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bstract

The paper presents a novel automatic speaker age and gender identification approach which combines seven different methods
t both acoustic and prosodic levels to improve the baseline performance. The three baseline subsystems are (1) Gaussian mixture
odel (GMM) based on mel-frequency cepstral coefficient (MFCC) features, (2) Support vector machine (SVM) based on GMM
ean supervectors and (3) SVM based on 450-dimensional utterance level features including acoustic, prosodic and voice quality

nformation. In addition, we propose four subsystems: (1) SVM based on UBM weight posterior probability supervectors using the
hattacharyya probability product kernel, (2) Sparse representation based on UBM weight posterior probability supervectors, (3)
VM based on GMM maximum likelihood linear regression (MLLR) matrix supervectors and (4) SVM based on the polynomial
xpansion coefficients of the syllable level prosodic feature contours in voiced speech segments. Contours of pitch, time domain
nergy, frequency domain harmonic structure energy and formant for each syllable (segmented using energy information in the voiced
peech segment) are considered for analysis in subsystem (4). The proposed four subsystems have been demonstrated to be effective
nd able to achieve competitive results in classifying different age and gender groups. To further improve the overall classification
erformance, weighted summation based fusion of these seven subsystems at the score level is demonstrated. Experiment results
re reported on the development and test set of the 2010 Interspeech Paralinguistic Challenge aGender database. Compared to the
VM baseline system (3), which is the baseline system suggested by the challenge committee, the proposed fusion system achieves
.6% absolute improvement in unweighted accuracy for the age task and 4.2% for the gender task on the development set. On the
nal test set, we obtain 3.1% and 3.8% absolute improvement, respectively.
2012 Elsevier Ltd. All rights reserved.

eywords: Age recognition; Gender recognition; Prosodic features; Pitch; Harmonic structure; Formant; Polynomial expansion; Maximum likelihood
inear regression; UBM weight posterior probability supervectors; GMM; SVM; Sparse representation; Score level fusion

. Introduction
Automatic recognition of paralinguistic information, such as speaker identity, gender, age range, and emotional state,
an guide human computer interaction systems to automatically understand and adapt to different user needs. Likewise
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such meta-information can serve as an important analytic in human decision making. For instance, the emerging broad
area of behavioral signal processing aims to create quantitative characterization of typical, atypical, and distressed
human behavior states across a variety of application domains including in education and health care (Black et al.,
2010; Lee et al., 2010). Information about age and gender can be an important ingredient that leads to rich behavioral
informatics.

1.1. Background

Identifying the age and gender information of a speaker given a short speech utterance is a challenging task and has
gained significant attention recently. Metze et al. (2007) compared four approaches for age and gender recognition from
telephone speech; these included a parallel phoneme recognizer system to compare the Viterbi decoding scores for
each category-specific phoneme recognizer, a system using dynamic Bayesian networks to combine several prosodic
features, a system based solely on linear prediction analysis, and a GMM system based on MFCCs. It was reported in
Metze et al. (2007) that the parallel phone recognizer system performs as well as human listeners on long utterances
but its performance degrades on short utterances while the system based on prosodic features, such as fundamental
frequency (F0), jitter, shimmer and harmonics-to-noise-ratio, has shown relative robustness to the variation of the
utterance duration. More recently, novel acoustic features (Ajmera and Burkhardt, 2008), frame and utterance based
acoustic-prosodic joint features (Spiegl et al., 2009; Meinedo and Trancoso, 2010; Gajšek et al., 2010; Eyben et al.,
2009), lexical features (Wolters et al., 2009) as well as fuzzy SVM modeling (Nguyen et al., 2010) have all been proposed
to improve the recognition performance. In Ajmera and Burkhardt (2008), the discrete cosine transform is applied to
the cepstral coefficients and the cepstral trajectories corresponding to lower (3–14 Hz) modulation frequencies provide
best discrimination. Prosodic features (pitch, energy, formants, vocal tract length warping factor, speaking rate, etc.)
and their functionals can also be added to the cepstral features at the frame or utterance level to enhance the performance
(Spiegl et al., 2009; Meinedo and Trancoso, 2010; Gajšek et al., 2010; Eyben et al., 2009; Wolters et al., 2009). In
addition to the prosodic features, novel lexical level features like word-class frequencies have also been proposed
for age recognition purpose (Wolters et al., 2009). In the fuzzy SVM modeling method proposed by Nguyen et al.
(2010), a fuzzy membership is assigned as a weight to each training data point to increase the robustness against
noise and outliers. Furthermore, techniques from speaker verification and language identification applications such
as GMM–SVM mean supervector systems (Bocklet et al., 2008), nuisance attribute projection (NAP) (Dobry et al.,
2009), anchor models (Dobry et al., 2009; Kockmann et al., 2010) and Maximum-Mutual-Information (MMI) training
(Kockmann et al., 2010) have been successfully applied to speaker age and gender identification tasks to enhance the
performance of acoustic level modeling. In Dobry et al. (2009), anchor modeling utilizes a back end SVM to model the
distribution of similarity scores between training data and all the anchor speaker models. Due to the different aspects of
modeling, combining different classification methods together can often significantly improve the overall performance
(Müller and Burkhardt, 2007; van Heerden et al., 2010; Meinedo and Trancoso, 2010; Bocklet et al., 2010; Kockmann
et al., 2010; Lingenfelser et al., 2010).

