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ABSTRACT

It has been previously demonstrated that systems based on block
wise local features and Gaussian mixture models (GMM) are suit-
able for video based talking face verification due to the best trade-off
in terms of complexity, robustness and performance. In this paper,
we propose two methods to enhance the robustness and performance
of the GMM-ZTnorm baseline system. First, joint factor analysis
is performed to compensate the session variabilities due to different
recording devices, lighting conditions, facial expressions, etc. Sec-
ond, the difference between the universal background model (UBM)
and the maximum a posteriori (MAP) adapted model is mapped into
the GMM mean shifted supervector whose over-complete dictio-
nary becomes more incoherent. Then, for verification purpose, the
sparse representation computed by l1-minimization with quadratic
constraints is employed to model these GMM mean shifted su-
pervectors. Experimental results show that the proposed system
achieved 8.4% (group 1) and 10.5% (group 2) equal error rate on
the Banca talking face video database following the P protocol and
outperformed the GMM-ZTnorm baseline by yielding more than
20% relative error reduction.

Index Terms— face video recognition, sparse representation,
GMM supervector, joint factor analysis

1. INTRODUCTION

Face recognition using video sequence has recently gained signifi-
cant attention [1]. With built-in cameras and microphones becoming
a standard feature on most personal computing and mobile devices,
audio-visual biometrics has become a natural way for user verifica-
tion and personal secure access. Specifically, face verification based
on a video sequence of a talking face rather than just one or a few still
images offers possibility for increased robustness. It has been previ-
ously demonstrated that systems based on block wise local features
and Gaussian mixture models (GMM) are suitable for video based
talking face verification as they offer the best trade-off in terms of
complexity, robustness and performance [2, 3]. In this paper, we
follow this framework and focus on further enhancing the robust-
ness and performance of the GMM modeling, notably by exploring
sparse representations of the talking face.

The verification task based on talking face images acquired in an
uncontrolled environment, such as with a mobile device, is very chal-
lenging. A large variability in facial appearance of the same subject
is caused by variations of recording devices, illumination, and facial
expression. These variations are further increased by errors in face
localization, alignment and normalization. While facial dynamic in-
formation (continuity in head/camera movement, facial expression
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or photometric continuity) has been studied for robust face video
recognition [4], algorithms based on the similarity of unordered im-
age sets have also been proposed [5]. Furthermore, in the GMM
framework based on block wise local features, selection of the good
image frames using quality measurements [3] and score normaliza-
tion (ZT-norm) [6] have been proposed to compensate for the session
variability. However, the GMM modeling is still based on the UBM
training and MAP adaptation framework. Recently, joint factor anal-
ysis (JFA) [7] has been successfully used in the speaker verification
task in which session variability caused by different channels influ-
ences the system performance dramatically [7]. In this work, given
data from multiple sessions, we divide each face video sequence into
several continuous short segments and adopt the JFA approach to re-
duce the intra-personal variations within all these segments.

A key concept in the JFA approach is to use a GMM supervec-
tor consisting of the stacked means of all the mixture components
[8, 7]. Support vector machine (SVM) based on this GMM mean
supervectors forme the GMM-SVM supervector system which has
been successfully applied in the speaker verification task [8]. More
recently, a sparse representations computed by l1-minimization with
equality constraints were proposed to replace the SVM in the GMM
mean supervector modeling and has been demonstrated to be effec-
tive in the closed set speaker identification task on the clean TIMIT
database [9]. However, the sparse representation of GMM mean su-
pervectors has not been explored or exploited in detail to handle the
robust face video verification task against large session variabilities.

In this work, we exploit the discriminative nature of sparse rep-
resentations to perform face verification based on GMM supervec-
tors. Given a verification trial with the test supervector and the
target identity, we first construct an over-complete dictionary using
all the target supervector samples and non-target background super-
vector samples, then calculate the sparsest linear representation via
l1 norm minimization. The membership of the sparse representa-
tion in the over-complete dictionary itself captures the discrimina-
tive information given sufficient training samples [10]. If the trial
is true, the test sample should have a sparse representation whose
nonzero entries concentrate mostly on the target samples whereas the
test sample from a false trial should have sparse coefficients spread
widely among multiple subjects [10]. For most verification tasks, the
number of non-target background subjects/samples are naturally way
larger than the number of target subjects/samples, thus the chance
nonzero entries on the target training samples for a test sample from
a false trial should be arbitrarily small and close to zero. There-
fore, for the calculated sparse representation, the l1 norm ratio be-
tween the target samples and all the samples in the over-complete
dictionary becomes the verification decision criterion. Based on the
overwhelming unbalanced non-target negative training samples and
the very limited target positive training samples, in contrast to the
SVM system which requires to tune the SVM cost values each time,



the proposed framework utilizes the highly unbalanced nature of the
training samples to form a sparse representation problem.

