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Ultrasonic Lamb waves are a widely used research tool for nondestructive structural health

monitoring. They travel long distances with little attenuation, enabling the interrogation of large

areas. To analyze Lamb wave propagation data, it is often important to know precisely how they

propagate. Yet, since wave propagation is influenced by many factors, including material proper-

ties, temperature, and other varying conditions, acquiring this knowledge is a significant chal-

lenge. In prior work, this information has been recovered by reconstructing Lamb wave

dispersion curves with sparse wavenumber analysis. While effective, sparse wavenumber analysis

requires a large number of sensors and is sensitive to noise in the data. In this paper, it extended

and significantly improved by constraining the reconstructed dispersion curves to be continuous

across frequencies. To enforce this constraint, it is included explicitly in a sparse optimization

formulation, and by including in the reconstruction an edge detection step to remove outliers,

and by using variational Bayesian Gaussian mixture models to predict missing values. The

method is validated with simulation and experimental data. Significant improved performance is

demonstrated over the original sparse wavenumber analysis approach in reconstructing the dis-

persion curves, in synthesizing noise-removed signals, in reducing the number of measurements,

and in localizing damage. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4974063]

[ZHM] Pages: 749–763

I. INTRODUCTION AND BACKGROUND

Lamb waves are elastic waves that propagate in solid

plates and are guided by the boundaries of the medium.

Ultrasonic Lamb waves travel long distances with low atten-

uation,1 making them well suited for remote nondestructive

inspection and structural health monitoring of large plate-

like structures.2 Lamb waves are characterized by their dis-

persion curves, which describe the frequency-dependent

phase and group velocity for each wave mode, as well as the

frequency-dependent amplitude of each Lamb wave mode.

While many Lamb wave techniques use approximated dis-

persion curve knowledge,3–8 better knowledge of the disper-

sion curves and their amplitudes can yield significant

improvement in applications.9

A. Overview of dispersion curves estimation

Due to their significance in Lamb wave analysis, there

are many approaches for estimating the dispersion curves of

Lamb waves. We divide these approaches into three catego-

ries: theoretical, numerical, and data-driven methods.

Dispersion curves can be theoretically computed by

deriving the solution to the wave equation. For example,

the dispersion curves for Lamb waves are defined by the

Rayleigh-Lamb equation.10,11 While theoretical modelling

is often desired, it is limited to simple, isotropic
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structures12,13 and requires impractically extensive and

accurate knowledge about the structure and its environmen-

tal parameters.

Numerical simulations, such as the finite element

method,14–17 the semi-analytical finite element method,17,18

and the scaled boundary finite element method,19,20 allow us

to analyze more complex structures. However, these

approaches still require extensive structural and environmental

knowledge17 for the simulations to match experimental data.

Data-driven approaches use experimental data from

real-world settings to extract or circumvent precise structural

and environmental knowledge. These methods incorporate

directly structural and environmental variations into their

estimation procedure. Well-known data driven approaches

include signal processing techniques3–7 and machine learn-

ing methods.21–26 Many signal processing techniques have

limitations that reduce their effectiveness. For example,

chirplet matching pursuit5 removes valuable wideband fre-

quency components and the zero-crossing technique6 only

examines certain modes of the dispersion curves. Machine

learning methods require a significant amount of prior train-

ing data that is impractical to collect in many circumstances.

Sparse wavenumber analysis (SWA)8,9 is a data-driven,

model-aided approach that integrates experimental data with

theoretical models and signal processing techniques to char-

acterize the complex behavior of Lamb waves. Sparse wave-

number analysis reconstructs the frequency-wavenumber27

dispersion curves and their complex amplitudes through the

use of compressive sensing algorithms. Sparse wavenumber

synthesis (SWS)8 is then used to synthesize and predict the

waveform as it propagates throughout the plate. When com-

bined with matched field processing,28 SWA and SWS can

provide highly accurate target (i.e., structural defect or dis-

continuity) localization.9

While its effectiveness has been well demonstrated,

SWA yields poor results when implemented with few sen-

sors and noisy data. This is because SWA leverages very

few assumptions about the dispersion curves. Specifically, it

does not assume that the dispersion curves be continuous

across frequency. In this paper, we significantly improve

sparse wavenumber analysis by introducing a continuity con-

straint across frequencies. Our continuity constrained sparse

wavenumber analysis (CCSWA) significantly improves the

quality of the reconstruction of the dispersion curves and sig-

nificantly reduces the number of measurements needed to

accurately reconstruct them. This then leads to more accu-

rate signal synthesis and much better damage localization

results than existing alternatives.

B. Contributions of the paper

The contributions of this paper are threefold. First, we

consider that the original SWA method8 often produces

fragmented reconstructed dispersion curves with missing

data points. To address this limitation, we propose a new for-

mulation of SWA that accounts explicitly for the continuity

of the dispersion curves in the desired frequency range by

introducing a continuity constraint regularization term in the

sparsity-aware optimization cost function. Further, we add to

the optimization algorithm a clustering step based on varia-

tional Bayesian Gaussian mixture models to restore missing

points on the dispersion curves. By promoting better model

fitting inside a dispersion curve cluster and promoting more

sparsity outside of each cluster, we enforce continuity and

more accurate dispersion curve reconstruction.