1.2. Specific research motivation and focus

In this paper, we focus on both the acoustic and prosodic level approaches for speaker age and gender identification.
As acoustic level approaches, we consider two baseline systems: Gaussian mixture model (GMM) on short-time
spectrum based mel-frequency cepstral coefficient (MFCC) features, and support vector machine (SVM) on GMM mean
supervectors. We extend the latter (GMM–SVM mean supervector method) by using two kinds of supervectors, namely
maximum likelihood linear regression (MLLR) matrix supervector (Stolcke et al., 2005) and UBM weight posterior
probability (UWPP) supervector (Li et al., 2010; Zhang et al., 2009; Porat et al., 2010). Generally, in the GMM–SVM
mean supervector method, maximum a posteriori (MAP) adaptation is used to adapt the means of a GMM Universal
Background Model (UBM), and the corresponding feature vectors are the Gaussian mean supervectors (GSVs) which
consist of the stacked adapted means. The MAP adaptation is performed for each utterance using the statistics collected

on the UBM and typically only the means are adapted. The idea of MLLR, widely used in automatic speech recognition,
is to estimate an affine transformation to adapt the acoustic model parameters of a speaker independent system towards
a given speaker. Thus the MLLR matrix itself contains speaker specific characteristics and the entries of this affine
transformation matrix can be used as feature supervectors for speaker modeling (Stolcke et al., 2005). MLLR can also
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e applied to map the speaker-independent UBM model to a speaker dependent GMM model using the adaptation
ata (Stolcke et al., 2005, 2007). For each utterance, an affine transformation matrix is calculated to maximize the
ikelihood of the associated feature vector (Leggetter and Woodland, 1995). The columns of the corresponding MLLR

atrices are stacked to form the MLLR matrix supervector and used for SVM modeling (Stolcke et al., 2007). We
pply this idea to the age–gender recognition task. For the UWPP supervector modeling method, we utilize the way the
xpectation-maximization (EM) algorithm updates the weight of each Gaussian component when training an age and
ender independent GMM–UBM model. It is shown in Zhang et al. (2009) that the utterances from different speakers
enerally should get different UWPPs on the same gaussian component. This inspired us to explore the potential to
onsider the UWPP supervector as a histogram describing the characteristics of different age and gender groups. It is
hown in Jebara et al. (2004) that the Bhattacharyya probability product (BPP) kernel outperforms linear kernel on the
ord frequency feature vector on a text classification task. So we applied the BPP kernel for the SVM modeling on

hese UWPP supervectors. In summary, we introduce two additional GMM supervectors, namely MLLR and UWPP
upervectors, as the features for SVM modeling in age and gender recognition. All these three supervector extraction
ethods share the same framework of using a GMM–UBM as a front end and therefore combining these approaches

s efficient in terms of computational cost.
Another extension considered at the acoustic level is sparse representation of supervectors. In our recent work (Li

nd Narayanan, 2011), sparse representation computed by l1-minimization with quadratic constraints was proposed to
eplace SVM in GMM mean supervector modeling and was demonstrated to achieve better performance compared to
VM in the robust talking face video verification task. The sparse representation classification is extended to model the

ow dimensional i-vectors (Dehak et al., 2011) in the speaker verification task and has been shown to be complementary
ith SVM modeling (Li et al., 2011). This inspired us to exploit the sparse representation approach to perform speaker

ge and gender identification on GMM supervectors. We first construct an over-complete dictionary using all the
raining supervector samples, and then calculate the sparsest linear representation via l1-minimization for each test
upervector sample. If the test sample is from the nth class, the test sample should have a sparse representation whose
onzero entries concentrate mostly on the dictionary samples from the nth class. Therefore, the membership of the
parse representation in the over-complete dictionary itself captures the discriminative information given sufficient
raining samples and large number of classes on the training data (Wright et al., 2008; Li and Narayanan, 2011; Li
t al., 2011). It is similar to the anchor models (Dobry et al., 2009; Kockmann et al., 2010) that utilize the distribution
f similarity scores between testing sample and all the anchor speaker models but without the backend SVM training
rocess. Sparse representation modeling does not require training process which makes it suitable for large scale
nline adaptive learning. For SVM, if we want to add even one additional training sample, the whole model needs
o be re-trained which is computationally expensive and prohibitive. However, the sparse representation approach
emands a large amount of memory space due to the over-complete dictionary which can limit the training sample
umbers and slow down the recognition process for large databases. Thus, when we exploit this sparse representation
ramework, GMM supervectors with good discriminative capability and small dimensionality are preferred. Among
he three aforementioned supervector types (GMM mean, MLLR and UWPP), UWPP supervector has the smallest
imensionality (the number of components in GMMs) with comparable discriminative power. Thus, it is in this context
hat we examine the validity and feasibility of using sparse representation on GMM UWPP supervectors for the age
nd gender identification task.

We develop prosodic level approaches as well. As shown by Schötz (2007) in a phonetic study of speaker age,
eatures related to speech rate, sound pressure level (SPL), fundamental frequency (F0) and their temporal variations
ppear to be important correlates of speaker age. These prosodic features have been extensively studied for speaker
ge and gender recognition at both utterance and frame levels. Our extension is to model such prosodic information at
he syllable level of a speech signal. One issue in prosodic information modeling at the syllable level is that, for each
tterance, the number of syllables as well as the number of voiced speech segments are not fixed which makes the
imensionality of feature vectors vary. Therefore, statistical measures, such as mean, median, standard deviation and
ercentile, of these syllable-level voiced-segment-based prosodic feature vectors along all the segments are calculated
nd concatenated with other utterance level feature vectors (Bocklet et al., 2010; Schuller et al., 2010; van Heerden

