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Abstract
This paper presents a generalized i-vector framework with pho-
netic tokenizations and tandem features for speaker verification
as well as language identification. First, the tokens for cal-
culating the zero-order statistics is extended from the MFCC
trained Gaussian Mixture Models (GMM) components to pho-
netic phonemes, 3-grams and tandem feature trained GMM
components using phoneme posterior probabilities. Second,
given the calculated zero-order statistics (posterior probabilities
on tokens), the feature used to calculate the first-order statis-
tics is also extended from MFCC to tandem features and is not
necessarily the same feature employed by the tokenizer. Third,
the zero-order and first-order statistics vectors are then concate-
nated and represented by the simplified supervised i-vector ap-
proach followed by the standard back end modeling methods.
We study different system setups with different tokens and fea-
tures. Finally, selected effective systems are fused at the score
level to further improve the performance. Experimental results
are reported on the NIST SRE 2010 common condition 5 fe-
male part task and the NIST LRE 2007 closed set 30 seconds
task for speaker verification and language identification, respec-
tively. The proposed generalized i-vector framework outper-
forms the i-vector baseline by relatively 45% in terms of equal
error rate (EER) and norm minDCF values.
Index Terms: speaker verification, language identification,
generalized i-vector, phonetic tokenization, tandem feature

1. Introduction
Total variability i-vector modeling has gained significant atten-
tion in both speaker verification (SV) and language identifica-
tion (LID) domains due to its excellent performance, compact
representation and small model size [1, 2, 3]. In this model-
ing, first, zero-order and first-order Baum-Welch statistics are
calculated by projecting the MFCC features on those Gaussian
Mixture Model (GMM) components using the occupancy pos-
terior probability. Second, in order to reduce the dimensionality
of the concatenated statistics vectors, a single factor analysis
is adopt to generate a low dimensional total variability space
which jointly models language, speaker and channel variabili-
ties all together [1]. Third, within this i-vector space, variability
compensation methods, such as Within-Class Covariance Nor-
malization (WCCN) [4], Linear Discriminative Analysis (LDA)
and Nuisance Attribute Projection (NAP) [5], are performed
to reduce the variability for the subsequent modeling methods
(e.g., Support Vector Machine (SVM), Logistic Regression [3]
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and Neural Network [6, 7] for LID and Probabilistic Linear Dis-
criminant Analysis (PLDA) [8, 9] for SV, respectively).

Lei, et.al [10] and Kenny, et.al [11] recently proposed a gen-
eralized i-vector framework where decision tree senones (tied
triphone states) in a general Deep Neural Network based Au-
tomatic Speech Recognition (ASR) system are employed as the
new type of tokens for statistics calculation, rather than the con-
ventional MFCC trained GMM components. Although the fea-
tures used to calculate the first-order statistics remain the same
(MFCC), the phonetically-aware tokens trained by supervised
learning can provide better token separation and more accurate
token alignment, which leads to significant performance im-
provement on SV tasks. Nevertheless, there are several other
phonetic units (e.g. phonemes, trigrams, etc.) with larger scale
that have the potential to be considered as tokens as well (espe-
cially for LID task). The frame level posterior probabilities of
these phonetic tokens can also be converted into tandem fea-
tures followed by the standard GMM to fit the conventional
GMM framework.

This motivates us to investigate different alternative con-
figurations of phonetic tokens and features for zero-order and
first-order statistics calculation within this generalized frame-
work and apply them to both SV and LID. First, we explore the
commonly used phonemes as the phonetic tokens and extend to
even larger units such as trigrams. In this way, the bag of tri-
grams vector in the vector space modeling [12] is exactly the
zero-order statistics on these trigrams. Second, since the num-
ber of phonemes is much smaller than the number of tied tri-
phone states, we converted the phoneme posterior probabilities
into tandem features [13, 14] and then apply GMM on top of
it to generate large components tokens. This is also motivated
by the hierarchical phoneme posterior probability estimator in
[15]. In this setup, the GMM statistics calculation remains the
same except that the GMM is trained on the tandem features.