Second, we explicitly incorporate additive noise in

the Lamb wave signal model. We assume that the additive

noise has bounded energy without requiring a specific noise

model. This enables us to account for a wide variety of noise

sources in a real-world setting. This is different from prior

signal models used by SWA (Refs. 8, 9, and 29) that do not

consider noise. To remove the noise effectively, we develop

an outlier detection step in the reconstruction of the continu-

ity constrained dispersion curves.

Third, to reconstruct accurately the dispersion curves,

we develop a comprehensive algorithm for our new for-

mulation (with the continuity constraint and noise). The

algorithm consists of six steps: basis pursuit, outlier detec-

tion, outlier removal, adaptive weight adjustment, varia-

tional Bayesian Gaussian mixture model clustering, and

missing points restoring. We validate this algorithm with

simulated and real-world experimental data. Unlike previ-

ous SWA results,8 the reconstructed dispersion curves are

continuous across frequencies and exhibit less “spike-like”

noise. Furthermore, CCSWA achieves improved recon-

struction accuracy with a significantly smaller number of

measurements. As a result, CCSWA can synthesize more

precise Lamb wave signals that are used for damage

localization like in matched field processing or other

applications.

C. Organization of the paper

The remainder of the paper is organized as follows.

Section II, after briefly presenting the sparse representation

of Lamb waves and the original SWA method,8 introduces

CCSWA and details the six-step algorithm to reconstruct

continuity constrained dispersion curves. Using both basis

pursuit8 and orthogonal matching pursuit,10,30–32 Sec. III

compares CCSWA to SWA with simulation and experimen-

tal data. In Sec. IV, we draw conclusions.

II. CONTINUITY CONSTRAINED SPARSE
WAVENUMBER ANALYSIS

In this section, we present CCSWA for reconstructing

dispersion curves of Lamb waves. Section II A describes the

Lamb waves signal model. Section II B introduces the conti-

nuity constrained convex optimization problem for sparse

reconstruction. Finally, Sec. II C details the six-step algo-

rithm that solves the CCSWA optimization problem.

A. Signal model

We choose cylindrical coordinates ðr; h; zÞ, where the

r-axis and the h-axis represent the radial distance from the

origin and the angle with respect to the reference direction

on the plate, respectively. The z-axis is perpendicular to the

plate. We consider piezoelectric sensors mounted on the
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surface of the plate at position z¼ z0. We assume an ideal

impulse excitation source located at the origin. The response

Hðr;xÞ at a receiving sensor at distance r from the transmit-

ting source and at operating frequency x is8,33

H r;xð Þ ¼
XM

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

km xð Þr

s
Gm xð Þejkm xð Þr; (1)

where kmðxÞ is the frequency dependent wavenumber of

mode m, and Gm is the frequency dependent complex ampli-

tude of mode m. The signal Hðr;xÞ is the superposition of M
wave modes. Each mode is determined by its wavenumber

kmðxÞ and the complex gain GmðxÞ. To estimate the disper-

sion curves, we assume that data are collected from L sen-

sors mounted on the plate under test. As a result, for each

frequency x, we obtain L sets of measurements

Xðrl;xÞ ¼ Hðrl;xÞSðxÞ þWðrl;xÞ; l ¼ 1;…;L; (2)

where the symbol Wðrl;xÞ denotes additive measurement

noise or interfering signals. The symbol SðxÞ is the frequency

spectrum of the excitation source. For the sake of simplicity,

we assume SðxÞ ¼ 1. Formulation (2) differs from the earlier

work8 by explicitly modeling the noise in the data. This ena-

bles us to develop estimation algorithms for dispersion curve

reconstruction in the presence of noise and unwanted interfer-

ence. Our goal is to estimate the M sets of unknown parame-

ters kmðxÞ and GmðxÞ from L measurements. Next, we

organize the measurement data into the vector

xðxÞ ¼ Xðr1;xÞ Xðr2;xÞ � � � XðrL;xÞ½ �T : (3)

As in prior work,8 we assume GmðxÞ is a discrete sample of

the continuous frequency-wavenumber spectrum Vðj;xÞ at

the wavenumber value kmðxÞ, i.e.,

Vðj;xÞ ¼
GmðxÞ if j ¼ kmðxÞ for some m;

0 otherwise:

(
(4)

We now discretize j across N � L possible wavenumber

values jn, n ¼ 1;…;N, and write the samples of Vðj;xÞ at

these N values as

vðxÞ ¼ Vðj1;xÞ Vðj2;xÞ � � �VðjN;xÞ½ �T : (5)

The N values jn are finely sampled across the wavenumber

range of interest and the vector vðxÞ represents wavenumber

values of the continuous frequency-wavenumber spectrum

Vðj;xÞ. Only a small number M of modes, i.e., wavenum-

bers, is excited in a given experiment. Hence, vðxÞ is very

sparse. We rewrite the signal model (2) in matrix-vector

form as

xðxÞ ¼ UvðxÞ þ wðxÞ; (6)

where the (l, n)th entry of the L�N matrix U is given by

U½ �ln ¼
1ffiffiffiffiffiffiffiffi
jnrl
p ejrljn ; (7)

and the noise vector is given by

wðxÞ ¼ Wðr1;xÞ Wðr2;xÞ � � �WðrL;xÞ½ �T : (8)

The next subsection uses the model in Eq. (6) to formulate

CCSWA and solves for the sparse vector vðxÞ using a conti-

nuity constraint.