t al., 2010; Müller and Burkhardt, 2007; Spiegl et al., 2009). For instance, one of our three baseline subsystems
SVM–SMILE) is based on 450-dimensional utterance level features including acoustic, prosodic and voice quality
nformation (Schuller et al., 2010). Similarly, prosodic features can also be combined with frame based features, such
s MFCC and Perceptual Linear Predictive (PLP) features, to generate acoustic-prosodic joint frame level feature
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vectors (Meinedo and Trancoso, 2010; Gajšek et al., 2010). However, each syllable size segment has its own prosodic
patterns which might be averaged out by such aforementioned statistical measures along all the segments. Furthermore,
the frame level prosodic features cannot effectively capture the dynamic variations along the whole syllable segment.
Thus, in this paper, we assume each syllable segment to be independent and then model the age and gender dependent
prosodic information directly at the syllable level using SVM. In testing, these syllable segment based score vectors
are averaged at the utterance basis to generate the final decision. Moreover, rather than the statistical measures of
prosodic information (Eyben et al., 2009), we employed polynomial expansion on all the interested contours and the
duration (Dehak et al., 2007a,b) as our low level descriptors for each voiced speech segment. In our approach, not
only pitch, energy, and formant contours which were explored in Dehak et al. (2007b) are adopted, but contours of
frequency domain harmonic structure energy (Cao et al., 2007) are also considered for analysis. Since the contours can
be reconstructed by these polynomial expansion coefficients, this feature set can capture rich prosodic information as
well as the full picture of the variations within each segment. Common prosodic features, such as F0, jitter, shimmer,
formant, or even speech rate, can be captured or derived by our contour-based low-level descriptors. The proposed
prosodic features and SVM modeling can provide complementary information to the acoustic level modeling at the
score level fusion stage.

1.3. Summary of contributions

In summary, we address the speaker age and gender recognition problem with acoustic and prosodic level information
fusion. The contributions are as follows: (1) At the acoustic level, we apply two additional GMM supervectors, namely
MLLR and UWPP supervectors, as the features for SVM modeling. (2) The notion of sparse representation is introduced
for GMM UWPP supervector modeling which is suitable for large scale online adaptive learning due to its property
of no new training effort required. (3) Contours of pitch, time domain energy, frequency domain harmonic structure
energy and formant for each syllable unit in every voiced speech segment are mapped into polynomial expansion
coefficients and duration as the prosodic features. Then we model the age and gender dependent prosodic information
directly at the syllable level using SVM. (4) Score level fusion of the proposed four subsystems (GMM–MLLR–SVM,
GMM–UWPP–SVM, GMM–UWPP–Sparse representation, SVM–Prosody) as well as the three baseline subsystems
(GMM, GMM–Mean–SVM, SVM–SMILE) is performed to improve the overall performance.

The remainder of the paper is organized as follows. A description of the corpus and classification task is provided
in Section 2. Each subsystem as well as the score level fusion method is explained in Section 3. Experimental results
and discussions are presented in Section 4. The conclusions are provided in Section 5.

2. Corpus and classification task

The database used to evaluate the proposed approach is the aGender database (Burkhardt et al., 2010; Schuller et al.,
2010). The task is to classify a speaker’s age and gender class which is defined as follows: children <13 years (C),
young people 14–19 years (YF/YM), adults 20–54 years (AF/AM), and seniors >55 years (SF/SM), where F and M
indicate female and male, respectively. We employed a Czech phoneme recognizer (Schwarz et al., 2006) to perform
the voice activity detection (VAD) by simply dropping all frames that are decoded as silence or speaker noises. The
mean and standard deviation of speech duration per data sample after VAD in the training and development data sets
of the aGender database are 1.13 ± 0.86 s and 1.14 ± 0.87 s, respectively. Thus it is a short length speech utterance
database. The training data set of the aGender database (472 speakers, 32,527 utterances) was used for model training
while the development data set from the aGender database (300 speakers, 20,549 utterances) was used as the evaluation
set of each subsystem as well as the fusion system in this paper. Finally, the testing data set from the aGender database
(17,332 utterances) was evaluated. The details about the aGender database and the evaluation methods are provided in
Schuller et al. (2010).

3. Methods
The overview of the proposed approach is shown in Fig. 1. In this section, we first introduce our three baseline
subsystems (Sections 3.1–3.3) and then present the details of our proposed four new subsystems (Sections 3.4–3.7).
Finally, the description of score level fusion is provided (Section 3.8).
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3.1. GMM baseline system

The features in this system are 13-dimensional MFCCs (including C0) and their first and second order derivatives,
which result in 39-dimensional coefficients per frame. The window size and window shift for each frame is 20 ms and
10 ms, respectively. After voice activity detection, non-speech frames were eliminated and the 39-dimensional MFCC
features were extracted. Cepstral mean subtraction and variance normalization were performed to normalize the MFCC
features to zero mean and unit variance on a per-utterance basis. In the proposed work, a UBM in conjunction with
a MAP model adaptation approach (Reynolds et al., 2000) was utilized to model different age and gender classes in
a supervised manner. All the data in the training set were used to train a M-component UBM, and MAP adaptation
was performed using the training set data for each age and gender class. The GMMs were modeled with diagonal
covariance matrices and only the means of the GMMs were adapted with a relevance factor of 12. The fast scoring
procedure devised by Reynolds et al. (2000) with top 4 Gaussian components was applied on the GMM scoring
stage.

