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ABSTRACT

Pitch plays a significant role in understanding a tone based
language like Mandarin. In this paper, we present a new
method that estimates F0 contour for electrolaryngeal (EL)
speech enhancement in Mandarin. Our system explores the
usage of phonetic feature to improve the quality of EL speech.
First, we train an acoustic model for EL speech and generate
the phoneme posterior probabilities feature sequence for each
input EL speech utterance. Then we employ the phonetic fea-
ture for F0 contour generation rather than the acoustic fea-
ture. The experimental results indicate that the EL speech
is significantly enhanced under the adoption of the phonetic
feature. Experimental results demonstrate that the proposed
method achieves notable improvement regarding the intelligi-
bility and the similarity with normal speech.

Index Terms— Electrolaryngeal Speech, Voice Conver-
sion, Phonetic Feature, Fundamental Frequency

1. INTRODUCTION

Each year, thousands of people take laryngectomy surgeries
as a treatment of laryngeal cancer. Hence, people lose the
capability to produce a normal voice due to the removal of the
entire larynx in that treatment. Given that voice is essential
in self-expression and communication with others, the device
named Electrolarynx (EL) was designed for laryngectomees
to rehabilitate their voice [1, 2]. By placing the EL device
against our neck as an electromechanical vibrator, EL speech
is generated under the combination of electronic sound source
produced by EL and the human vocal tract.

However, the EL speech does not sound like human-
produced speech in several ways: 1) the sound quality de-
grades due to the noise caused by the continuous vibration of
the EL; 2) EL speech sounds unnatural because it is generated
by the mechanical excitation signals; 3) the intelligibility is
limited since the EL produces monotonous speech. A study
shows that EL speech can be improved by removing the EL
noise and providing proper pitch information [3]. To ad-
dress these issues, different approaches have been adopted
[4, 5, 6, 7, 8, 9]. One of the methods is to employ voice con-
version technique in EL speech enhancement [7, 8, 9]. This

method can improve speech naturalness through conversion
in the feature domain. Nevertheless, the generation of the
fundamental frequency (F0) pattern is still regarded as the
most challenging issue in EL speech enhancement, where the
intelligibility of the converted EL speech is constrained by F0
contour, especially in a tone based language like Mandarin. In
Mandarin, each syllable contains one of four basic tones (plus
a fifth, neutral one) that make use of F0 to differentiate the
meaning of words with the same sound pattern. Yet there are
EL devices capable of modulating F0 with preprogrammed
pitch patterns [10], and the EL speakers need further training
and practice to manage the EL. Moreover, there is an inherent
confusion between, for example, ’p’ and ’b’ (which contrast
in voicing), due to the continuous sound generated by the EL.

Modeling F0 contour without linguistic information is
difficult [11]. Unfortunately, EL speech, as well as the acous-
tic feature extracted from it, do not contain sufficient linguis-
tic information since EL produces only monotonous speech.
However, studies indicate that the phonetic feature extracted
by the acoustic model can provide phonetic information of
the speech [12, 13]. This motivates us to explore the lin-
guistic information by adopting the phonetic feature in F0
contour generation under the parallel voice conversion frame-
work. Briefly, we train an acoustic model with EL speech for
phonetic posterior probabilities (PPP) feature extraction, then
train a Gaussian mixture model (GMM) for F0 contour esti-
mation with the joint vectors of dimension-reduced phonetic
features and the ground truth F0 labels. The objective and
subjective evaluations show that the phonetic feature outper-
forms the acoustic feature in predicting F0 contour for EL
speech enhancement.

This paper is organized as follows. Section 2 describes
the parallel conversion system framework for EL speech en-
hancement. Section 3 presents the experimental set up in this
study. Finally, section 4 presents our evaluation methods and
the statistical results. Conclusions are provided in section 5.

2. PROPOSED CONVERSION FRAMEWORK

Our proposed parallel conversion framework is shown in fig-
ure 1. In the training phase, three models are trained with
features extracted from the EL speech and the parallel normal
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Fig. 1. The proposed parallel conversion framework

speech respectively. These three models are used to obtain the
features associated with the synthesis phase in voice conver-
sion. GMM1 is trained for obtaining the converted Mel Cep-
stral Coefficients (CVMCC), while the acoustic model (AM)
and GMM2 are trained for generating the F0 contour.

