
The 2020 Personalized Voice Trigger Challenge: Open Datasets, Evaluation
Metrics, Baseline System and Results

Yan Jia1,4, Xingming Wang1,3, Xiaoyi Qin1,3,Yinping Zhang2,Xuyang Wang2,Junjie Wang2,
Dong Zhang4, Ming Li1,3∗

1Data Science Research Center, Duke Kunshan University, Kunshan, China
2AI Lab of Lenovo Research, Beijing, China

3School of Computer Science, Wuhan University, Wuhan, China
4School of Electronics and Information Technology, Sun Yat-sen University,

Guangzhou, China
ming.li369@dukekunshan.edu.cn

Abstract
The 2020 Personalized Voice Trigger Challenge (PVTC2020)
addresses two different research problems in a unified setup:
joint wake-up word detection with speaker verification on close-
talking single microphone data and far-field multi-channel mi-
crophone array data. Specially, the second task poses an addi-
tional cross-channel matching challenge on top of the far-field
condition. To simulate the real-life application scenario, the en-
rollment utterances are recorded from close-talking cell-phone
only, while the test utterances are recorded from both the close-
talking cell-phone and the far-field microphone arrays. This pa-
per introduces our challenge setup and the released database
as well as the evaluation metrics. In addition, we present a
sequential two stage end-to-end neural network baseline sys-
tem trained with the proposed database for speaker-dependent
wake-up word detection. Results show that state-of-the-art per-
sonalized voice trigger methods are still based on the two stage
design, however, this benchmark database could also be used to
evaluate multi-task joint learning methods. The official website
1, the open-source baseline system2 and results3 of submitted
systems have been released.
Index Terms: open source database, wake-up word detection,
speaker verification, joint learning

1. Introduction
Speaker dependent voice trigger and wake-up word detection
are gaining popularity among speech researchers and develop-
ers. It has been deployed in many real-life applications. With
the contribution of deep learning, the performance of wake-
up word detection and speaker recognition systems have im-
proved remarkably in both close-talking and far-field scenar-
ios. The demand for authentication based on voice technolo-
gies, including keyword spotting (KWS) and text-dependent
speaker verification (TDSV), is growing rapidly for personal-
ized voice trigger devices. Generally, the KWS aims to detect a
predefined keyword or a set of keywords in a continuous audio
stream. Recently, End-to-End Deep Neural Networks (DNNs)
are applied to KWS and show that DNN based methods per-
form well compared with Hidden Markov Model(HMM) based
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2https://github.com/lenovo-voice/THE-2020-PERSONALIZED-

VOICE-TRIGGER-CHALLENGE-BASELINE-SYSTEM
3https://www.pvtc2020.org/leaderboard.html

wake-up systems[1]. Since then, more complex network struc-
tures have been adopted to build end-to-end KWS systems, in-
cluding Convolutional Neural Networks[2], Recurrent Neural
Networks[3, 4], etc. On the other hand, with the success of deep
learning in the speaker verification (SV) field[5] and the demand
for personalized trigger in smart home devices, the TDSV task
has attracted much attention of speaker verification researchers.

The 2020 Personalized Voice Trigger Challenge
(PVTC2020), which aims at providing a common plat-
form for the research community to advance the state-of-the-art
techniques in this field. The PVTC2020 challenge is focused
on the speaker dependent wake-up word detection. We release
a database named XIAO-LE4 containing recordings of wake-up
words under the smart home scenario in this challenge. Besides,
we also provide an open source two-stage speaker dependent
KWS baseline system. When the KWS system triggers, we
compare the trigger audio with the reference model created
during the registration process and use another threshold to
determine whether the sound that triggers the detector may be
the wake-up word uttered by the registered user.

This rest of the paper is organized as follows. The details
of XIAO-LE data is introduced in Section 2, and in section 3,
the design features and evaluation metrics of the challenge are
presented. Section 4 describes the personalized KWS baseline
system. Section 5 discusses the experimental results. Conclu-
sion is provided in section 6.

2. The XIAO-LE Database
The XIAO-LE database is provided by the AI Lab of Lenovo
Research. It contains 658,995 utterances with 612 hours in
total. The database covers 550 speakers and a wide range of
channels from close-talking microphones to multiple far-field
microphone arrays. It can be used for far-field wake-up word
recognition, far-field speaker verification, and speech enhance-
ment.

The average duration of all utterances is around 3.8 sec-
onds. During the recording process, recording devices, includ-
ing two cell phones (16kHz, 16bit) and four microphone arrays
(with 4 or 6 channels per array, 16kHz, 16bit), were set in a
room designed as the real smart home environment 5.

For the data collected by microphone arrays, each audio file
has 4- or 6-channel signals, while for the data collected by cell

4https://www.pvtc2020.org/dataDescription.html
5https://www.pvtc2020.org/faq.html
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phones, each utterance only has two channels signal. Recording
devices and their corresponding distance information are shown
in table 1.