This phoneme posterior probability (PPP) based tandem
feature has been reported to be effective in both ASR [13, 14,
16] and LID tasks[17, 18] as front end features. GMM mean
supervector modeling and conventional i-vector modeling are
used to model this tandem feature in [17] and [18] for LID.
In both methods, the tandem feature outperformed the shifted-
delta-cepstral (SDC) feature by more than 30% relatively. We
note that the conventional i-vector modeling on tandem features
(in [18]) is a special case in this generalized i-vector framework
where tandem features and the derived GMM components are
considered as features and tokens, respectively.

Since the features for extracting tokens and the features for
calculating the first-order statistics are not necessary the same
[10], we show that in terms of first-order statistics calculation,
MFCC is superior than tandem features for SV, and vice versa



Figure 1: The generalized i-vector framework

Figure 2: Tokens for zero-order statistics calculation

for LID. We further explore the hybrid features which concate-
nate the acoustic MFCC and the phonetic tandem features at
the frame level for both purposes. This setup not only achieves
better performance but also directly fit the conventional i-vector
framework.

2. Methods
The overview of the proposed generalized i-vector framework
is shown in Fig. 1. Our generalized framework extends the
choices of tokens and features for statistics calculation while
keeps the factor analysis, variability compensation and sub-
sequent modeling the same way as the conventional i-vector
method. Table 1 and fig. 2 demonstrates the five different to-
kens that we explored in this work as well as the processes to
extract them. We first describe the statistics calculation, fac-
tor analysis based i-vector baseline and our simplified version
simplified supervised i-vector in Sec 2.1. Then statistics calcu-
lation with new types of phonetic tokens and tandem features in
the generalized i-vector framework is introduced in Sec 2.2.

2.1. I-vector baseline and the simplified supervised i-vector

Given a C component GMM UBM model λ with λc =
{pc, µc,Σc}, c = 1, · · · , C and an utterance with a L frame
feature sequence {y1, · · · ,yL}, the zero-order and centered
first-order Baum-Welch statistics on the UBM are calculated as
follows:

Nc =
LX

t=1

P (c|yt, λ) (1)

Fc =

LX
t=1

P (c|yt, λ)(yt − µc) (2)

where c = 1, · · · , C is the GMM component index and
P (c|yt, λ) is the occupancy posterior probability for yt on λc.
The corresponding centered mean supervector F̃ is generated

Table 1: The proposed methods with different combinations of
tokens and features for zero-order and first-order statistics cal-
culation (here phonemes refer to the monophone states)

Methods Tokens Feature for first
order statistics

Baseline MFCC GMM MFCC
Phonemes-MFCC Phonemes MFCC

Tandem-GMM-MFCC Tandem-GMM MFCC
Trigrams-MFCC Trigrams MFCC

Tandem-GMM-Tandem Tandem-GMM Tandem
Trigrams-Tandem Trigrams Tandem

Hybrid-GMM-Hybrid Hybrid-GMM MFCC+Tandem

Figure 3: Schematic of the factor analysis based i-vector and
simplified supervised i-vector modeling [20, 21]

by concatenating all the F̃c together:

F̃c =

PL
t=1 P (c|yt, λ)(yt − µc)PL

t=1 P (c|yt, λ)
. (3)

The centered mean supervector F̃ can be projected as follows:

F̃ → Tx, (4)

where T is a rectangular total variability matrix of low rank
and x is the so-called i-vector [2]. Considering a C-component
GMM and D dimensional acoustic features, the total variability
matrix T is a CD×K matrix which is estimated the same way
as learning the eigenvoice matrix in [19] except that here we
consider that every utterance is produced by a new speaker [2].

As shown in fig. 3, we recently proposed the simplified su-
pervised i-vector method [20, 21] which achieves comparable
performance to the conversion i-vector baseline and at the same
time reduces the computational cost by a factor of 100. Since
this method relies on the same set of statistics and is more effi-
cient, it is employed as the factor analysis based dimensionality
reduction method for all the experiments in this work.