Furthermore, we proposed three methods to enhance the robust-
ness and performance against variabilities. First, the sparse repre-
sentation is computed by l1-minimization with quadratic constraints
rather than equality constraints. Second, by adding a reductant iden-
tity matrix at the end of the original over-complete dictionary, the
sparse representation is more robust to the variability and noise [10].
Third, the difference between the UBM and the MAP adapted model
is mapped into the GMM mean shifted supervector which not only
preserves the distance of the associated GMM but also makes the su-
pervector sparse. Compared to the conventional mean supervector,
the correlation of the constructed over-complete dictionary becomes
smaller and therefore helps to achieve robust sparse representation.

The paper organization is as follows: Section 2 describes the
proposed methods, Section 3 provides the experimental results and
Section 4 summarizes the conclusions.

2. METHODS

2.1. Face localization and feature extraction

Given a sequence of face images, face detection was performed
for each image frame by using the Viola-Jones face detector in the
opencv library, and then the Biosecure talking face reference system
[5] with the MPT library [11] was used to find the location of two
eyes. Given the detected face image and eye location, a geometric
normalization tool [12] was applied to crop the detected face image
(200× 240) into a normalized face image (51× 55). The histogram
was globally equalized for each cropped and normalized image.

Furthermore, DCTmod2xy [2] feature vectors were extracted for
each block of every normalized face image. The 20 dimensional
DCTmod2xy feature is the standard DCTmod2 feature [13] plus
(x,y) coordinates of each block. Due to the included space domain
information, it performs better than the DCTmod2 feature [2, 3].
Thus given the block size of 8× 8 pixels, each normalized face gen-
erated 11× 12 = 132 frames of DCTmod2xy feature vectors which
were assumed to be independent and modeled by GMM. Compared
to the holistic feature based systems, this block wise local feature
based system was reported to be robust against face localization and
normalization errors [2, 3]. Finally, the feature vectors were normal-
ized to mean zero and unit variance on a per-video basis.

2.2. GMM-ZTnorm baseline

The Gaussian Mixture model (GMM) is used to model the DCT-
mod2xy features. Each target subject is represented by a N compo-
nents GMM model λ: λ = {pi,μi,Σi}, i = 1, · · · , N. In the pro-
posed work, since the amount of training data for each subject is too
limited to train a good GMM, a universal background model (UBM)
in conjunction with a MAP model adaptation approach [2, 14] is
used to model different subjects’ faces in a supervised manner. In
order to enhance the robustness, Z-norm and T-norm [15] were used
to normalize the GMM log-likelihood scores.

2.3. Joint factor analysis

JFA has been widely used in the audio speaker verification task in
which session variability caused by different channels influences the
system performance dramatically [7]. In the proposed method, we
use the same word “channel” to describe both intra-personal and
recording variabilities. Thus, given a multi-sessions development

data set, we have multiple realizations from different channels for
each subject. Furthermore, for the talking face video data, there are
inherent session variabilities (facial expression, face orientation, lip
shapes, etc) within each video sequence. Thus, we divided each
video sequence of the development data into several 50 frames seg-
ments, and use the JFA approach to model the intra-personal vari-
abilities within all the segments from the same subject. A model
that has been trained under one channel condition may be adapted
towards a different channel condition of new test data to reduce mis-
matches when the subject is the same. Importantly, the adaptation
must be constrained so that adaptation between different subjects is
suppressed. This constraint is effected by perform adaptation in a
very small subspace of the GMM mean supervector space [7].

2.4. GMM supervector modeling base on sparse representation

2.4.1. GMM mean shifted supervector

For each segment of video sequence, a GMM was adapted from the
UBM by MAP adaptation; the GMMs were modeled with diagonal
covariance matrices and only the means of the GMMs were adapted

[2, 14]. The KL divergence D(λ, λ̂) between two GMM models

(λ, λ̂) is approximated by the upper bound distance d(λ, λ̂) which
satisfy the Mercer condition [8]:

0 ≤ D(λ, λ̂) ≤ d(λ, λ̂) =
1
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where pi and Σi are the ith UBM mixture weight and diagonal co-
variance matrix, μi corresponds to the mean of the ith Gaussian

component in this GMM. Let the UBM model be λ̃ = {pj , μ̃j ,Σj},
then we can construct mean shifted GMM model λ� by subtract-
ing the UBM mean vector from the MAP adapted model: λ� =
{pi,μ�

i ,Σi} = {pi,μi − μ̃i,Σi}, i = 1, · · · , N. It is clear that
the distance between the mean shifted models is exactly the same
as the distance between the original models. Thus, the GMM mean
shifted supervector s is generated from the mean shifted GMM using
(2). In MAP adaptation [14], the mean vector is updated as follows:

μi = αiEi(x)+(1−αi)μ̃i, αi =

∑T
t=1 Pr(i|xt)

γ +
∑T

t=1 Pr(i|xt)
(3)

where Pr(i|xt) denotes the occupancy probability of feature frame
t belonging to the ith gaussian component and γ is the constant rele-
vance factor. Therefore, μ�

i = αi(Ei(x)−μ̃i). Given a segment of
feature vectors and a large sized UBM, αi can be arbitrarily small on
certain gaussian components due to the small occupancy probability
and lack of enough data to update [14]. Thus the entries of the corre-
sponding dimensions on mean shifted supervector are close to zero.
It is shown in Fig.2 that the over-complete dictionary constructed us-
ing mean shifted supervectors significantly reduced the correlation
between atoms. Since an incoherent over-complete dictionary can
provide better performance in l1-minimization sparse representation
[16, 10], the proposed mean shifted supervector is more suitable in
this framework compared to the traditional mean supervector. From
Fig.1, we can see that the GMM mean shifted supervector models
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Fig. 1. MAP adaptation and mean shifted GMM model
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Fig. 2. The correlation matrix of the over-complete dictionary A2

(4), N2 = 4601. The coherence values maxj �=k〈A2j ,A2k〉) are
0.996 (left) and 0.963 (right), respectively.

the distance between the MAP adapted model and the UBM model
rather than the mean of the MAP adapted model itself. By taking out
the common and dominant component (UBM) from each adapted
model, the over-complete dictionary composed of all the training
supervectors becomes more incoherent while the discriminative dis-
tance measure is still preserved. The reason that the coherence was
not reduced significantly in Fig.2 might due to some close to du-
plicate samples from the same subject. Thus other dictionary de-
sign approaches [17], such as duplicate samples removal, can also
be adopted on the mean shifted supervectors to further enhance the
robustness and performance of sparse representations.

2.4.2. Sparse representation based on mean shifted supervectors

Given N1 target training samples A1 and N2 non-target background
training samples A2 , we construct the over-complete dictionary A:

A = [A1A2] = [s11, s12, · · · , s1N1 , s21, s22, · · · , s2N2 ]. (4)

Each sample sij is an M dimensional GMM mean shifted supervec-
tor and has been normalized to unit l2 norm. Throughout the entire
testing progress, the background samples A2 were fixed; and only
the target samples A1 were replaced according to the claimed target
identity in the test trial. Let us denote N = N1+N2, then N1 � N2

and M < N need to be satisfied for sparse representation. For any
test sample y ∈ R

M with unit l2 norm, we want to use the over-
complete dictionary A to linearly represent y in a sparse way. If y
is from the target, then y will approximately lie in the linear span of
training samples in A1 [10]. Since the equality constraint Ax = y
is not robust against large session variabilities [10], we constrain the
distance (1) between the GMM associated with the test sample y and
the GMM associated with the linear combination of training samples
to be smaller than ε which resulted in a standard convex optimization
problem (l1-minimization with quadratic constraints):

Problem A : min‖x‖1 subject to‖Ax− y‖2 ≤ ε (5)

For each class i, (i = 1, 2), let δi : RN → R
N be the character-

istic function which selects the coefficients only associated with the
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Fig. 3. The sparse solution of two trials using problem B (9)

ith class [10]. For x ∈ R
N , δ1(x) ∈ R

N is a new vector whose
nonzero entries are the only entries in the first N1 elements of x.
Now based on the sparse representation x, we propose two decision
criteria for verification purpose, namely l1 norm ratio and l2 resid-
ual ratio. Larger score represents higher likelihood for the testing
sample to be from the target subject.

l1norm ratio = ‖δ1(x)‖1/‖x‖1 (6)

l2residual ratio = ‖y −Aδ2(x)‖2/‖y −Aδ1(x)‖2 (7)

Due to large session variabilities, the test sample y could be
partially corrupted. Thus an error vector e was introduced to explain
the variability [10]:

y = y0 + e = Ax0 + e (8)

So the original optimization problem becomes the following form:

Problem B : min‖z‖1 subject to‖Bz − y‖2 ≤ ε (9)

B = [A I] ∈ R
M×(N+M), z = [xt et]t ∈ R

(N+M)
(10)

If the error vector e is sparse and has no more than (M + N1)/2
nonzero entries, the new sparse solution z is the true generator ac-
cording to (8) [10]. Finally, we redefine the two decision criteria
based on the new sparse solution ẑ = [x̂t êt]t.

l1norm ratio = ‖δ1(x̂)‖1/‖x̂‖1 (11)

l2residual ratio = ‖y − ê−Aδ2(x̂)‖2/‖y − ê−Aδ1(x̂)‖2
Fig.3 demonstrates the sparse solutions and ratio scores of two trials
(left: true, right: false) in the evaluation using problem B (9).