Table 1: Distance of different recording devices.

Devices id Device and distance

id1 Cell phone, 0.2m
id2 Cell phone, 0.8m
id3 Microphone array, 1m
id4 Microphone array, 3m
id5 Microphone array, 3m
id6 Microphone array, 5m

3. Challenge Setup
3.1. Task Settings

Based on the XIAO-LE database, we have divided it into a train-
ing set, a development set, and two evaluation sets. Specifically,
300 speakers are selected for training, and 50 speakers are used
as the development set. The rest speaker of the database is used
for evaluation. The challenge provides two tracks for the par-
ticipants, and the second task poses a cross-channel challenge.

3.1.1. Task 1: Joint wake-up word detection with speaker veri-
fication on close-talking data

Only data collected by cell phones in the evaluation set from
100 speakers is adopted for performance evaluation in the first
task. The evaluation set was separated into enrollment data and
testing data. For each target speaker, the positive testing sam-
ples have ‘xiao le, xiao le’ as a part of the speech, and it is
indeed uttered from the target speaker. There might be some
background noises or even other speakers’ voices before the
target speaker says ‘xiao le, xiao le’. However, all utterances
considered as positive samples have ‘xiao le, xiao le’ uttered by
the target speaker at the end of the speech in this case. Nega-
tive samples do not contain speech segments with the content
‘xiao le, xiao le’ uttered by the target speaker. Note that utter-
ances without ‘xiao le, xiao le’ or with ‘xiao le, xiao le’ that are
not uttered by the target speaker are both considered as negative
samples.

3.1.2. Task 2: Joint wake-up word detection with speaker veri-
fication on far-field multi-channel microphone array data

For the second task, we adopt data from another 100 speak-
ers in the evaluation set with no overlapping with the one in
task 1. The evaluation data and the trials are constructed in the
same way as task 1. The only difference is that the testing data
only includes multi-channel synchronized audio data collected
by one of those far-field microphone arrays. Similar to task 1,
‘xiao le, xiao le’ is always at the end of the sentence for all
positive samples. In contrast, negative samples do not contain
‘xiao le, xiao le’ or have speech segments ‘xiao le, xiao le’ that
are not uttered by the target speaker. The details about the trial
design are shown in Table 2.

3.2. Design of trial files

For speaker verification, participants can use up to three audios
for enrollment for each speaker. The trial we provided contains

three selected enrollment audios, one test audio, and the label
which denotes whether the trial is positive or negative. In task 1,
the utterances collected by cell phone in 0.2m are selected as the
enrollment data, and those utterances collected by cell phone in
both distances with 0.2m and 0.8m are used as the testing data.
In task2, the utterances collected by cell phone in 0.2m distance
are selected as the enrollment data, while utterances collected
by multi-channel far-field microphone arrays are used for test-
ing. We describe different scenarios in the trial construction
with more details in Table 2. The distribution of different trials
are shown in Table 3.

3.3. Evaluation Metrics

In this challenge, we provide a leaderboard ranked by the met-
ric scorewake up. The speaker dependent KWS performance
of our baseline system, as well as systems submitted by par-
ticipants in the challenge, are measured by this metric. The
scorewake up is calculated from the miss rate and the false
alarm (FA) rate according to the following equation,

scorewake up = Miss+ alpha ∗ FA (1)

Miss represents the proportion of errors in all positive label
samples, and FA refers to the rate of errors in all negative label
samples. The alpha constant is set as 19, which is calculated
by assuming that the ratio of positive to all samples is 0.05.

In addition, the real-time factor (Freal−time) is also eval-
uated as an auxiliary metric, which is calculated as the overall
processing time of the evaluation trials on an Intel Core i5 core
clocked at 2.6 GHz or similar processors divided by the total
duration of all the testing samples. That is calculated as fol-
lows:

Freal−time = Tprocess(s)/Ttotal test(s) (2)
Tprocess(s) is the overall time cost of processing all the eval-
uation data in seconds, and Ttotal test(s) is the total duration
of the testing audios. In task2, multi-channel data will be con-
sidered as single-channel data when calculating Ttotal test. Be-
sides, extracting the speaker embedding or features from the
enrollment data is not counted in Tprocess(s). Freal−time is a
mandatory self-reported metric. Each submission is considered
as a valid submission only when the corresponding self-reported
real-time factor is lower than the given threshold of 0.25.

4. The Baseline Methods
4.1. LSTM-based KWS system

This section presents our KWS baseline system, which is mod-
ified from the CNN-based KWS system in [6]. Our baseline
system consists of three modules:(i) a feature extraction mod-
ule, (ii) a stacked LSTM neural network and (iii) a confidence
calculation module.