B. Continuity constrained sparse reconstruction

As noted above, the vector vðxÞ is highly sparse since it

contains only M (�N) non-zero elements specified by the

nonzero terms GmðxÞ at j ¼ kmðxÞ. Hence, we can formu-

late the dispersion curve reconstruction problem as a sparse

optimization problem34–37

vðxÞ ¼ argmin
vðxÞ

kvðxÞk0;

subject to jjxðxÞ � UvðxÞjj2 � d; (9)

where jjvðxÞjj0 is the l0-pseudo-norm defined as the number

of non-zero elements in vðxÞ, and jj � jj2 is the l2 norm.

Differing from prior work,8 we introduce d as a bound on the

reconstruction error �,

jjxðxÞ � x0ðxÞjj2 ¼ � � d; (10)

where x0ðxÞ is an ideal noiseless signal. We remark later

that this bound leads to an effective solution of Eq. (9) in the

presence of noise. We turn problem (9) into the LASSO
regression problem,38–40 or, equivalently, basis pursuit (BP),

by relaxing the l0-pseudo-norm in Eq. (9) to the l1-norm

~vðxÞ ¼ argmin
~vðxÞ

kU~vðxÞ � ~xðxÞk2
2 þ skgðxÞ 	 ~vðxÞk1;

(11)

where s is the regularization parameter, jj � jj1 denotes the l1
norm, and 	 denotes elementwise multiplication. The vector

~xðxÞ ¼ xðxÞ=jjxðxÞjj2 is normalized. Note that a frequency

dependent weight factor gðxÞ ¼ ½gðxÞ1; gðxÞ2; …; gðxÞN�
T

is introduced in the l1 regularization term in Eq. (11) to

enforce continuous reconstruction, which makes Eq. (11)

different from the classic LASSO formulation. The first term

in Eq. (11) attempts to ensure model fitting, while the second

term in Eq. (11) imposes sparsity on the solution. Therefore,

when values of g are large, we impose more strongly sparsity

at the corresponding wavenumber. When values of g are

small, we impose more strongly model fitness at the corre-

sponding wavenumber. When g ¼ 1, Eq. (11) reduces to the

classic SWA formulation.8

We next consider that we probe the structure with Q fre-

quencies. When we stack together all of the solutions to Eq.

(11) for the Q frequencies of interest, we get the matrix

formulation

~V ¼ argmin
~V

kU~V � ~Xk2
2 þ skH	 ~Vk1; (12)

where ~X ¼ ½~x1; ~x2; …; ~xQ�; ~V ¼ ½~v1; ~v2; …; ~vQ�, and

H ¼ ½g1; g2; …; gQ�, respectively. Each column of these
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matrices corresponds to one of the Q frequencies. The goal

of this optimization formulation is to extract the dispersion

curve matrix ~V across all frequencies and wavenumbers of

interest.

1. Remark

Given the sensing matrix U and assuming the noise is

absent, basis pursuit provides an accurate reconstruction of

v0ðxÞ from the noiseless data x0ðxÞ if the restricted isometry

property (RIP) is satisfied.41 Reference 42 proves that RIP is

satisfied with random sensor topologies. In the noisy case,43

if the noise is bounded jjxðxÞ � x0ðxÞjj2 � d, and v0ðxÞ sat-

isfies the sparse requirement

jjv0 xð Þjj0 <
1

4
1þ 1

c

� �
; (13)

where c denotes the mutual coherence of U,43 then the recon-

struction is stable, and the reconstruction error jj~vðxÞ
� v0ðxÞjj2 is, at worst, proportional to the noise level bound

d. For Eq. (11), the requirement in Eq. (13) is satisfied since

c is close to zero. If we properly choose the regularization

parameter s in Eq. (11) to be between 0 and jjUHxðxÞjj1,

then the solution ~vðxÞ to the sparse reconstruction problem

(11) shares the same support as the unique optimal solution

v0ðxÞ for which noise is absent.36 Therefore, we can solve

the sparse reconstruction problem in Eq. (9) by finding the

solution to Eq. (11) in the presence of noise.

