
Automatic Recognition of Speaker Physical Load using Posterior Probability
Based Features from Acoustic and Phonetic Tokens

Ming Li12

1SYSU-CMU Joint Institute of Engineering, Sun Yat-Sen University, Guangzhou, China
2SYSU-CMU Shunde International Joint Research Institute, Shunde, China

liming46@mail.sysu.edu.cn

Abstract
This paper presents an automatic speaker physical load recog-
nition approach using posterior probability based features from
acoustic and phonetic tokens. In this method, the tokens for
calculating the posterior probability or zero-order statistics are
extended from the conventional MFCC trained Gaussian Mix-
ture Models (GMM) components to parallel phonetic phonemes
and tandem feature trained GMM components. Phoneme rec-
ognizers from five different languages are employed to extract
the phoneme posterior probabilities. We show that these his-
togram style features at both the acoustic and phonetic levels
are effective and complementary for capturing the speaker phys-
ical load information from short utterances. Support vector ma-
chine is adopted as the supervised classifier. By combining the
proposed methods with the OpenSMILE baseline which covers
the acoustic and prosodic information further improves the fi-
nal performance. The proposed fusion system achieves 70.18%
and 72.81% unweighted accuracy on the validation and test set
of the Munich Bio-voice Corpus for the binary physical load
level recognition task in the INTERSPEECH 2014 Computa-
tional Paralinguistics Challenge.
Index Terms: physical load sub-challenge, speaker physical
load recognition, posterior probability features

1. Introduction
Automatic recognition of paralinguistic information, such as
speaker identity, gender, age range, emotional state, intoxica-
tion state, pathology state and cognitive load state [1, 2, 3, 4, 5]
can guide human computer interaction systems to automatically
understand and adapt to different user needs. Likewise such
meta-information can serve as an important analytic in human
decision making. For instance, the emerging broad area of be-
havioral signal processing aims to create quantitative characteri-
zation of typical, atypical, and distressed human behavior states
across a variety of application domains including in education
and health care [6, 7, 8].

Heart rate is considered as an important vital sign and fea-
ture for mobile health [9] and physical load recognition ap-
plications [10]. Although heart rate estimation from conver-
sional Electrocardiography (ECG) signal has achieved high ac-
curacy, it still remains a challenge and unsolved problem for
non-invasive and non-contact audio-visual signals [11]. Re-
cently, [12] and [13] show that heart rate, breathing rate and
heart rate variability can be accurately determined by a laptop’s
or mobile phone’s built-in video camera. Heart rate estimation
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from speech [11, 14] also starts to attract more attention since
in some applications, such as the emergency call center, only
speech signals are available.

For speech-based heart rate recognition, Orlikoff and Baken
[15] studied the connection between speech and heart rate in
1989 and found that cardiovascular system influences the vocal
fundamental frequency (F0) when pronouncing sustained vow-
els based on the signal-averaging and autocorrelation analysis.
Furthermore, Schuller, et.al, [11, 14] applied the openSMILE
toolkit [16] to perform extraction of utterance level acoustic
and prosodic features and Support Vector Machine (SVM) for
the subsequent classification on the spontaneous short reading
utterances. However, to our best knowledge, phonetic infor-
mation has not been used in this task. Therefore, it is in this
context that we explore a set of posterior probability based his-
togram like features from both the acoustic and phonetic tokens
for the speech based heart rate recognition.

Despite the openSMILE features, several Gaussian Mixture
Model (GMM) based supervectors have been proposed as fea-
tures for paralinguistic speaker states recognition [2, 4, 5, 17].
These supervectors originally were proposed for speaker verifi-
cation and language identification tasks but also performed well
in the paralinguistic challenges. However, when the duration
of speech utterance is very short (e.g. less than 2 seconds), the
performance of those supervectors replying on the first-order
Baum-Welch statistics (mean supervector, i-vector, Maximum
Likelihood Linear Regression (MLLR) supervector, etc. [2])
drops as there are not enough feature frames to calculate the
sufficient statistics. The zero-order statistics based posterior
probability feature achieves better performance in these short
duration scenarios with limited training data [2].