The feature extraction module converts the audio signals
into acoustic features. 80 dimensional log-mel filterbank fea-
tures are extracted for speech frames with 25ms long and 10ms
shift. Then we apply a segmental window with 40 frames to
generate training samples that contain enough context informa-
tion of sub-word as the input of the model.

Our backbone network is constructed with a two-layer
stacked LSTM structure, followed by an average pooling layer
and a final linear projection layer. For all LSTM layers, the
hidden dimension is set to 128. A fully connected layer and a
final softmax activation layer are applied as the back-end pre-
diction module to obtain the subword occurrence probability of
predefined keywords.

4240



Table 2: Structure of the Trial files. Noting that, other text independent segments denote speech segments other than ‘xiao le, xiao le’

Includes
‘xiao le, xiao le’

‘xiao le, xiao le’part is from
the target speaker

Includes other text independent
segments from non-target

speakers before ‘xiao le, xiao le’

Includes other text
independent segments from

the target speaker
Label

yes yes no no positive
yes yes no yes positive
yes yes yes no positive
yes no no no negative
yes no no yes negative
yes no yes no negative
no n/a n/a yes negative
no n/a n/a no negative

Table 3: Details about the development and test set

utterances positive negative enrollment

Task1 24.9k 3.6k 23.5k 1.6k
Development

Task2 50.1k 4.6k 48.5k 1.6k

Task1 159.2k 19.7k 148.1k 3.1k
Evaluation

Task2 201.7k 28.8k 190.5k 3.1k

In the posterior handling module, while the acoustic feature
sequence is projected to a posterior probability sequence of key-
words by the neural network, we adopt the method proposed in
[7, 8] to make detection decisions. In this approach, we apply
a sliding window with the length of Tconf frames to compute
detection scores and denote the input acoustic features in a win-
dow as X = {x1,x2, · · ·xTconf }. w = {w1, w2 · · ·wM}
represents the sub-words sequence of pre-defined keywords.
Then the output confidence score h(X) is computed by equa-
tion 3,

h(X) =

[
max

1≤t1<···≤Tconf

M∏
i=1

pwi(xti)

] 1
M

, (3)

where pwi(xti) refers to the network output of tth frame at sub-
word wi.

This method is suitable for the real-time situation. The sys-
tem triggers whenever the confidence score is higher than the
pre-defined threshold.

4.2. Speaker verification system

The training process of the speaker verification baseline system
is modified from the framework in [14]. The whole architecture
contains a front-end feature extractor, an encoding layer and a
back-end classifier. We used ResNet34 [15] with SE-block [16]
as the feature extractor. The attentive statistics pooling(ASP)
[17] is adopt as the encoding layer. The ASP layer uses an at-
tention mechanism to give different weights to different frames
and generates a weighted average and a weighted standard de-
viation at the same time, which can effectively capture longer-
term speaker feature variations. The AM-Softmax [18] was set
as the back-end classifier in the system.

4.3. Speaker dependent KWS system

Our baseline system consists of a wake-up system and a speaker
verification system described above. As shown in Figure 1, we

designe a two-stage system that responds whenever the target
speaker says the trigger phrase. When the KWS system trig-
gers, the speaker verification system starts to decide whether
the voice that triggers the detector is likely to be from the en-
rolled user. During enrollment stage, the average vector of the
three utterances’ speaker embedding is saved as the enrollment
speaker embedding vector.

Feature Extraction

xiao le xiao le

Keyword spotting 
system

Speaker verification 
system

&

enrolment

Trigger
or

Non-trigger

Figure 1: Framework of the baseline system.

We compare any possible new ‘xiao le, xiao le’ utterance
with the stored templates as follows. The first stage detector
produces timing information used to convert the acoustic fea-
ture sequence into a fixed-length vector. A separate, specially
trained speaker verification network transforms this vector into
a speaker embedding. We compare the cosine between the test-
ing embedding and the reference template created during en-
rollment with another threshold to decide whether the sound
that triggers the wake-up word detector is likely to be the one
from the enrolled speaker. This process can help reduce the
cases where the device is triggered by ‘xiao le, xiao le’ spoken
by another person and reduces the rate at which other confusing
trigger phrases.