2. Signal synthesis

As in prior work,8 once we obtain the reconstructed

~vðxÞ, we can predict the signal x̂ðxÞ at chosen distances

r
 ¼ ½r
1; r
2;…; r
L� from the transmitter by solving the fol-

lowing forward problem:

x̂ðxÞ ¼ Û~vðxÞ; (14)

where the (l, n)th entry of the L�N matrix Û corresponds to

the distance r
l such that

Û½ �ln ¼
1ffiffiffiffiffiffiffiffiffi
jnr
l

p ejr
l jn :

This is referred to as sparse wavenumber synthesis (SWS).8

If in Eq. (14), we take the distance r
l ¼ rl for all l ¼ 1;…; L
(i.e., at the sensor locations), then Eq. (14) synthesizes the

signal at each of the L sensors from the reconstructed ~vðxÞ.
This is referred to as sparse wavenumber denoising (SWD)8

and re-synthesizes the measured signals from the sparse rep-

resentation with significant noise reduction. We refer to

these signals as denoised signals.8 These signals can then be

used by other methods like matched field processing in

defect localization, see Sec. III.

C. Description of the CCSWA algorithm

In this subsection, we describe the CCSWA algorithm

to reconstruct dispersion curves. The six steps of the

CCSWA algorithm are as follows: (1) perform original

SWA, (2) detect outliers by edge detection, (3) increase

weights for outliers, (4) remove outliers by CCSWA, (5)

identify each wave mode by clustering and adjust the

weights gðxÞ by polynomial fitting, (6) restore missing

points by CCSWA. The specific steps of the CCSWA algo-

rithm are provided as follows.

Step 1: Obtain ~V by unweighted SWA. In this step, the

original basis pursuit problem is solved by the original

SWA method8 to obtain ~V. Note that the ~V is obtained

without imposing the continuity constraint.

Step 2: Detect outliers. In this step, we treat the reconstructed

dispersion curves ~V from step 1 as an image with each point

in ~V as a pixel in the image. The dispersion curves are con-

sidered as edges in the image, and the edges are to be

detected by the directional gradient of the pixel intensity.

The points falling on these edges define set U, and the points

not in this set, �U ¼ fx : x 62 Ug, are outliers. We approxi-

mate the gradient at each pixel in the image by a differential

operator, the Sobel operator (commonly used in image proc-

essing44). Applying the Sobel operator, all points with gra-

dients larger than a threshold are treated as edges. We refer

to this threshold as the Sobel threshold s and define it in Sec.

III. Figure 1 illustrates that the pixels in the dispersion curves

change intensity in the direction normal to the curves, and

can thus be detected as edges.

Step 3: Increase the penalty for outliers. In this step, we

increase the weight g �U
ji
ðxÞ in Eq. (11) to a value greater

than 1 for each outlier identified in �U . We describe how we

choose the weight increase in Sec. III. This promotes fur-

ther sparsity at the locations of these points. Hence, we

penalize the reconstruction of points that are far from the

dispersion curves.

Step 4: Remove outliers by CCSWA. In this step, CCSWA

is performed with the increased weights gðxÞ that penalize

outliers. This results in a noise-reduced ~V. The points in ~V
define set O. We use gO

ji
ðxÞ to denote the associated weight

FIG. 1. Pixels in dispersion curves. The pixels in the dispersion curves with

changing intensity in the direction normal to the curves are detected as

edges. The remaining pixels are outliers.
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for point in O at frequency x and at wavenumber ji. We

describe how we choose the weight in Sec. III. After this

step, a much smaller number of outliers will remain in the

dispersion curves. However, while outliers are removed,

some points in the recovered dispersion curves may also be

removed. This is because isolated points on the dispersion

curves are treated as outliers. In the following steps, we

restore these missing points.

Step 5: Adjust weights gðxÞ by clustering. In this step, we

implement variational Bayes Gaussian mixture model clus-

tering to identify the modes on the dispersion curves. This

is a common probability density based clustering algorithm

that uses a Bayesian framework and a variational method to

approximate the posterior distribution of the latent varia-

bles, i.e., the mean, the variance, and the model mixing

coefficient, in a finite mixture of Gaussian components, as

well as to estimate the number of components.45–48 The

points in O are clustered into T clusters. To predict the posi-

tions of the missing points, we fit the obtained T clusters

with T quadratic polynomials fhtðxÞ : x 2 O; t ¼ 1;…; Tg,
each htðxÞ being a quadratic polynomial fitted on the posi-

tions of points in the tth cluster. Since predicted positions

are not precisely on the dispersion curves, we define a

region X � O; X ¼ fy : hðxÞ � D � y � hðxÞ þ D; x 2 Og,
where D is the distance between the position of each point y
in this region and the polynomial spline h(x). The weights

gX
ji
ðxÞ for positions in this region X are then decreased to

promote greater model fitness. We describe how we choose

the weight decrease in Sec. III.

Step 6: Restore missing positions by CCSWA. In this step,

CCSWA is repeated with the decreased weights gðxÞ from

step 5. This procedure restores the missing points in the dis-

persion curves that were incorrectly removed by edge detec-

tion in step 4. The dispersion curves become much smoother,

continuous in frequency, and the noise is removed.

The sparse reconstruction algorithm is summarized in

Algorithm 1.

III. NUMERICAL SIMULATIONS AND EXPERIMENTS

In this section, we apply CCSWA to numerical simu-

lated data and to laboratory experimental data. We present

the results and analyze the performance of the CCSWA

procedure.