3.2. GMM–Mean–SVM baseline system

The feature extraction and UBM training were done in the GMM baseline system (Section 3.1). The means of
Gaussian components were adapted by MAP adaptation for each training set and evaluation set utterance. Then the
corresponding GMM mean supervectors, created by concatenating the mean vectors of all the Gaussian components,
were modeled by SVM. The supervector was normalized by the corresponding standard deviation and weight to fit the
supervector kernel (Campbell et al., 2006b). We arbitrarily added one dummy dimension with value 1 at the head of
each mean supervector so that all the support vectors can be collapsed down into a single model vector and each target
score can be calculated by a simple inner product which makes this framework computationally efficient (Campbell
et al., 2006a). The dimension of the mean supervector from a 512 components GMM is 1 + (39 × 512) = 19, 969.
In addition, there are more than 30,000 utterances in the training set which makes the SVM training data set too
large to be handled efficiently. Instead of directly training a multi-class SVM classifier using all the high dimensional
supervectors, we adopted a two stage framework (Li et al., 2007) which can solve the practical limitation of computer
memory demanded by large database training. First, the training data set of the aGender database (471 speakers) was
divided into 2 parts: data from the last 20 speakers in alphabetical order of each age and gender class was used for back
end SVM training (140 speakers) and the rest of the data (331 speakers) was used for front end SVM training. Then,
based on the supervector samples from the front end SVM training set, multiple binary age and gender group based
discriminative classifiers (in our case, 21 1vs1 classifiers for 7 classes) were trained and employed to map the mean
supervectors into SVM score vectors (Li et al., 2007). SVMTorch (Collobert and Bengio, 2001) with linear kernel
was used here as the front end modeling method due to its efficiency and capability to handle large scale training.
Since the scoring function for each binary model is just an inner product (Campbell et al., 2006a), the mapping from
supervectors to score vectors is computationally efficient. Furthermore, a back end SVM classifier was trained using
LIBSVM (Chang and Lin, 2001) to model the probability distribution of each target age and gender class in the score
vector space using the back end SVM training set supervector samples. The LIBSVM toolkit was employed in the
second stage due to its capability of generating the decision scores in the posterior probability format which is easier
to fuse with other subsystems.

3.3. SVM–SMILE baseline system

The SVM baseline system (Schuller et al., 2010) was provided by the 2010 Paralinguistic Challenge, which
is based on 450-dimensional acoustic and prosodic features per utterance. We employed the LIBSVM toolkit to
model the features provided by the challenge committee. The details of feature extraction and SVM modeling
are presented in (Eyben et al., 2009; Schuller et al., 2010). Since various kinds of features, such as MFCC, line

spectral pairs frequency, voicing probability, F0, F0 envelop, jitter, and shimmer, etc., are included, this system
can capture age and gender information at both acoustic and prosodic levels. Moreover, combining this utterance
level feature based system with our frame level MFCC feature based systems can potentially further improve the
performance.
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.4. GMM–UWPP–SVM system

For each utterance in the training and evaluation sets, UWPP feature extraction is performed using the UBM. Given
frame-based MFCC feature xt and the GMM–UBM λ with M Gaussian components (each component is defined as
i),

λi = {wi, μi, Σi}, i = 1, . . . , M, (1)

he occupancy posterior probability is calculated as follows:

P(λi|xt) = wipi(xt|μi, Σi)

�M
j=1wjpj(xt|μj, Σj)

. (2)

his posterior probability can also be considered as the fraction of this feature xt coming from the ith Gaussian
omponent which is also denoted as partial counts. The larger the posterior probability, the better this Gaussian
omponent can be used to represent this feature vector. The UWPP supervector is defined as follows:

UWPPsupervector = b = [b1, b2, . . . , bM] (3)

bi = yi

T
= 1

T
�T

t=1P(λi|xt). (4)

Eq. (4) is exactly the same as the weight updating equation in the expectation-maximization (EM) algorithm in
MM training. The mixing coefficient bi is equal to the fraction of data points assigned to the corresponding ith GMM

omponent. Considering the GMM as a generative model which generates all the T independent frames of feature
ectors, yi = �T

t=1P(λi|xt) is the total frames being drawn from the corresponding ith GMM component.
In order to model the UWPP supervector using SVM, we extend the kernel from the traditional linear kernel (Zhang

t al., 2009) to the Bhattacharyya probability product (BPP) kernel (Jebara et al., 2004).

klinear(P, P ′) = (b)tb′ (5)

kBPP (P, P ′) = (
√

b)t
√

b
′

(6)

Let the square root of UWPP supervector θ = [b1/2
1 , b

1/2
2 , . . . , b

1/2
M ] and θ′ = [

1/2

b′
1 ,

1/2

b′
2 , . . . ,

1/2

b′
M] be two input feature

ectors to the SVM, then the BPP kernel is just the standard linear kernel on the square root UWPP supervectors:

kBPP (P, P ′) = (θ)tθ′. (7)

multi-class SVM classifier based on the BPP kernel was employed for UWPP supervector modeling using all the
raining set data. LIBSVM (Chang and Lin, 2001) with probabilistic output training was adopted.

.5. GMM–UWPP–Sparse representation system

Given Nj training samples Aj from the jth class, we construct the over-complete dictionary A using all the N training
amples from K classes (�K

j=1Nj = N):

A = [A1A2, . . . ,AK] (8)

= [s11, s12, . . . , s1N1 , s21, s22, . . . , s2N2 , . . . , sK1, sK2, . . . , sKNK ]. (9)

ach sample sij is an M dimensional square root UWPP supervector θ and automatically satisfies the unit l2 norm
roperty. Unit l2 normalization on the original form of UWPP supervectors may violate the fundamental constraint of
M
i=1bi = 1.

‖θ‖2 = ‖[b1/2
1 , b

1/2
2 , . . . , b

1/2
M ]‖2 = �M

i=1bi = 1 (10)
If no online training strategy is adopted, the over-complete dictionary is fixed throughout the entire testing progress.
n order to achieve the sparse representation on an under-determined problem, Nj � N, ∀ j and M < N need to be satisfied.
n this work, we model the age and gender information together as a seven class (K = 7) joint recognition problem. Thus
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Nj ≈ N/7 and Nj � N, ∀ j is satisfied. Compared to the GMM mean supervectors, the UWPP supervector has notably
smaller dimensionality M which not only strengthens the adoption of the sparse representation but also reduces the
memory usage dramatically.

For any test square root UWPP supervector sample y ∈ R
M (unit l2 norm automatically holds), we want to use the

over-complete dictionary A to linearly represent y (i.e., y = Ax) in a sparse way. If y is from the jth class, then y will
approximately lie in the linear span of training samples in Aj (Wright et al., 2008). In order to be more robust against
small, possibly, dense noise, we constrain the distance measure between the test sample y and the linear combination
of training samples to be smaller than ε (Wright et al., 2008) which results in a standard convex optimization problem
(l1-minimization with quadratic constraints):

Problem A : min‖x‖1 subject to ‖Ax − y‖2 ≤ ε (11)

If we replace the square root UWPP supervectors sij and y into the original UWPP supervector form, the Euclidean
distance in Eq. (11) is exactly the Hellinger’s distance.