3. EXPERIMENTAL RESULTS

3.1. The evaluation database and protocols

The Banca talking face video database [18] was used for evaluation.
The Banca English database has 2 groups. Each group has 26 target
subjects (13 female, 13 male) and for each subject, 12 sessions were
recorded in 3 different scenarios. The P protocol [18] was employed
for evaluation. There are another 60 world model video recordings
from different subjects (not in the 52 subjects set) for background
UBM training. The evaluation method is the Equal Error Rate(EER).
Since data set g1 and g2 are separated, g2 is the development set for
g1, and vise versa. For the GMM modeling, the mixture number was
128 (tuned by system 2) while Z-norm, T-norm, JFA and non-target
background data sets were all from the development data set. A rel-
evance factor of 12 was used for the MAP adaptation. N2 and mean
value of N1 are 4601 and 8.62 for g1 and 3843 and 11.34 for g2.
The P protocol has 544 trials (232 true and 312 false) and 545 trials
(234 true and 311 false) for g1 and g2, respectively. The sparse rep-
resentation was achieved by the SPGL tool[19]. Rather than using



Table 1. EER (%) performance of the proposed systems
Methods / System ID 1 2 3 4 5

GMM baseline
√ √ √ √ √

ZT norm
√ √

JFA
√ √ √

GMM-SVM
√

GMM-Sparse
√

P protocol G1 27.9 14.2 12.8 10.2 8.4
P protocol G2 29.6 13.3 12.0 12.3 10.5

Table 2. EER (%) of the sparse representation system (P protocol)
criterion / problem settings A eq(5) B eq(9) B eq(9)

supervectors mean mean mean shifted

g1: l2 residual ratio 15.5 11.5 9.9

g2: l2 residual ratio 15.0 13.3 11.8

g1: l1 norm ratio 12.5 10.9 8.4
g2: l1 norm ratio 13.6 12.4 10.5

the provided pre-selected 5 images set to perform testing, we used
all the images in the testing video sequence without selection by face
quality measurements which will be considered in the further work.

3.2. The evaluation results

As shown in Table 1, ZT-norm dramatically improved the results
which matches the conclusion of [6]. Furthermore, the use of JFA
reduced the EER by 1.3% absolutely which demonstrates the good
performance of the JFA method in terms of variability compensation.
Comparing the results of system 4 with 5, we can observe that sparse
representation based on mean shifted supervectors consistently out-
performed the SVM mean supervector system by 1.8% absolute EER
reduction in both groups. By only using the proposed JFA and sparse
representation approaches, system 5 achieved the best performance
which significantly improved the performance of GMM ZT-norm
baseline. Moreover, compared to the results in [2, 3, 6], the pro-
posed method also achieved highly competitive results.

In Table 2, the performance of different sparse representation
problem settings and decision criteria are shown. First, the sparse so-
lution computed by the problem B achieved better results compared
to the problem A which validates the assumption that adding an error
vector can enhance the robustness against variabilities. Second, the
systems using mean shifted supervectors performed consistently bet-
ter than the ones employed the traditional mean supervectors. This
can be attributed to the more incoherent over-complete dictionary
constructed by mean shifted supervectors. Third, the l1 norm ratio
criterion outperformed the l2 residual ratio criterion which matches
the results of sparsity concentration index (SCI) criterion in the open
set rejection task [10]. Finally, adopting the sparse representation
method in [9] (15.5% EER) did not improve the results compared
to system 4. However, in the proposed framework, our system 5
achieved significantly improvement against system 4.

4. CONCLUSIONS

In this work, a robust video based face verification approach using
block wise local features and GMM modeling was proposed. The
main novelties are as follows. First, by employing joint factor anal-
ysis to mitigate the intra-personal variabilities, the system perfor-
mance was enhanced. Second, the over-complete dictionary based
on GMM mean shifted supervectors is more incoherent while the

discriminative GMM distance measurement is still preserved which
improved the performance dramatically. Third, we proposed a gen-
eral verification framework based on sparse representation on GMM
supervectors which outperformed the conventional SVM method by
more than 15% relative error reduction.
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