A. Simulation and experimental setup

To compare the performance of different dispersion

curves reconstruction algorithms, we process the simulation

and experimental settings and data used in previous work.8

We briefly detail these here. We consider a 0.284 cm thick,

1.22 m long, and 1.22 m wide aluminum plate, with a collec-

tion of 17 randomly placed PZT transducers on the surface

of the plate. We refer to prior work8 for exact sensor posi-

tions. The random sensor topology helps to improve locali-

zation performance in matched field processing.49 The lead

zirconate titanate transducer in use has resonant frequency of

240 kHz, and resonant impedance smaller than 18 X. This is

well-suited for our study. The transmitted signal is a 10 ls

linear frequency modulated chirp with a 3 dB bandwidth

between 0 and 2 MHz. In both simulations and experiments,

we compute the sparse representations over the same discre-

tized frequency range from 0 to 1 MHz.

In the simulations, we generate the signal according to

Eq. (1) with complex amplitudes for each mode set to

GmðxÞ ¼ 1. The process is repeated 17 times, where in each

iteration we choose one of the transducers on the plate to

transmit a chirp signal that is then received by each of the

other 16 transducers. The multipath effects are simulated by

ray tracing additional paths reflected by the rigid boundaries

of the plate. The signals are windowed using a rectangular

window with an exponential taper to remove late arrivals.

In the experiments, for every pair of transmitter-

transducer and receiver-transducer, we collect the received

data, which provides a total of 272 different measurements

for 136 unique distances. The initial 10 ls of each measure-

ment is windowed out to remove cross-talk. When testing

localization, we use matched field processing to locate two

0.75 cm holes near the center of the plate and separated by a

6.5 cm distance. We assume the hole is represented by a

point reflector that re-transmits the incident wave equally in

all directions. This is a standard target model assumed by

many localization algorithms and remains a valid approxi-

mation as long as the size of the hole is sufficiently smaller

than the wavelength. For larger targets or very small wave-

lengths, we may need to model the hole as an extended tar-

get. In this paper, we show that, even with the simplistic

omni-directional model we assume, the localization results

we obtain are very good.

Our goal with the simulations and experiments is to

compare the performance of our method with the classic

SWA8 method with respect to (1) reconstructing the disper-

sion curves, (2) predicting signals at arbitrary sensor loca-

tions, (3) evaluating the correlation coefficients between the

true signals and the synthesized signals, (4) evaluating the

effect of reducing the number of sensors, and (5) localizing

holes on the plate. We use the correlation coefficient c
between the true signal and the signal synthesized by sparse

J. Acoust. Soc. Am. 141 (2), February 2017 Zhao et al. 753



wavenumber synthesis (see Sec. II B) as the metric that mea-

sures the effectiveness of CCSWA under a set of parameter

configurations. Given an arbitrary distance r̂ between the

transmitter and a receiver, we can predict the signal response

x̂ at the receiver at each frequency x using the sparse wave-

number synthesis given by Eq. (14). The correlation coeffi-

cient between the measured signal x and the predicted signal

x̂ is defined as8

c ¼

XQ

q¼1

x xqð ÞH x̂ xqð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ

q¼1

jjx xqð Þjj22

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ

q¼1

jjx̂ xqð Þjj22

vuut
; (15)

where Q is the number of frequencies of interest, and xðxqÞ
is the signal response at the qth frequency.

B. Parameter tuning

The CCSWA algorithm contains parameters, specifi-

cally, the Sobel threshold s, the number of clusters t, the

weight vector g, and the regularization parameter s. These

parameters must be tuned in order to achieve optimal perfor-

mance. We now show tuning of the parameters in the

CCSWA algorithm.

1. Threshold for Sobel edge detection

Figure 2 illustrates the outliers detected by the Sobel

operator. We observe a significant number of small spikes

between the ridges. These spikes represent “noise” in the

reconstructed frequency-wavenumber domain, which are the

result of the simulated reflection and multipath interference

in the simulation data. In the experimental data, there is

additional uncertainty caused by transducers, the medium,

and the testing environment. Table I shows the average cor-

relation coefficients between true and synthesized signals

with respect to different Sobel thresholds s over 200 sam-

ples. In the table, the denoised signal represents the signal

without multipath interference and noise, and the predicted

signal represents the signal response at the receiver for an

arbitrary transmitter and receiver pair. We find that a

reasonable choice for the Sobel threshold s is in the range

ð0:01; 0:02Þ.

2. Number of clusters t

In variational Bayes Gaussian mixture model45–48 clus-

tering, we start with an initial estimate of the number of can-

didate Gaussian components. The algorithm eventually

determines the optimal number of Gaussian components,

i.e., the number of clusters. Figure 3 illustrates the clustering

and polynomial fitting results for different choices of the ini-

tial number of candidate Gaussian components. We see that,

for an initial guess smaller than 5, the algorithm is not able

to distinguish different modes. For larger initial guesses,

e.g., 10, different modes are successfully clustered into the

correct clustering groups. We note that for the S0 mode four

Gaussian components are chosen to model the distribution of

the points on the mode. By setting a large initial guess, we

remove outliers by thresholding the size of the clusters. As

the initial guess grows larger, the clustering results remain

unchanged. We choose the initial number of Gaussian com-

ponents to be 15, which clusters the dispersion curves into

t¼ 7 groups, i.e., a mixture of seven Gaussian components is

used to model the data distribution. The solid lines in Fig. 3

illustrate the polynomial splines fitting the points in the clus-

ters. Figure 3 shows that these lines predict the positions of

the [kiðxÞ, x] pairs that belong to the continuous modes.