2.1. Training Phase

MCC and Mel-frequency cepstral coefficient (MFCC) are ex-
tracted from EL speech after noise reduction. Similarly, MCC
and F0 are extracted from parallel normal speech. We em-
ploy Dynamic Time Warping (DTW) to automatically align
segmental frames between EL speech and the normal speech.
Models were trained in association with these features and
alignments.

2.1.1. GMM Training

The joint vector of time t in one utterance can be repre-
sented by [X⊤

t , Y ⊤
t ]⊤, where Xt = [xt

⊤,∆xt
⊤]⊤ and

Yt = [yt
⊤,∆yt

⊤]⊤. x denotes the feature sequence of the EL
speech, y denotes the feature sequence of the normal speech,
∆ denotes the dynamic feature and ⊤ denotes transposition
of the vector. Conventionally, the GMM is trained to model
the probability densities of the joint vectors as follows:

P (Xt, Yt|λ) =
M

m=1

wmN ([X⊤
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t ]⊤;µ(X,Y )
m ,Σ(X,Y )
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where N (·;µ,Σ) denotes a Gaussian distribution with the
mean vector µ and the covariance matrix Σ, w denotes the
weight vector of all components in parameter set λ, µ(X)

m and
µ
(Y )
m are the mean vector of the mth mixture component. The

matrices Σ
(XX)
m , Σ(XY )

m , Σ(Y X)
m and Σ

(Y Y )
m are the covari-

ance matrices and the cross-covariance matrices of the mth

mixtrue component regarding the EL source feature and that
for the target normal feature [14].

2.1.2. Acoustic model training

The phonetic acoustic model is trained for recognizing the
phone sequence given the input feature sequence of EL
speech after noise reduction. However, it is used as a pho-
netic feature extractor in this study. We adopt conventional
Hidden Markov Model and Deep Neural Networks (HMM-
DNN) speech recognition training process as follows: 1)
extract acoustic feature from EL speech and preprocess the
phone transcription; 2) based on a Mandarin phonetic lexi-
con, train a mono-phone HMM-GMM; 3) train a tri-phone
HMM-GMM based on the label sequence aligned by the
mono-phone model; 4) train the time delay neural network
(TDNN) in association with the label sequence aligned by
the tri-phone model. The TDNN model is regarded as the
phonetic acoustic model.
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The output vector of the TDNN is defined as phonetic pos-
terior probabilities (PPP). Since the dimensionality of PPP is
too high, the principal component analysis (PCA) algorithm is
employed to reduce the dimensionality, which in result obtain
the low-dimension phonetic posterior probabilities (LPPP).

2.2. Conversion Phase

The converted speech parameters are estimated by employing
maximum likelihood estimation upon the trained GMM given
the parameters of EL test speech as input:

ŷ = argmax
y

P (Y |X,λ)

subject to Y = Wy
(3)

where X is the feature vector sequence of EL test speech,
Y is the output vector sequence. ŷ = [ŷ⊤1 , ŷ

⊤
2 , · · · , ŷ⊤T ]⊤

is the converted static feature sequence that would be used
to synthesize the converted speech. For example, Y is the
CVMCC when employing estimation upon GMM1 but F0
contour upon GMM2. Here, matrix W is used for transform-
ing the static feature vector to the joint static and dynamic
feature vector. λ is the GMM parameter set that consists of
weights, mean vectors and covariance matrices.

The MFCC feature vector sequences are fed into the
TDNN acoustic model (AM) to obtain the PPP vectors. Then
the PCA matrix is applied to reduce the dimension of PPP
vectors and generate LPPP vectors. Similarly, F0 contour
is estimated by GMM2 given the input LPPP sequences. Fi-
nally, we synthesize the CVMCC, aperiodic parameter (AP)
and F0 to the converted speech.