Since the utterances of the Munich Bio-voice Corpus
(MBC) (the official database for the physical load sub-
challenge) are indeed very short (average 1.28 seconds long),
we adopt the posterior probability based histogram style fea-
tures but extend the tokens from the acoustic MFCC trained
GMM components to the phonetic phonemes and tandem fea-
ture trained GMM components. Furthermore, since the number
of phonemes is smaller than the number of GMM components
and the acoustic model used in the phoneme recognition is not
trained with data from different heart rate conditions, we con-
verted the phoneme posterior probabilities into tandem features
[18, 19] and then apply GMM on top of it to generate tokens
using the MBC training data. This is also motivated by the hier-
archical phoneme posterior probability estimator in [20]. In this
setup, the entire GMM statistics calculation remains the same
except that the GMM model is trained on the tandem features.

This phoneme posterior probability (PPP) based tandem
feature has been reported to be effective in speech recognition



Figure 1: The system overview

[18, 19, 21], speaker verification [22] and language identifica-
tion tasks[22, 23]. Here, it is used to present the phonetic in-
formation about different physical load levels. We also adopt
the duration features on different 3-grams calculated from the
decoded lattices to measure the duration information. Score
level fusion is employed to combine multiple complementary
systems together to further improve the overall system perfor-
mance.

The remainder of the paper is organized as follows. The
corpus and the proposed algorithms are explained in Sections
2 and 3, respectively. Experimental results and discussions are
presented in Section 4 while conclusions are provided in Sec-
tion 5.

2. Corpus
The database used to evaluate the proposed methods is the Mu-
nich Bio-voice Corpus (MBC) database [11, 24, 14]. The task
is to classify the speaker’s binary physical load level in terms
of heart rate per minute (BPM) which is defined as follows:
High (≥90 BPM) and Low (<90 BPM). The mean and stan-
dard deviation of speech duration per data sample in the train-
ing and validation sets of the MBC database are 1.30 ± 0.44 s
and 1.31 ± 0.39 s, respectively. Thus it is indeed a short du-
ration database. The training data set of the MBC database (6
speakers, 385 utterances) was used for model training while the
validation data set from the MBC database (6 speakers, 384 ut-
terances) was used as the evaluation set of each subsystem as
well as the fusion system in this paper. Finally, the testing data
set from the MBC database (319 utterances) was evaluated. The
details about the MBC database and the evaluation protocol are
provided in [11, 24, 14].

3. Methods
The overview of the proposed system is demonstrated in Fig. 1.
We can see that there are five different features, namely OpenS-
MILE feature, MFCC-GMM posterior probability (MGPP) fea-
ture, phoneme posterior probability (PPP) feature, n-gram du-
ration (ND) feature and tandem-GMM posterior probability
(TGPP) feature, followed by the same feature normalization,
SVM classification and score level fusion pipeline. We first
present the proposed features in section 3.1. Then section 3.2

describes the supervised classification and score level fusion
methods, respectively.

3.1. Features

3.1.1. The OpenSMILE feature

The utterance level 6373 dimensional OpenSMILE feature was
extracted by the OpenSMILE toolkit and provided by the 2014
Paralinguistic Challenge organizers. The details of the feature
extraction is presented in [14]. Since various kinds of features,
such as MFCC, loudness, auditory spectrum, voicing probabil-
ity, F0, F0 envelop, jitter, and shimmer, etc., are included, this
feature set can capture physical load information at both the
acoustic and prosodic levels.