For each class j (j = 1, . . ., K), let δj : R
N → R

N be the characteristic function which selects the coefficients only
associated with the jth class (Wright et al., 2008). For x ∈ R

N , δj(x) ∈ R
N is a new vector whose nonzero entries are

the only entries in the Nj elements of x that corresponds to Aj . Now based on the sparse representation x, we proposed
two decision criteria for verification purpose, namely l1 norm ratio and l2 residual ratio. A larger score represents a
higher likelihood for the testing sample to be from the associated class.

l1norm ratio : αj = ‖δj(x)‖1/‖x‖1 (12)

l2residual ratio : βj =
∑K

i=1,i /= j‖y − Aδi(x)‖2

‖y − Aδj(x)‖2
(13)

Due to large variabilities, the test sample y could be partially corrupted. Thus an error vector e was introduced to
explain the variability (Wright et al., 2008):

y = y0 + e = Ax0 + e (14)

So the original optimization problem becomes the following form:

Problem B : min‖z‖1 subject to ‖Bz − y‖2 ≤ ε (15)

B = [A I] ∈ R
M×(N+M), z = [xt et]t ∈ R

(N+M) (16)

If the error vector e is sparse and has no more than M/2 nonzero entries, the new sparse solution z is the true generator
according to (14) (Wright et al., 2008). Finally, we redefine the two decision criterions based on the new sparse solution
ẑ = [x̂t êt]t .

l1norm ratio : αj = ‖δj(x̂)‖1/‖x̂‖1 (17)

l2residual ratio : βj =
∑K

i=1,i /= j‖y − ê − Aδi(x̂)‖2

‖y − ê − Aδj(x̂)‖2
(18)

Fig. 2 demonstrates the sparse solution and ratio scores ((17) and (18)) of one random test utterance from the develop-
ment set under the problem B (15) scenario. First, we can observe from the top sub-figure that the solution is sparse and
the majority of non-zero coefficients of vector X (the first N dimension of Z) are associated with the correct dictionary
index (1 − 4407 for class 1). Second, both the L1 norm ratio and L2 residual ratio show that this random sample belongs
to class 1 clearly which demonstrates the effectiveness of the proposed sparse representation subsystem.

3.6. GMM–MLLR–SVM system

For each utterance in the training set and the evaluation set, a MLLR adaptation was performed to map the speaker-

independent UBM model to a speaker dependent model (Stolcke et al., 2005, 2007). Statistics on the UBM model were
gathered from the available adaptation data and used to calculate a linear regression based transformation for the UBM
mean vectors (Leggetter and Woodland, 1995). For each utterance, an affine transformation matrix was calculated
to maximize the likelihood of the corresponding feature vector. The columns of the corresponding MLLR matrices
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Fig. 2. Illustration of the sparse solution and ratio scores of utterance 1383 1 a11383s18 (class 1) using problem B (15) setting.

ere stacked to form the MLLR matrix supervector and used for SVM modeling. Since the dimension of the MLLR
atrix supervector is 39 × 40 = 1560 which is considerably smaller than the dimension of GMM mean supervector,
e used all the supervectors from the training set to train a multi-class SVM classifier and performed scoring on

he evaluation set. In order to increase the system robustness, Linear Discriminant Analysis (LDA) was employed to
erform dimension reduction on the MLLR supervector space. Since there are K (K = 7) classes in our joint age and
ender classification task, the dimensionality of the MLLR supervector after LDA is K − 1. Finally, a linear kernel
ulti-class SVM classifier was trained by LIBSVM (Chang and Lin, 2001) with probabilistic outputs.

.7. SVM–Prosody system

It has been shown in Metze et al. (2007) and Bocklet et al. (2010) that prosodic features have better robustness to the
ariation of the utterance duration and the score level fusion has slightly superior performance than the feature level
usion. Thus, in this work, we used contour-based low-level descriptors to extract the prosodic information and then
erformed the multi-class SVM modeling directly at the syllable level. Finally, the acoustic and prosodic information
ere fused at the score level.
Given a speech utterance after the voice activity detection (VAD), we first performed sub-harmonic summation

ased pitch extraction (Li et al., 2008; Cao et al., 2007), formant extraction by WaveSurfer toolkit (Sjölander and
eskow, 2000), time domain energy calculation and frequency domain harmonic energy computation (Hermes, 1988;
ao et al., 2007) at a 32 ms window with 10 ms shift frame basis. The energy En of the nth harmonic frequency of the
0 is defined as follows:

En = 1

2ρf0

∫ nf 0+ρf0

nf 0−ρf0

P(f )df (19)

here P(f) is the Short-Time Fourier Transform (STFT) power spectrum of an arbitrary frame, f0 is the fundamental
requency and ρ is a spectral normalized width factor with 0.05 value.

To enhance the robustness, logarithm of the feature values was applied and log energy was normalized on an
tterance basis by subtracting the maximum value of the entire utterance (Dehak et al., 2007a). The continuous long
oiced segments were located using pitch values and unvoiced frames were discarded. Then, within each voiced speech

egment, we segment the long prosodic contours into syllable-like regions in the same way as Dehak et al. (2007a)
y detecting the valley points of the log energy contour. Fig. 3 shows an example of syllable-like region segmentation
sing pitch and log energy contour information. Short syllable units with less than 60 ms duration were discarded. In
ig. 3, we can see that in total there are 9 valid syllable-like units (S1–S9) in 5 continuous voiced segments. Generally,
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Fig. 3. Syllable-like region segmentation using pitch and log energy contour information (Dehak et al., 2007a). (a) Waveform, (b) spectrogram (c)
pitch and log energy contour within each voiced speech segment. The blue segment lines were the start and end time for each continuous voiced
speech segment. For each continuous voiced speech segment, the red vertical lines marked the valley points of log energy contour which also served
as the boundaries of adjacent syllable units. Short syllable units with less than 60 ms duration were discarded. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

Table 1
The order and dimension for prosodic features.