Intuitively, we reduce the cost in Eq. (11) for reconstructing

these positions by decreasing the value of their weights to

gji
ðxÞ < 1, thus encouraging reconstruction of these points.

3. Weight gðxÞ

The choice of weight gðxÞ in Eq. (11) is crucial to bal-

ance the sparsity requirement and the frequency continuity

requirement and can significantly affect the sparse recon-

struction results. We apply three different weights, g �U
ji
; gO

ji
,

and gX
ji

, as shown in Fig. 4 and described in Sec. II C. We

use g �U
ji

to weight the outliers detected by edge detection, gO
ji

to weight the points reconstructed by CCSWA, and gX
ji

to

weight the points predicted by clustering and polynomial fit-

ting. As a result of these weights, the points at different

wavenumbers in the dispersion curves ~vðxÞ will have differ-

ent reconstruction costs. Larger values of gji
ðxÞ promote

sparsity, while smaller values promote model fitting. In step

3 of the algorithm, we set the weights of g �U
ji
ðxÞ in the range

ð1:5; 4:0Þ, while the remaining weights gU
ji
ðxÞ equal 1. In

FIG. 2. (Color online) Outliers detected by the Sobel operator.

TABLE I. Average correlation coefficients for different Sobel thresholds.

Average correlation coefficients over 200 samples between true and synthe-

sized signals using different Sobel thresholds.

Sobel threshold

Correlation coefficient

True and denoised signal True and predicted signal

0.01 0.7590 0.7631

0.02 0.7306 0.7295

0.03 0.6984 0.6974

0.05 0.6685 0.6635
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step 5 of the algorithm, we set the weights of gO
ji
ðxÞ in the

range ð0:5; 0:95Þ, and we set the weights of gX
ji
ðxÞ in the

range ð0:25; 0:9Þ. We enforce gX
ji
ðxÞ > gO

ji
ðxÞ in order to

tolerate some prediction errors. For positions outside O, we

set the weights g �O
ji
ðxÞ in the range ð1:5; 4:0Þ. We choose

D¼ 10 to define the region X. Figure 5 shows an overview

of the weighting protocol.

4. Regularization parameter s

The regularization parameter s in Eq. (11) describes

how much the overall reconstruction process stresses

sparsity. A large s promotes a sparser v and avoids over-

fitting the linear model. We set s in the range ð0:45; 0:5Þ, the

same as in prior work.8 There are also methods that automat-

ically selects the proper value for s, such as the in-crowd

algorithm50 and the homotopy continuation-based

algorithm.51

C. Simulation results and discussion

In this subsection, we compare the simulation results

obtained with CCSWA with the results obtained with the

original SWA. We consider two versions of SWA: (1) sparse

FIG. 3. (Color online) Clustering and polynomial fitting results for different choices of the initial number of candidate Gaussian components: (a) initial number

of candidate Gaussian components: 5, actual number of Gaussian components: 5; (b) initial number of candidate Gaussian components: 10, actual number of

Gaussian components: 7; (c) initial number of Gaussian components: 15, actual number of Gaussian components: 7. The solid lines represent the polynomials

that fit the data.
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wavenumber analysis using basis pursuit8 (BPSWA) and (2)

orthogonal matching pursuit (OMP).10,30–32 The comparison

is based on the quality of the reconstructed dispersion curves

and the synthesized signals.

1. Reconstruction of dispersion curves

Figure 6 illustrates the dispersion curves for Lamb waves

reconstructed using BPSWA, OMP, and CCSWA, respec-

tively, with 1000 frequencies uniformly sampled from 0 to

1 MHz. The dispersion curves illustrated in Fig. 6 show that

all three methods—BPSWA, OMP, and CCSWA—have

reconstructed the four modes of the dispersion curves,

namely, A0, S0, A1, S1, across a 1 MHz bandwidth success-

fully. However, the dispersion curves in Fig. 6(a) by BPSWA

and Fig. 6(b) by OMP are noisier and show several disconti-

nuities in frequency. For the A0 mode, the BPSWA and OMP

curves have broken line segments at frequencies lower than

150 kHz and at frequencies between 500 and 800 kHz. For

the S0 mode, the curves show occasional line segments in fre-

quencies higher than 500 kHz. These are reconstruction

errors induced by reflection and multipath interference in the

data samples. This confirms that the reconstructed dispersion

curves with SWA (Ref. 8) are fragmented, even though they

should be continuous. CCSWA overcomes this limitation, as

shown in Fig. 6(c). CCSWA shows recognizably good perfor-

mance for all four modes. The dispersion curves are smooth,

continuous, and free of noise.