4.4. Experiment setup

4.4.1. Keyword spotting system

We determine target word labels by force-alignment with an
LVCSR system. For keyword ’xiao le, xiao le’, the ending
time of the first ‘xiao’, the first ‘le’, and the second ‘xiao’ are
found out and we center its on a window of 40 frames. 80 dims
log fbank is adopted as our input acoustic features. The KWS
system is trained with cross-entropy loss. Stochastic gradient
descent with Nesterov momentum is selected as the optimizer.
The learning rate is first initialized as 0.01 and decreases by a
factor of 0.1 whenever the model reaches a training loss plateau.
We train the KWS model for 100 epochs with a batch size of
128 and employ early stopping when the training loss is not de-
creasing. In the evaluation period, we use a sliding window of
150 frames to compute the confidence score.
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Table 4: The methods and results of top performing systems

Team Name Data KWS SV System Note Result

Freal−time Task1 Task2

The Xiaomi-NPU System
PVTC+openslr

Data Augmentation
TDNN[9]

CNN-TDNNF[10]
x-vector[5]
ResNet34

Two-stage KWS+Two-stage SV
Location Augmentation

MMD loss+CORAL loss
0.206 0.075 0.084

The NPU System
PVTC+openslr

Data Augmentation
SpecAugment

MDTC[11] ResNet34[11]
Location Augmentation
Binary Cross Entropy
Location Estimation

0.120 0.080 0.091

Mobvoi beyond AI System
PVTC+openslr
SpecAugment

TDNN
TCN ResNet34 Focal loss 0.172 0.113 -

Seedland Corp AI System
PVTC+openslr

Data Augmentation
MobileNet[12]

LSTM
Resnet34SEV2[13] - - 0.209 0.200

Baseline V2 PVTC+openslr LSTM Resnet34 - 0.201 0.37 0.31

Baseline V1 PVTC+openslr LSTM Resnet34 - 0.203 0.75 0.78

4.4.2. Speaker verification system

According to the experiments in [19], the strategy of transfer
learning performs well in the far-field text-dependent speaker
verification tasks. Therefore, we select the data from SLR38,
SLR47[20], SLR62, SLR82[21], SLR85[22] on openslr6 as the
pre-training data. After that, we carry out fine-tuning on the
XIAO-LE database. Fine-tuning schemes are divided into two
types: the first is to use all the utterances of the pre-training
database to construct a text-independent speaker verification
system as a pre-training model; the second is to use only the
database of XIAO-LE to fine-tune the pre-training model and
get the target text-dependent system. We adopt online data aug-
mentation to improve the robustness of the speaker verification
system[23]. We use the MUSAN [24] and the RIRs-NOISES
[25] as the noise sources. The signal-to-noise-ratio(SNR) was
set between 0 to 20 dB while pre-training and 0 to 15 dB while
fine-tuning. For pre-training, we also use stochastic gradient
descent as the optimizer. The initial learning rate is set as 0.01
and decreases by 0.1 per 20 epochs. The pre-trained model is
trained for 50 epochs with a batch size of 256. For fine-tuning,
the initial learning rate is set to 0.001 and the number of training
epochs is set to 20.

The threshold of the speaker verification system was deter-
mined by the development set. Two ad-hoc ways to determine
the threshold have been used in our baseline system. The first
method is using the threshold of EER (Equal Error Rate) as the
baseline version 1 system. The second is using the mean thresh-
old of EER and minDCF[26], which greatly improved in the
development set as baseline version 2 system.

5. Results
5.1. Results

We received sixteen systems for the first task, and three systems
for the second task. For two tasks, only the top three systems are
included in Table 4, the results of all participating teams with
valid submissions can be found on the leaderboard on the Chal-
lenge website. All the experiments are evaluated on an Intel
I5 series CPU clocked at 2.5 GHz. Table 4 presents the meth-
ods and results of the submitted systems as well as the baseline
method.

From Table 4, we can observe that the recordings of task

6http://openslr.org/resources.php

2 are all far-field scene, and the performance of the model on
task 2 decreases significantly compared to task 1. Second, the
methods plays an important role in determining the final score.

As for submitted systems, using a more complex neural net-
work in KWS can achieve better results than the baseline sys-
tem. The parameters of the four submitted KWS networks are
more than those of the baseline system. The Xiaomi-NPU sys-
tem achieves the best performance on the both task1 and task2,
because they adopt the complex system structure of two-stage
KWS models and two-stage speaker verification models. All
submitted systems use data augmentation methods to expand
the original training set of the challenge, which is critical for
our system to generalize to the development set as well as the
evaluation set. For the development set and the evaluation set,
the keyword always appears at the end of the utterance, and key-
word always appears at the beginning of the utterance in orig-
inal training data. The two top performing systems use ASR
force alignment information to augment new data where the key
word may appear at random positions in the utterances to make
the KWS model more robust, which significantly improves the
performance on the evaluation set.

6. Conclusions
In this paper, we introduce the setup of the 2020 Personalized
Voice Trigger Challenge (PVTC2020) and describe the datasets,
tracks, rules, baseline systems, evaluation metrics and results of
the challenge. Results show that state-of-the-art personalized
voice trigger methods are still based on the two stage design
and data augmentation strategies as well as threshold setting
are important. In the future, this benchmark database could also
be used to evaluate multi-task joint learning methods. we hope
the provided benchmark database as well as the challenge setup
could contribute to the development of personalized wake-up
word detection techniques.
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