Prosodic feature type Order Dimension

Log pitch 1 6
Log energy 1 6
Log harmonic energy 10 60
Log formant 4 24
Unit duration 1 1

Total 97

these valley points are the boundary of each syllable-like unit. We limit the minimum length of the unit to be 6 frames
due to the constraint of six term Legendre polynomial expansions. Tables 1 and 2 summarize the prosodic feature
extraction parameters.

Furthermore, for each syllable-like unit, the contours for pitch, time domain energy, frequency domain harmonic
structure energy and formants were normalized into [− 1, 1] time scale and approximated by a six term Legendre
polynomial expansion (Lin and Wang, 2005; Dehak et al., 2007a). As shown by Fig. 4, the reconstructed contours fit

the original contours very well on the normalized [− 1, 1] time scale. Thus, the expansion coefficients can capture the
mean, slope, curvature and many other detailed information about the contour. As shown in Table 1, in total we have
97-dimensional prosodic feature vectors for each syllable-like unit in voiced speech segments. A multi-class SVM

Table 2
Parameters for pitch and formant extraction.

Frame size 32 ms
Frame shift 10 ms
Lowest F0 50 Hz
Highest F0 350 Hz
Saliency threshold 0.5
Preemphasis factor 0.97
FFT length 512
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ig. 4. The original and the polynomial expansion reconstructed contours of S1 segment in Fig. 3. The blue curves are the original contours and the
ed curves are the reconstructed contours based on the Legendre polynomial expansion coefficients. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of the article.)

ith linear kernel was employed as the classifier and feature vectors from all the syllable-like units were used for
raining. Suppose we have N training utterances and we have Cn syllable-like units for the nth utterance, there are
otally

∑N
n=1Cn samples with dimensionality of 97. We normalized each dimension of the feature vector to be within

− 1, 1], and then performed multi-class SVM training using LIBSVM with linear kernel and probability modeling
unction enabled. In the testing phase, suppose we have Ctest syllable-like units for an arbitrary testing utterance. For
very syllable like unit, we performed the SVM scoring independently. Finally, the average score vector along all those
test syllable-like units was computed as the final subsystem result.

.8. Score level fusion

Due to the limited amount of training data, we simply employed the weighted summation fusion approach with
arameters tuned by cross validation. Let there be F input subsystems (as shown in Fig. 1 and Table 6, F = 7 in this
ork) where the ith subsystem outputs its own posterior probability vector li(x) for every trial. Then the fused score
ector ĺ(x) is given by:

ĺ(x) =
F∑

i=1

ηili(x) (20)

he weight, ηk, can be tuned by validation data. For the GMM baseline subsystem, log-likelihood normalization was
dopted to map the log likelihood scores into the posterior probabilities. Within all the K target classes (K = 7 in our
oint age-gender classification task), suppose the GMM log-likelihood score of an arbitrary testing utterance x on the
th target class is sk(x), then the approximated posterior probability score under flat prior assumption is defined as
ollows:

l(x) = esk(x)

∑K
k=1e

sk(x)
(21)
hen the evaluation was performed on the testing set of the aGender database, both the training and development
ets were used for modeling and the weight vector ηi, (i = 1, . . ., F) was exactly the same as the one tuned on the
evelopment set. It is worth noting that other advanced score fusion approaches, like the logistic regression method in
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Table 3
Performance of subsystems based on different GMM sizes evaluated on the development set.

ID.System GMM size task

128 256 512

Age and gender Age and gender Age and gender Age Gender

UA WA UA WA UA WA UA WA UA WA

1.GMM 42.8 42.2 43.5 43.1 45.8 45.3 47.5 49.3 78.0 83.7
2.GMM–Mean–SVM 42.0 42.6 42.2 42.8 42.6 43.2 46.1 45.6 75.7 82.5
4.GMM–UWPP–SVM (linear kernel) 38.3 39.1 40.1 40.7 41.5 42.2 45.0 44.9 74.5 82.1
6.GMM–MLLR–SVM 38.8 39.3 39.7 40.1 39.8 40.2 44.1 43.7 72.5 79.4
Bold font is to highlight the best configuration for each subsystem.

the popular FoCal toolkit (Brümmer, 2007), can be adopted here to increase the performance which is a topic for our
future work.

4. Experimental results

The development set was used to evaluate the performance of each subsystem as well as of the fusion approach.
Finally, performance on the testing set is also reported. Both unweighted accuracy (UA) and weighted accuracy (WA)
on average per class (UA/WA, weighting with respect to number of instances per class) for each of the 3 different
classification tasks (7 class age and gender {C,YF,YM,AF,AM,SF,SM}, 4 class age {C,Y,A,S} and 3 class gender
{C,F,M}) are presented. The details of these 3 tasks as well as the evaluation method are provided in Section 2 and
Schuller et al. (2010).

4.1. GMM based subsystems

Table 3 shows the results of GMM based subsystems evaluated against the GMM size. It can be observed from
Table 3 that the bigger the GMM size, the better the performance. Other than the GMM and GMM–UWPP–SVM (linear
kernel) subsystems that achieved significant improvement with 512 GMMs compared to 128 GMMs (the Z-test p values
of the null hypothesis that systems based on these 2 GMM sizes equally performed in the WA accuracy for the age and
gender task are <0.0001), the GMM–Mean–SVM and GMM–MLLR–SVM subsystems only had moderate accuracy
gain. In addition, all the 3 GMM supervector based subsystems did not achieve superior performance compared to the
traditional GMM baseline. This might be because the utterance duration is too short to perform good quality GMM
adaptations on the UBM. In the training stage, the GMM baseline used all the training data for each class which is
sufficient for the MAP adaptation. However, in the GMM supervector based SVM systems, the amount of data for
generating each supervector sample is just one short utterance. Continuing to increase the GMM size will make the
dimension of GMM supervectors too high for efficiently modeling using SVM. Thus, the rest of this section will focus
on the evaluation results on the 512 component GMMs.