3.1.2. The MFCC-GMM posterior probability (MGPP) feature

For each utterance in the training and validation sets, MGPP
feature extraction is performed using the Universal Background
Model (UBM). Given a frame-based MFCC feature xt and the
GMM-UBM λ with M Gaussian components (each component
is defined as λi),

λi = {wi, µi,Σi}, i = 1, · · · , M, (1)

the occupancy posterior probability is calculated as follows:

P (λi|xt) =
wipi(xt|µi,Σi)

ΣM
j=1wjpj(xt|µj ,Σj)

. (2)

This posterior probability can also be considered as the frac-
tion of this feature xt coming from the ith Gaussian component
which is also denoted as partial counts. The larger the posterior
probability, the better this Gaussian component can be used to
represent this feature vector. The MGPP supervector is defined
as follows:

b = [b1, b2, · · · , bM ], bi =
yi

T
=

1

T
ΣT

t=1P (λi|xt) (3)

MGPPfeature =
√

b (4)
Equation (3) is for calculating the zero-order Baum-Welch
statistics and is exactly the same as the weight updating equa-
tion in the expectation-maximization (EM) algorithm in GMM
training. In order to apply Bhattacharyya probability product
(BPP) kernel [25], we adopt

√
b as our MGPP features [2].



3.1.3. The phoneme posterior probability (PPP) feature

In this PPP feature extraction, the tokens for calculating the
zero-order statistics are extended from the acoustic MFCC
trained GMM components to the phonetic phonemes. PPP fea-
ture is also calculated by equation (4) except that P (λi|xt) now
is the posterior probability of feature xt on the ith phoneme.
We believe this histogram style feature can capture the phoneme
confidence and duration information for distinguishing different
physical load levels. We employed the multilayer perceptron
(MLP) based phoneme recognizer [26] with acoustic models
from five different languages, namely Czech, Hungarian, Rus-
sian, English and Mandarin. The models for the first three lan-
guages were trained on SpeechDat-E databases and provided in
[26]. Additionally, we trained the English and Mandarin based
models both with 1000 neurons in all nets using the switch-
board, fisher databases and the call friend, call home databases,
respectively.

3.1.4. The tandem-GMM posterior probability (TGPP) feature

Since the number of phonemes is smaller than the number of
GMM components and the acoustic model used in the phoneme
recognition is not trained with data from different physical load
conditions, we converted the PPP into tandem features [18, 19]
and then apply GMM on top of it to generate tokens using the
MBC training data. This is also motivated by the hierarchical
phoneme posterior probability estimator in [20].

In this setup, the original PPP are converted into tandem
features by log transform, principal component analysis (PCA)
and mean variance normalization (MVN) [18, 19, 23] as shown
in fig. 1. Then we directly consider this tandem feature as xt in
(2) and extract the TGPP features using (4).

3.1.5. The n-gram duration (ND) feature

Previously, the histogram stype PPP and TGPP features can be
used to capture the relative occupancy and duration information
for the phonemes. In this work, we also extend the tokens from
phonemes to the trigrams in order to capture the context infor-
mation for physical load recognition.

As shown in fig. 1, HTK toolkit [27] is used to decode the
PPP features and output a lattice file for each utterance which
is further processed into n-gram counts and n-gram indexes by
the lattice-tool toolkit [28]. Rather than the PPP at the frame
level, each trigram can span multiple frames. Therefore, in the
n-gram duration (ND) feature extraction, the trigram posterior
count is weighted by the trigram duration.

3.2. Classification and fusion

LIBLINEAR [29] was adopt for the SVM classification and we
applied the max/min normalization (range -1 to +1) for each
feature dimension on training, validation and test partitions with
parameters computed only from the training partition.

Due to the limited amount of training data, we simply em-
ployed the weighted summation fusion approach with param-
eters tuned by cross validation. When the evaluation was per-
formed on the testing set of the MBC database, both the train-
ing and validation sets were used for modeling and the weight
vector was exactly the same as the one tuned on the valida-
tion set. It is worth noting that other advanced score fusion
approaches, like the logistic regression method in the popular
FoCal toolkit [30], can also be adopted here to increase the per-
formance which is a topic for our future work.

Table 1: Performance on the validation set with different fea-
tures for SVM classification and score level fusion. (The size of
GMM in both the MGPP and TGPP feature extraction is 256.)