2. Signal synthesis

Figure 7(a) illustrates a denoised signal at a receiver

location 0.89 m from the transmitter, as synthesized by conti-

nuity constrained SWD (CCSWD), SWD by basis pursuit8

(BPSWD), and SWD by OMP (OMPD),10,30–32 respectively.

Figure 7(a) shows that all three methods remove the multi-

path interference from the measured signal. Yet, the

CCSWD result best resembles the true signal, especially in

the time interval 0:25� 0:3 ms. Figure 7(b) illustrates a pre-

dicted signal computed with Eq. (14) at a receiver location

0.58 m from the transmitter, as synthesized by continuity

constrained SWS (CCSWS), SWS using basis pursuit8

(BPSWS), and SWS using OMP (OMPS),10,30–32 respec-

tively. Figure 7(b) shows that all three methods predict the

true signal. Yet, the CCSWS result best resembles the true

signal, especially in the time interval 0:16� 0:2 ms.

Figure 8(a) illustrates the correlation coefficients

between the true signals and denoised signals with CCSWS,

BPSWS, and OMPS, respectively. The average correlation

coefficients using BPSWD and OMPD are 0.85 and 0.80

(Table II), respectively. In contrast, the average correlation

coefficient using CCSWD is 0.89. Note that the correlation

coefficients for some measurements (measurement 0, 20, 30,

40, 60) decrease abruptly because they correspond to sensor

locations at the boundary of the plate, where the interference

significantly reduces the signal-to-noise ratio. Figure 8(b)

shows that the average correlation coefficients between the

true signals and the predicted signals using BPSWS and

OMPS are 0.86 and 0.79 (Table II). In contrast, the correla-

tion coefficient using CCSWS increases to 0.90.

D. Experimental results and discussion

In this subsection, we compare the experimental

results from CCSWA with the original SWA, imple-

mented again with two algorithms: (1) sparse wavenum-

ber analysis using BPSWA,8 and (2) OMP.10,30–32 The

comparison is made based on the reconstructed dispersion

curves and the synthesized signals with a reduced number

of measurements. Matched field processing is carried out

at the end to verify the effectiveness of CCSWA for

localizing damage.

FIG. 4. (Color online) Illustration of three different weights, g �U
ji
; gO

ji
, and

gX
ji

. The dashed line denotes the polynomial h that predicts the positions of

dispersion curves. The region X is defined within distance D from the poly-

nomial h.

FIG. 5. (Color online) Overview of the weighting protocol. The dotted line

denotes positions reconstructed by CCSWA. The dashed line denotes posi-

tions predicted by polynomial.
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1. Reconstruction of dispersion curves

Figure 9 illustrates the dispersion curves for Lamb

waves reconstructed using BPSWA, OMP, and CCSWA,

respectively, with 1000 frequencies uniformly sampled from

0 to 1 MHz. The BPSWA dispersion curves in Fig. 9(a) are

corrupted with noise at frequencies higher than 800 kHz.

The OMP dispersion curves in Fig. 9(b) exhibit significant

noise overall. Both BPSWA and OMP A0, S0, A1 modes

consist of several line fragments. In contrast, we see in Fig.

9(c) that the three modes are well reconstructed by CCSWA.

The curves are noise free and are continuous with respect to

frequency. The modes A0, S0, and A1 disappear for wave-

numbers between 700 and 900 m�1. This is because this

range corresponds to wavelengths between 0.7 and 0.9 cm

that are on the order of the transducer dimensions, which

causes scattering and attenuation at those wavelengths.52

The S1 mode vanishes around 900 kHz due to a small group

velocity and small magnitude. Better reconstruction results

could be achieved if we had used smaller transducers and

stronger signal strength.

2. Signal synthesis with reduced measurements

In this subsection, we analyze the accuracy of signal syn-

thesis with reduced numbers of measurements. Table III

shows the average correlation coefficients between the true

signals and the denoised signals with different numbers of

transducers. Table III reveals that the signal synthesis

FIG. 6. (Color online) Dispersion curves reconstructed by (a) BPSWA, (b) OMP, and (c) CCSWA using simulation data with 1 MHz bandwidth.
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accuracy with BPSWD deteriorates dramatically when the

number of measurements is decreased by approximately

80% (from 272 measurements with 17 sensors to 56 meas-

urements with 8 sensors). The accuracy of OMPD also

decreases significantly. This is expected because the

restricted isometry property required for sparse reconstruc-

tion is no longer valid. The continuity constrained

CCSWD achieves much greater robustness to measure-

ment numbers.