2.2. Statistics calculation in the generalized framework

In our generalized i-vector framework, the zero-order and first-
order statistics for the jth utterance are calculated as follows:

Nc =
LX

t=1

P (c|zj
t, λ̂) (5)

Fc =

LX
t=1

P (c|zj
t, λ̂)(yj

t − µ̂c) (6)

µ̂c =

PJ
j=1

PL
t=1 P (c|zj

t, λ)ytPJ
j=1

PL
t=1 P (c|zj

t, λ)
. (7)



Table 2: Performance of the proposed methods on the NIST SRE 2010 core condition 5 female part task (original trials)

ID Methods Tokens Token Token Feature for first EER norm old
language number order statistics % minDCF

1 conventional i-vector baseline MFCC-GMM 1024 MFCC 3.13 0.176
2 Phonemes-MFCC monophone states English 123 MFCC 2.76 0.151
3 Phonemes-MFCC monophone states Mandarin 537 MFCC 4.51 0.212
4 Phonemes-MFCC monophone states Czech 138 MFCC 4.53 0.231
5 Phonemes-MFCC monophone states Hungarian 186 MFCC 4.73 0.221
6 Phonemes-MFCC monophone states Russian 159 MFCC 4.80 0.219
7 Fusion of methods 2+3+4+5+6 2.76 0.136
8 Tandem-GMM-MFCC Tandem-GMM English 1024 MFCC 2.50 0.12
9 Tandem-GMM-Tandem Tandem-GMM English 1024 Tandem 3.11 0.16

10 Trigrams-MFCC Trigrams English 1024 MFCC 4.48 0.234
11 Hybrid-GMM-Hybrid Hybrid-MFCC English 1024 Hybrid 1.97 0.96
12 Fusion of methods 2+11 1.67 0.82

where c = 1, · · · , C is the new token index and P (c|zj
t, λ̂) is

the posterior probability for the jth utterance’s feature vector at
time t on the cth token. Note that the feature (zt) used to calcu-
late the posterior probability P (c|zt, λ̂) and the feature (yt) for
cumulating the first-order statistics Fc are not necessarily the
same. They can be different just as shown in Table 1. Global
mean µ̂c is computed using all the training data in the same way
as the mean parameter estimation in GMM. Similarly, we also
calculated the second-order statistics for the simplified super-
vised i-vector modeling.

The proposed methods with different combinations of to-
kens and features for statistics calculation are shown in Table
1. First, in the conventional i-vector baseline, both zt and
yt in (5,6) are MFCC features and the tokens are the MFCC
trained GMM components. Second, in the Phonemes-MFCC
system, the tokens are the phonemes and the posterior probabil-
ity P (c|zt, λ̂) is the phoneme posterior probability (PPP). We
employed the multilayer perceptron (MLP) based phoneme rec-
ognizer [22] with acoustic models from five different languages,
namely Czech, Hungarian, Russian, English and Mandarin. The
models for the first three languages were trained on SpeechDat-
E databases and provided in [22]. Additionally, we trained the
English and Mandarin based models both with 1000 neurons
in all nets using the switchboard, fisher databases and the call
friend, call home databases, respectively.

Since there are only limited amount of phoneme tokens
(around 8 times less than the GMM components for English),
the system performance is affected due to the broad coverage of
each phoneme token. Here we propose two different methods
to generate tokens with comparable size of GMM components.
First, the PPP features are converted into tandem features by
log transform, principal component analysis (PCA) and mean
variance normalization (MVN) [13, 14, 17] as shown in fig. 2.
Then we directly consider this tandem feature as zt in (5,6)
and train a GMM on top of it to generate the Tandem-GMM
tokens. In this setup, the entire GMM statistics calculation re-
mains the same except that the GMM model is trained on the
tandem features. Second, we increase the time scale of tokens
and adopt the trigrams as the new type of tokens. As shown in
fig. 2, HTK toolkit [23] is used to decode the PPP features and
output a lattice file for each utterance which is further processed
into n-gram counts and n-gram indexes by the lattice-tool toolkit
[24]. The decoded n-gram counts are considered as the posterior
probability and the mean of features within this n-gram’s range
is accounted as yt where t indexes the whole n-gram here.

Both tandem features and MFCC features can be used (as
zt) to train a GMM tokenizer and both could be projected on to-

kens (as yt) for calculating the first-order statistics. Therefore,
we further explore the hybrid features which concatenate the
acoustic MFCC feature and the phonetic tandem features at the
frame level for both purposes. This hybrid feature level fusion
setup not only achieves better performance but also directly fit
the conventional i-vector framework.