System Features parameter WA UA
C (%) (%)

1 OpenSMILE 0.02 67.45 67.15
2 MGPP 0.02 61.46 61.18
3 PPP 5 languages 0.02 63.02 62.71
4 TGPP 5 languages 0.01 65.63 65.56
5 ND English 0.008 58.86 59.11
6 Fusion 2+3 65.36 65.04
7 Fusion 2+3+4 68.23 67.92
8 Fusion 2+3+4+5 68.49 68.17
9 Fusion 1+2+3+4 70.57 70.18

Table 2: Performance on the validation set using PPP and TGPP
features calculated with tokens from different languages

features& PPP TGPP
Languages WA(%) UA(%) WA(%) UA(%)

English 53.65 53.15 59.90 59.73
Mandarin 57.81 57.36 58.33 58.32

Czech 59.63 59.04 61.46 61.65
Hungarian 54.95 54.59 62.24 61.97

Russian 57.03 56.58 63.54 63.49
5 languages 63.02 62.71 65.63 65.56

Table 3: Confusion matrix for the binary physical load recogni-
tion on the validation set: (left) System 1, (right) System 9

LOW HIGH
LOW 150 49
HIGH 76 109

LOW HIGH
LOW 161 38
HIGH 75 110

Table 4: Confusion matrix and system performance for the bi-
nary physical load recognition of System 9 on the test set

LOW HIGH
LOW 116 49
HIGH 38 116

Performance
WA(%) 72.727
UA(%) 72.814

4. Experimental results
The performance results on the validation set with different fea-
tures for SVM classification are shown in Table 1. The perfor-
mance is measured by weighted accuracy (WA) and unweighted
accuracy (UA), respectively. First, we can see that the 6373 di-
mensional OpenSMILE baseline feature outperformed the 256
dimensional MGPP feature which might be because the OpenS-
MILE feature covers both the acoustic and prosodic informa-
tion. Second, features based on the phonetic tokens (PPP and
TGPP) achieved better performance compared to the acoustic
tokens (MGPP). The underlying reason might be the usage of
parallel phoneme recognizers from multiple languages. From
Table 2, we can see that although PPP and TGPP features are ef-
fective for the physical load recognition, single language based
feature or system generated lower accuracy compared to the
GMPP feature and the OpenSMILE baseline. However, comb-
ing multiple systems using phonemes from different languages
improved the results. Third, by comparing the results of system
3 and 4, we can find that additional stage of GMM clustering
is necessary and can adapt the PPP features toward this MBC
database. We only reported the ND feature result on the English
recognizer (due to the lack of German acoustic model) and the
results are not significantly better than the phoneme based ones



which might be because the utterance duration is too short and
the feature vector becomes sparse.

Finally, by fusing the first four systems in Table 1 to-
gether, the proposed approach achieved 70.18% and 72.81%
unweighted accuracy on the validation and test set, respectively.
From the confusion matrix in Table 4, we can see that the pro-
posed methods help to reduce the miss rate of the “LOW” class.
In Table 4, we can see that the proposed fusion system achieved
a balanced performance for both classes.

5. Conclusions
This paper presents an automatic speaker physical load recog-
nition approach using posterior probability based features from
both the acoustic and phonetic tokens. In this method, the
tokens for calculating the posterior probability or zero-order
statistics are extended from the conventional MFCC trained
GMM components to the parallel phonetic phonemes and tan-
dem feature trained GMM components. Phoneme recogniz-
ers from five different languages are employed to extract the
phoneme posterior probabilities. We show that these histogram
style features at both the acoustic and phonetic levels are effec-
tive and complementary for capturing the speaker physical load
information from short utterances. By combining the proposed
methods with the OpenSMILE baseline system which covers
both the acoustic and prosodic information further improves the
final performance.

6. References
[1] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers,

C. Müller, and S. Narayanan, “Paralinguistics in speech and lan-
guage state-of-the-art and the challenge,” Computer Speech &
Language, vol. 27, no. 1, pp. 4–39, 2013.