4.2. SVM and sparse representation on the GMM UWPP supervectors

In Table 4, the results of different setups for the SVM and sparse representation subsystems on the GMM UWPP
supervectors are shown. First, we can see that BPP kernel outperforms linear kernel in the SVM modeling on the
UWPP supervectors. Furthermore, L2 residual ratio based criteria has better performance compared to the L1 norm
ratio for the sparse representation modeling. And Hellinger’s distance based quadratic constraint yields significant
boost in the sparse representation subsystem compared to the baseline Euclidean distance. This might be because the

square root UWPP supervectors automatically satisfy the unit l2 norm and the Hellinger’s distance is closely related to
the Bhattacharyya’s affinity between distributions (Jebara et al., 2004). Finally, we can observe from Table 4 that the
sparse representation modeling with L2 ratio on square root UWPP supervectors yields competitive results compared
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Table 4
Performance of GMM UWPP supervector modeling evaluated on the development set with 512 GMM.

Methods Kernel or ratio Supervector Age and gender Age Gender

UA WA UA WA UA WA

SVM linear UWPP 41.5 42.2 45.0 44.9 74.5 82.1
SVM BPPa UWPP 42.4 42.9 45.8 45.7 74.6 82.2
Sparse representation L1 UWPP 36.9 38.2 41.7 42.3 72.1 79.8
Sparse representation L2 UWPP 38.5 38.7 43.1 42.2 73.7 80.4
Sparse representation L1 Square root UWPP 38.3 39.7 42.8 43.5 72.8 80.9
Sparse representation L2 Square root UWPP 41.4 41.4 45.3 44.4 75.3 82.4
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old font is to highlight the best configuration for each subsystem.
a BPP kernel denotes the Bhattacharyya probability product kernel.

o the other GMM–SVM supervector subsystems. Considering there is no multi-class training work required for sparse
epresentation, this approach can serve as a kind of online adaptive learning method.

.3. SVM–Prosody subsystem

Performance of the SVM–Prosody subsystem based on different configurations of prosodic features is reported in
able 5. It is shown that the pitch feature by itself achieved 34.6% unweighted accuracy (UA) for the age and gender

oint modeling while adding duration and time domain energy information only improved the performance to 35.1%
A. Therefore, the pitch information plays a dominant role in the prosodic feature sets. Furthermore, adding frequency
omain harmonic energy and formant contour information yields significant improvement from 35.1% to 39.3%. This
alidates the effectiveness of the proposed low level prosodic descriptors. Thus, in our SVM–Prosody subsystem for
he age and gender recognition task, pitch, spectral harmonic energy and formant seem to be the most effective and
mportant prosodic features. We can observe from Table 5 that extending traditional prosodic contours to spectral
omain feature contours yields high gains in performance which matches the situation in speaker verification domain
Dehak et al., 2007b; Kockmann and Burget, 2008).

.4. Score level fusion

It is shown in Table 6 that the GMM (system 1) and SVM–SMILE (system 3) baseline subsystems outperformed the
ther subsystems in terms of both UA and WA accuracy. However, by combining all the 7 different methods together,
ignificant improvements (Z-test p < 0.00001) were achieved for all the 3 classification tasks. Now let us focus on the
nweighted accuracy for the age and gender 7 classes joint recognition task. Firstly, fusing systems 4 and 5 achieved
1.4% improvement against system 4 alone, which is interesting because fusing the two UWPP supervector based

ubsystems surpasses the GMM mean supervector system that solely achieves the best performance among the three

upervector based subsystems using SVM (system 2, 4, and 6). Secondly, fusing all the GMM supervector based
ubsystems together into system 10 achieved 46.4% UA accuracy which outperformed the GMM and SVM–SMILE
aseline subsystems. This confirms that these GMM supervectors are complementary with one another. Thirdly, fusing

able 5
erformance of SVM–Prosody subsystem evaluated on the development set.

itch Duration Energy Harmonic energy Formant Age and gender Age Gender

UA WA UA WA UA WA

34.6 39.1 37.4 42.1 71.9 84.5√
34.9 39.1 39.2 42.1 74.0 82.9√ √
35.1 39.2 39.3 42.2 74.1 83.0√ √ √
38.3 40.0 42.0 42.8 73.7 81.5√ √ √ √
39.3 40.7 43.1 43.5 74.7 82.1

old font is to highlight the best configuration for each subsystem.
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Table 6
Performance of each subsystem and score level fused systems evaluated on the development set with 512 GMMs.

ID System Age and gender Age Gender

UA WA UA WA UA WA

1 GMM 45.8 45.3 47.5 49.3 78.0 83.7
2 GMM–Mean–SVM 42.6 43.2 46.1 45.6 75.7 82.5
3 SVM–SMILE 44.5 44.9 47.2 46.6 77.5 85.1
4 GMM–UWPP–SVM 42.4 42.9 45.8 45.7 74.6 82.2
5 GMM–UWPP–Sparse representation 41.4 41.4 45.3 44.4 75.3 82.4
6 GMM–MLLR–SVM 39.8 40.2 44.1 43.7 72.5 79.4
7 SVM–Prosody 39.3 40.7 43.1 43.5 74.7 82.1
8 Weighted sum fuse 4 + 5 43.8 44.2 47.2 46.9 76.2 83.5
9 Weighted sum fuse 4 + 5 + 6 44.7 45.3 48.2 47.8 77.0 84.2
10 Weighted sum fuse 2 + 4 + 5 + 6 46.4 47.1 49.8 49.4 78.5 85.3
11 Weighted sum fuse 1 + 2 + 4 + 5 + 6 47.4 47.8 50.8 50.0 79.0 85.3
12 Weighted sum fuse 1 + 2 + 4 + 5 + 6 + 7 49.0 49.8 51.9 51.1 81.1 87.4
13 Weighted sum fuse 1 + 2 + 3 + 4 + 5 + 6 + 7 50.3 51.1 52.8 52.2 81.7 88.2

