. The English and Persian samples are randomly
chosen. The loss function consists of the following formula:

Lloss = LCE(Ŷpre, Ylabel)+LMSE(
1

N

N

i=0

Xi
En,

1

N

N

j=0

Xj
Fa)

(2)
For the Batch Language Sample Method, the batch size

should be big enough to smooth out the variability of small sam-
ples. In this experiment, we set the batch size as 512/1024. The
details of the model training are shown in Fig.2.

4.2.2. Domain-adaption

Since there is a domain mismatch between cross-domain em-
beddings, to further reduce to the domain gap, we propose to
adopt a direct method: Mean subtraction(Mean-Sub). We as-
sume that the domain gap of speaker embeddings is the Xgap =
XMeanFa − XMeanEn . For the cross-lingual trial, we trans-
fer the test data to target domain of enrollment data through
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Table 3: The performance of various single speaker verification
systems under different trial cases.

Model Dev Fari Dev En

EER[%] mDCF0.01 EER[%] mDCF0.01

ECAPA-TDNN 0.984 0.049 2.537 0.120
+ Lang invariant 1.208 0.070 3.082 0.100

ResNet34SE 1.105 0.046 1.992 0.076
ResNet34 0.880 0.040 2.349 0.087

Xtest+ = Xgap . The results of various domain adaptation
methods are shown in Table.1

4.3. Semi-supervised learning

Although the Common Voice data does not have speaker labels,
the t-SNE visualization results show that the data distribution of
Common Voice and DeepMine is similar. Therefore, we adopt
a semi-supervised method to utilize the data. The procedure is
shown in the following:

• Step 1. Using the current speaker embedding network
to extract speaker embeddings for all utterances from the
Common Voice dataset.

• Step 2. Running a clustering algorithm (K-means) to de-
termine the optimal K.

• Step 3. Calculate the Within-Cluster-Sum of Squared Er-
rors (WSS) for different values of K, and choose the K
for which WSS first starts to diminish.

According to our calculation following steps 1, 2 and 3,
there are about 30 clusters. In order to avoid inaccurate classifi-
cation, we just chose 300 utterances which are close enough to
each cluster centroid. The result is shown in Table.1. However,
we believe that there are more than 30 speakers in the Common
Voices Farsi dataset.

4.4. Score Calibration

Based on[30], we set the imposter cohort of the adaptive score
normalization to contain in-domain Farsi and English data.
Here, the score between the enrollment utterance e and the
test utterance t is denoted as s(e, t). We adopt the adaptive
S-norm2[30], which is defined as

s(e, t)as−norm2 =
1

2
(
s(e, t)− μ(Se(ε

top
t ))

σ(Se(ε
top
t ))

+

s(e, t)− μ(St(ε
top
e ))

σ(St(ε
top
e ))

)

(3)

where μ(St(·)) and σ(St(·))are mean and standard devia-
tion of St. The adaptive cohort can be selected to as X closest
(most positive scores) files to either the enrollment file εtope or
the test file εtopt [30].

5. Experimental results
5.1. Single System

In this experiment, we found that mix-training is better than
fine-tuning. We consider there might be two reasons: 1) in-
domain data is sufficient; 2) the speaker embedding extractor
framework we adopted have powerful modeling capability, fine-
tuning only with in-domain data may cause overfitting.

Table 4: Evaluation of submitted system on the SdSVC eval set.

Model SdSV21 Eval

EER[%] mDCF0.01

3+6+9+12+16 (Average) - 0.049373
model id 1-16 (Average) 0.98 0.047553
3+6+9+12+16 (Bosaris) - 0.053411
model id 1-16 (Bosaris) - 0.048552

Comparing with the other two speaker verification systems
in Table.2, the ResNet34-SE achieves the best performance in
the SdSV dev set without any trick. The Mean-Sub method
in all systems shows to beneficial and enhances performance
by 5% to 15% relatively in terms of EER and mDCF, respec-
tively. From Table.3, we can observe that the most challenging
part of this task is still the cross-lingual trial. Even though we
tried to train language-invariant feature to reduced the gap on
cross-language trials, the performance of the same-lingual trials
is affected.

5.2. Fusion System

The average weight and weight based on the Bosaris toolkit are
also employed in the score level fusion and calibration. From
Table.4, we can find that the fusion on the score level by taking
a weighted average over the calibrated scores of each individ-
ual system achieves the best result on the test set. Fusion of
all systems leads to a relative improvement over the ResNet34-
SE System by 20% in EER and MinDCF on the SdSVC dev
set. This shows that multiple network frameworks can prove
sufficient to learn complementary speaker information. Final-
lyour submitted system achieves the 0.950% EER and 0.040
mDCF0.01 on the development set and 0.98% EER and 0.0476
mDCF0.01 on the evaluation set.

6. Conclusions
In this paper, we present our baseline system and robust training
methods to reduce the cross-lingual mismatch. Furthermore, the
unlabeled in-domain Common Voices data could be further uti-
lized to enhance the performance. A fusion of three systems
based on ECAPA-TDNN and ResNet architecture in conjunc-
tion with the proposed strategy results in a good performance
on Task 2 of the 2021 SdSVC with an EER of 0.98% and a
MinDCF of 0.0476.
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