[2] M. Li, K. J. Han, and S. Narayanan, “Automatic speaker age and
gender recognition using acoustic and prosodic level information
fusion,” Computer Speech & Language, vol. 27, no. 1, pp. 151–
167, 2013.

[3] C.-C. Lee, E. Mower, C. Busso, S. Lee, and S. Narayanan,
“Emotion recognition using a hierarchical binary decision tree ap-
proach,” Speech Communication, vol. 53, no. 9, pp. 1162–1171,
2011.

[4] D. Bone, M. Li, M. P. Black, and S. S. Narayanan, “Intox-
icated speech detection: A fusion framework with speaker-
normalized hierarchical functionals and gmm supervectors,”
Computer speech & language, vol. 28, no. 2, pp. 375–391, 2014.

[5] J. Kim, N. Kumar, A. Tsiartas, M. Li, and S. S. Narayanan, “Au-
tomatic intelligibility classification of sentence-level pathological
speech,” Computer Speech & Language, 2014.

[6] S. Narayanan and P. G. Georgiou, “Behavioral signal process-
ing: Deriving human behavioral informatics from speech and lan-
guage,” Proceedings of the IEEE, vol. 101, no. 5, pp. 1203–1233,
2013.

[7] M. Black, A. Katsamanis, C. Lee, A. Lammert, B. Baucom,
A. Christensen, P. Georgiou, and S. Narayanan, “Automatic Clas-
sification of Married Couples’ Behavior Using Audio Features,”
in Proc. INTERSPEECH, 2010, pp. 2030–2033.

[8] C. Lee, M. Black, A. Katsamanis, A. Lammert, B. Baucom,
A. Christensen, P. Georgiou, and S. Narayanan, “Quantification
of Prosodic Entrainment in Affective Spontaneous Spoken Inter-
actions of Married Couples,” in Proc. INTERSPEECH, 2010, pp.
793–796.

[9] U. Mitra, B. A. Emken, S. Lee, M. Li, V. Rozgic, G. Thatte,
H. Vathsangam, D. Zois, M. Annavaram, S. Narayanan, et al.,
“Knowme: A case study in wireless body area sensor network de-
sign,” IEEE Communications Magazine, vol. 50, no. 5, pp. 116–
125, 2012.

[10] M. Li, V. Rozgic, G. Thatte, S. Lee, B. Emken, M. Annavaram,
U. Mitra, D. Spruijt-Metz, and S. Narayanan, “Multimodal phys-
ical activity recognition by fusing temporal and cepstral informa-
tion,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 18, no. 4, pp. 369–380, 2010.

[11] B. Schuller, F. Friedmann, and F. Eyben, “Automatic recognition
of physiological parameters in the human voice: Heart rate and
skin conductance,” in Proc. ICASSP, 2013, pp. 7219–7223.

[12] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in
noncontact, multiparameter physiological measurements using a
webcam,” IEEE Transactions on Biomedical Engineering, vol. 58,
no. 1, pp. 7–11, 2011.

[13] C. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser,
Y. Mendelson, and K. H. Chon, “Physiological parameter moni-
toring from optical recordings with a mobile phone,” IEEE Trans-
actions on Biomedical Engineering, vol. 59, no. 2, pp. 303–306,
2012.

[14] B. Schuller, S. Steidl, A. Batliner, F. Epps, J.and Eyben,
F. Ringeval, E. Marchi, and Y. Zhang, “The interspeech 2014
computational paralinguistics challenge: Cognitive & physical
load,” in Proc. INTERSPEECH, 2014.

[15] R. F. Orlikoff and R. Baken, “The effect of the heartbeat on vo-
cal fundamental frequency perturbation,” Journal of speech and
hearing research, vol. 32, no. 3, p. 576, 1989.
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[30] N. Brümmer, “Focal multi-class: Toolkit for evaluation,
fusion and calibration of multi-class recognition scoresł-
tutorial and user manual,” 2007, software available at
http://sites.google.com/site/nikobrummer/focalmulticlass.