3. Experimental results
3.1. Results on SV

We first conducted experiments on the NIST 2010 speaker
recognition evaluation (SRE) corpus [25]. Our focus is the fe-
male part of the common condition 5 (a subset of tel-tel) in the
core task. We used equal error rate (EER) and the normalized
old minimum decision cost value (norm old minDCF) as the
metrics for evaluation [25]. For cepstral feature extraction, a
25ms Hamming window with 10ms shifts was adopted. Each
utterance was converted into a sequence of 36-dimensional fea-
ture vectors, each consisting of 18 MFCC coefficients and their
first derivatives. We employed the Czech phoneme recognizer
[22] to perform the voice activity detection (VAD) by sim-
ply dropping all frames that are decoded as silence or speaker
noises. Feature warping is applied to mitigate variabilities.

The training data for NIST 2010 task include Switchboard
II part1 to part3, NIST SRE 2004, 2005, 2006 and 2008 corpora
on the telephone channel. The gender-dependent GMM UBMs
consist of 1024 mixture components. Token numbers are shown
in Table 2 and the tandem feature dimension is 52. Both LDA
(500→150) and WCCN are adopted for variability compensa-
tion. The PLDA implementation is based on the UCL toolkit [8]
where the sizes of speaker loading matrix and variability load-
ing matrix are 150 and 80, respectively. Simple weighted linear
summation is adopted here as the score level fusion.

In Table 2, we can see that the English Phonemes-MFCC
system outperformed the i-vector baseline (3.13%→2.76%
EER) by using only 123 phoneme tokens which supports our
claim that phonetic tokens help. Since majority of the NIST
SRE data samples are from English, other language based
phoneme tokens are not as effective as the English one and com-
bining systems with phoneme tokens from multiple languages
only improved the cost value. This might be more useful in the
multi-lingual or multi-dialects SV scenarios. So we only ap-
ply the English phoneme recognizer for other phonetic tokens.
Furthermore, in system ID 8 and 9, we adopt the tandem-GMM
components as the tokens and evaluated different features for
the first-order statistics calculation. Results show that MFCC
feature is better than tandem feature in this case for SV tasks.



Table 3: Performance on the NIST LRE 2007 general language recognition closed set 30 seconds task

ID Methods Tokens Token Token Feature for first EER min
language number order statistics % Cavg%

1 MFCC-GMM-MFCC baseline MFCC-GMM 2048 MFCC 2.59 2.61
2 Phonemes-MFCC monophone states Czech 138 MFCC 3.43 3.54
3 Phonemes-MFCC monophone states Hungarian 186 MFCC 3.80 3.93
4 Phonemes-MFCC monophone states Russian 159 MFCC 3.43 3.40
5 Fusion of methods 2+3+4 2.50 2.56
6 Tandem-GMM-Tandem Tandem-GMM Czech 2048 Tandem 2.30 2.42
7 Tandem-GMM-Tandem Tandem-GMM Hungarian 2048 Tandem 2.22 2.15
8 Tandem-GMM-Tandem Tandem-GMM Russian 2048 Tandem 2.50 2.47
9 Fusion of methods 6+7+8 1.81 1.80
10 Trigrams-Tandem Trigrams Czech 2048 Tandem 4.17 4.39
11 Trigrams-Tandem Trigrams Hungarian 2048 Tandem 4.08 4.18
12 Trigrams-Tandem Trigrams Russian 2048 Tandem 5.0 5.26
13 Fusion of methods 10+11+12 2.97 3.08
14 Fusion of methods 1+9 1.34 1.41

When applying GMM on top of the tandem features, the number
of tokens become comparable to the baseline GMM size which
leads to the significant performance enhanced by 16.2% relative
EER reduction. Trigrams tokens based system did not improve
the performance which might be because its scale is too large
for SV compared to those triphone states in [10].