Kockmann et al. (2010) a 53.9 54.2 56.0 55.3 81.6 87.1
Meinedo and Trancoso (2010) b 51.2 50.6 83.1 86.9

Bold font is to highlight the best configuration for each subsystem.
a The age sub-challenge winner of the INTERSPEECH 2010 Paralinguistic Challenge.
b The gender sub-challenge winner of the INTERSPEECH 2010 Paralinguistic Challenge.

Table 7
Confusion matrix for 7 class age and gender task on the development set for system 13.

C YF YM AF AM SF SM

C 61.0 16.9 7.5 4.9 2.0 6.7 1.0
YF 16.4 57.1 0.8 15.8 0.3 9.0 0.6
YM 0.3 0.8 49.4 1.0 21.9 3.2 23.5
AF 5.5 26.6 1.8 33.8 0.4 31.3 0.6
AM 0.1 0.0 29.2 1.1 27.1 2.0 40.5
SF 7.1 11.4 1.5 22.9 0.9 53.9 2.2
SM 0.2 0.1 11.5 0.2 16.2 2.0 69.7
Bold font is to highlight the best configuration for each subsystem.

the GMM baseline with the previous system 10 further increased the UA accuracy to 47.4%. So far, all the information
in the fusion are all coming from the acoustic level MFCC features with the GMM framework. Fourthly, we fused the
acoustic level information with the prosodic level information together to achieve our final fusion system 13. It needs
to be pointed out that this significant improvement (around 3% from system 11 to 13) is achieved by exploiting the
syllable and utterance level prosodic information. Thus, score level fusion of the acoustic and prosodic information
together enhanced the performance significantly. Finally, our fusion system 13 achieved 52.8% UA (52.2% WA) and
81.7% UA (88.2% WA) on the development set for the age recognition and gender recognition tasks, respectively.

The confusion matrix for the 7 class age and gender task on development set for system 13 is shown in Table 7.
First, we can see that children, youth and senior groups perform better than adult group. This might be due to the
relatively large age range (20–54 years) for the adult group. Second, the children class has bigger confusion with the
female youth (YF) class than with the male youth (YM) class. This might be because children have relatively similar
voices to female youths. Third, the main confusion comes from speakers with the same gender of other age groups. For
example, Female Adult (AF) group has big confusion with Female Youth (YF) and Female Senior (SF) groups. This
result is consistent with the big gap between age classification accuracy and gender classification accuracy in Table 6.

Table 8 demonstrates the comparison of final performances (system 13) on the official test set of the challenge. It

is shown that the proposed system achieved competitive results compared to other participating systems. Finally, from
the confusion matrix of system 13 shown in Tables 9 and 10, we can find out that the most difficult age group to recall is
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Table 8
Comparison of the final performances evaluated on the official testing set.

Methods Task

Age Gender

UA WA UA WA

Schuller et al. (2010) 48.9 46.2 81.2 84.8
Nguyen et al. (2010) 49.1 81.7
Porat et al. (2010) 43.1 39.8
Gajšek et al. (2010) 82.8 87.3
Kockmann et al. (2010) a 52.4 51.2 83.1 85.7
The proposed method 52.0 49.5 85.0 88.4

Bold font is to highlight the best configuration for each subsystem.
a The age sub-challenge winner of the INTERSPEECH 2010 Paralinguistic Challenge.

Table 9
Confusion matrix for age task on test set.

C Y A S

Children 71.0 15.8 5.5 7.8
Youths 7.3 41.8 26.2 24.7
Adults 2.2 19.1 25.3 53.4
Seniors 4.0 9.8 16.3 70.0

Bold font is to highlight the best configuration for each subsystem.

Table 10
Confusion matrix for gender task on test set.

C F M

Children 71.2 25.2 3.7
Females 9.9 88.5 1.6
Males 0.8 3.9 95.3
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old font is to highlight the best configuration for each subsystem.

till the adult group and the biggest confusion pair for gender recognition is child and female which match our findings
n the development set.

. Conclusions

In this work, we addressed the speaker age and gender recognition problem with acoustic and prosodic level
nformation fusion. The contributions are as follows: (1) At the acoustic level, we introduced two additional GMM
upervectors, namely MLLR and UWPP supervectors, as features for SVM modeling. (2) Sparse representation was
ntroduced for GMM square root UWPP supervector modeling which is suitable for large scale online adaptive learning
ue to its property of no training effort required. (3) Contours of pitch, time domain energy, frequency domain harmonic
tructure energy and formant for each syllable unit in every voiced speech segment are mapped into polynomial
xpansion coefficients as our novel prosodic features and modeled directly at the syllable level using SVM. Experimental
esults showed that pitch, spectral harmonic energy and formant are the most effective and important prosodic features
n our case. (4) The proposed four subsystems have been demonstrated to be effective and show competitive results
n classifying different age and gender groups. (5) Score level fusion of all the subsystems was shown to improve the
verall performance significantly. Future work includes investigating the GMM-SVM Constrained MLLR supervector

ethod, combining other prosodic or phonetic level methods, and validating the results with a relatively larger and

onger duration database. Moreover, rather than applying existing approaches from speaker verification and language
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identification domains, investigation on novel features and algorithms specifically targeted for the detection of age and
gender states are also very important.
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