3. CCSWA 1 matched field processing

We integrate CCSWA with matched field processing to

locate damage. Matched field processing (MFP) utilizes

FIG. 7. (Color online) (a) Signal responses at the receiver 0.89 m from the transmitter generated with simulation data. Each row corresponds to the measured

signal with multipath interference, the true signal without multipath interference, the signal denoised by CCSWD, the signal denoised by BPSWD, and the sig-

nal denoised by OMPD, respectively. (b) Signal responses at an arbitrary receiver 0.58 m from the transmitter generated with simulation data. Each row corre-

sponds to the true signal, the predicted signal by CCSWS, the predicted signal by BPSWS, and the predicted signal by OMPS, respectively.
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wavefield propagation modeling to find the location of an

acoustic source.53–55 MFP has been extensively used in

underwater acoustics, seismology, and nondestructive test-

ing.28,56 Instead of using the wave propagation equation, we

build the propagation model with sparse wavenumber

synthesis. The output of the matched field processor is the

ambiguity function bðrÞ,28 which is the squared magnitude

of the correlation between the measured signal xðxqÞ and

the synthesized signal x̂ðxqÞ across the frequencies

½x1;x2;…;xQ�;

FIG. 8. (Color online) (a) Correlation coefficients between 200 measured true signals and their corresponding denoised signals using CCSWD, BPSWD, and

OMPD with simulation data. (b) Correlation coefficients between 80 measured true signals and their corresponding predicted signals using CCSWS, BPSWS,

and OMPS with simulation data.
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b rð Þ ¼

XQ

q¼1

x xqð ÞHx̂ xqð Þ

�����
�����
2

XQ

q¼1

jjx̂ xqð Þjj22

: (16)

The ambiguity function measures the “fitness” between the

measured data and the model. From Eq. (16), we see that the

resolution of the output of the matched field processor

depends on the correlation between the measured signal and

the predicted signal. By using CCSWD, we increase this cor-

relation and therefore improve the localization resolution.

Figure 10 illustrates the localization of two holes in the mid-

dle of the plate using CCSWS integrated with MFP

TABLE II. Average correlation coefficients for different signal synthesis

methods. The average correlation coefficients between true and synthesized

signals from simulation with CCSWS, BPSWS, and OMPS, respectively.

True and denoised signal True and predicted signal

CCSWS 0.89 0.90

BPSWS 0.85 0.86

OMPS 0.80 0.79

FIG. 9. (Color online) Dispersion curves reconstructed by (a) BPSWA, (b) OMP, and (c) CCSWA using experimental data with 1 MHz bandwidth.

TABLE III. Average correlation coefficients between true and denoised sig-

nals synthesized from experimental data with different number of sensors.

No. of sensors CCSWD BPSWD OMPD

17 0.92 0.84 0.84

8 0.87 0.59 0.79
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(CCMFP). The brightness at different locations represents

correlation values. Figure 10 shows that CCMFP localizes

the two scatterers successfully, as indicated by the two bright

spots where the correlation between the measured signal and

the predicted signal peaks. Further, in the zoomed-in figures,

we see that CCMFP achieves good localization resolution.

We use the peak-to-sidelobe ratio57 (PSR) to measure the

peak sharpness in the matched field processing output

PSR ¼ peak� l
r

; (17)

where peak is the maximum correlation value in Fig. 10.

Symbols l and r denote the mean and standard deviation of

a 20� 20 sidelobe region excluding a 5� 5 central mask

region centered at the peak. The higher the PSR, the sharper

the peak compared with the sidelobe and the higher the

localization resolution. Table IV shows the PSR of CCMFP,

MFP using basis pursuit (BMFP), and MFP using orthogonal

matching pursuit (OMFP), respectively. The table shows that

CCMFP achieves the highest correlation value at the peak

while the mean and standard deviation of the sidelobes are

roughly the same. As a result, CCMFP has the highest PSR.

Overall, the proposed CCSWA algorithm demonstrates

better results than SWA and OMP with respect to the accu-

racy in dispersion curves reconstruction, signal synthesis,

and damage localization.

IV. CONCLUSIONS

This paper addresses the discontinuity problem exhib-

ited by SWA8 when reconstructing the dispersion curves of

Lamb waves. We develop a continuity constrained sparse

wavenumber analysis method to reconstruct dispersion

curves of Lamb waves propagating in a metal plate. In con-

trast with two other sparse reconstruction methods, one using

basis pursuit8 and the other using orthogonal matching pur-

suit,10,30–32 the CCSWA accounts for frequency continuity

in the sparse frequency-wavenumber representation of Lamb

waves by adding a weighted penalty to the l1 regularization

term in the original LASSO optimization problem. This bet-

ter models Lamb wave propagation. With a set of carefully

designed procedures, the CCSWA promotes continuity con-

strained sparse reconstruction, resulting in smooth, continu-

ous, and clean dispersion curves as demonstrated both with

simulation and experimental data. CCSWA improves the

results of signal denoising and signal synthesis as shown by

the increase in the value of the correlation coefficients

between the synthesized signals and the true signals. With

CCSWA, we can reduce the number of measurements by

80% and still obtain performance comparable to the original

SWA8 as demonstrated with experimental data. CCSWA

combined with matched field processing also improves the

localization performance by increasing the peak-to-sidelobe

ratio from an image of two holes in a plate.

In future work, we will utilize a probabilistic framework

for averaging weights, rather than the deterministic weight-

assigning method described here. Different processors, such

as the linear cross correlator (Bartlett) processor, maximum

likelihood processor,28,58 cross-frequency incoherent proces-

sor, pair-wise processor, and coherent normalized proces-

sor59 can also be used to achieve better localization.
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