Finally, the Hybrid-GMM-Hybrid single system achieved
1.97% EER and 0.96 norm old minDCF, which outperformed
the i-vector baseline by relatively 37% and 45%, respectively.
This is very promising since in this setup the entire GMM i-
vector framework remains the same, only features are enhanced
to the hybrid ones. Moreover, since this Hybrid-GMM-Hybrid
setup already covers information from methods ID 1,8 and 9,
we only fuse English Phonemes-MFCC system with it at the
score level to generate the final results. Results show that these
two methods are complementary to each other. Compared to the
i-vector baseline, the proposed methods achieved 46% and 53%
relative error reduction in terms of EER and norm old minDCF.

3.2. Results on LID

We also adopted the 2007 NIST Language Recognition Eval-
uation (LRE) [26] 30 seconds closed set general task as the
evaluation database for LID. Data of target languages from Call
Friend, OGI Multilingual, OGI 22 languages, NIST LRE 1996,
NIST LRE 2003, NIST LRE 2005, NIST LRE 2007 supplemen-
tal training as well as a subset of NIST SRE 2004-2006 were
used as our training data. We first extracted the 56 dimensional
MFCC-SDC feature, then employed phoneme recognizers [22]
to perform speech activity detection. We divided the features
of each training conversation into multiple 30 seconds (3000
frames) segments. There are totally 81848 training segments,
2158 testing utterances, and 30212 testing trials. A 2048 com-
ponents GMM UBM model was trained from 20000 training
segments randomly selected from the training data. After statis-
tics vectors were calculated, the simplified supervised i-vector
modeling was applied. The back end variability compensation
method (WCCN) and the classification method (second order
polynomial kernel SVM) are the same as in [21, 7]. The per-
formance is reported in EER and optimum average cost Cavg

value as suggested by [26].
From Table3, we can observe that phoneme tokens from a

single language did not improve the LID performance, poten-
tially due to the limited amount of phoneme tokens. However,
when we combined systems with phoneme tokens from differ-
ent languages, the overall performance was enhanced (method

5). This makes sense because phonetic or phonotactic LID sys-
tems usually employ parallel phoneme recognizers from differ-
ent languages [12, 27]. Furthermore, the combined tandem-
GMM-tandem system (method 9) achieved 1.81% EER which
outperformed the i-vector baseline by 30% relatively. This find-
ing matches with the SV results which indicates that applying
GMM on top of phoneme tokens are necessary and tandem fea-
tures are more effective than MFCC as features for the first-
order statistics calculation in LID. We note that this method
(ID 6-8) is exactly the same as the one presented in [18], and
is a special case in our generalized framework. Moreover, we
can see that the Trigrams-Tandem systems (method 10-13) is
less effective than the Tandem-GMM-Tandem system which
matches the results in SV experiments. The underlying reason
might be that the trigrams are too long to be considered as to-
kens and the trigrams posterior counts do not sum to 1.

Finally, by fusing the proposed phonetic tokens based meth-
ods with the i-vector baseline at the score level (method 14), the
overall system performance was enhanced. The proposed gen-
eralized i-vector framework outperformed the i-vector baseline
by relatively 48% and 46% in terms of EER and min Cavg ,
respectively. Our future works include applying the Hybrid-
GMM-Hybrid method on the LID task and considering other
types of phonetic tokens with relatively smaller scale in this
generalized i-vector framework.

4. Conclusions
This paper presents a generalized i-vector framework with pho-
netic tokenizations and tandem features for speaker verifica-
tion and language identification tasks. First, the tokens for cal-
culating the zero-order statistics is extended from the MFCC
trained GMM components to phonetic phonemes, 3-grams and
tandem feature trained GMM components using phoneme pos-
terior probabilities. We show that the Tandem-GMM tokens
are superior than the phonemes and trigrams in terms of per-
formance. Since the features for extracting tokens and the fea-
tures for calculating the first-order statistics are not necessary
the same , we show that in terms of first-order statistics calcula-
tion, MFCC is superior than tandem features for SV, and verse
visa for LID. We further explore the hybrid features which con-
catenate the acoustic MFCC and the phonetic tandem features at
the frame level for both purposes. This setup not only achieves
better performance but also fit the conventional i-vector frame-
work. Score level fusion of systems with different tokens and
features further improves the overall system performance.
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