3. EXPERIMENTAL SETUP

3.1. Data Description

Our database contains five hours of parallel EL speech and
normal speech respectively. The EL speech and normal
speech each contains 3206 mandarin utterances recorded by
one Chinese female speaker. 2669 utterance pairs are used for
training and 310 utterance pairs for evaluation. The sampling
frequency of all speech utterances is 16kHz.

3.2. Conversion Setup

All EL speech utterances were preprocessed by Adobe Audi-
tion to remove constant hiss and crackle. The WORLD anal-
ysis and synthesis vocoder was employed [15] for feature ex-
traction and speech synthesis, respectively. SPROCKET was
employed [16] for GMM training. The window size and win-
dow shift size were 25ms and 5ms respectively. The dimen-
sion of MCC is 25. The 0th dimension of MCC denotes the
energy of that frame thus it will not be used in GMM train-
ing. The number of mixture Gaussian components is 64. The

number of iteration in training is 100. The F0 values were
normalized to scale 0-1 when training.

KALDI [17] was used for our phonetic acoustic model
training. Our lexicon contains 38 phonemes including silence
and unknown phones. The GMM-HMM training procedure in
the TIMIT example of KALDI was used for EL speech train-
ing. The frameshift is also set to 5ms in MFCC extractor con-
figuration. The 40-dimension high-resolution MFCC is used
as the MFCC feature. Our DNN parameters in training are as
follows: the frames subsampling factor is 1; the network has
6 TDNN layers, each with 625 components. The phone error
rate (PER) on the EL speech test set is 18.01%. The PCA
matrix is trained by the PPP feature vector sequence of 1000
utterances in the training set to reduce the dimensionality to
100.

In this paper, two systems were trained to generate the F0
contour individually:

LPPP: use joint vectors of LPPP feature vectors and F0
sequence of the normal speech for GMM2 training.

CVMCC: use joint vectors of CVMCC feature vectors
of the EL training set and F0 sequence of the normal speech
for GMM2 training.

4. EVALUATION AND RESULT

Figure 2 presents four spectrograms representing the EL
speech, EL speech after noise reduction, converted speech
of the proposed system and normal speech. We can see that
vocal information remains after noise reduction. And after
synthesizing the converted speech with CVMCC and the F0
contour generated by the proposed system, the spectrograms
of converted speech looks close to the spectrograms of nor-
mal speech. The two different systems we have mentioned
in 3.2 were evaluated under both objective and subjective
evaluations.

4.1. Objective Evaluations

We use Mel-Cepstral Distortion (MCD) as one objective eval-
uation measure between the CVMCC sequence and the MCC
sequence of normal speech:

MCD[dB] =
1

T

T

t=1

10

2
24

i=1(ci − ccovi )2

ln 10
(4)

where T denotes the sequence length, c denotes one MCC
feature vector of normal speech and ccov denotes the aligned
CVMCC feature vector.

We employed three types of error metrics in F0 evalua-
tion, which are correlation coefficient, Voicing Decision Error
(VDE) and Gross Pitch Error (GPE) [18]:

V DE =
NV→U +NU→V

N
×100% (5)
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Fig. 2. Spectrograms of four speeches with same content

GPE =
NF0E

NV V
×100% (6)

where N is the number of the frames in the utterance,
NU→V is the number of unvoiced frames classified as voiced
frames, NV→U is the number of voiced frames classified as
unvoiced frames, NV V is the number of frames which both
the predict F0 and the ground truth consider to be voiced and
NF0E denotes the number of frames for which

|F0i,estimated

F0i,reference
− 1| > 20% (7)

Table 1. The objective result of the converted systems
EL LPPP CVMCC

MCD 11.56dB 8.0dB
VDE - 0.1225 0.1219
GPE - 0.6514 0.8045

F0 correlation coefficient 0.0088 0.606 0.4606

It is shown in Table 1 that using phonetic feature LPPP for
generating F0 has better performance. The GPE of the LPPP

system is lower than that in the CVMCC system. However,
the LPPP system does not affect the performance in predicting
voice frames and unvoiced frames since the VDE of both sys-
tems are approximately 0.122. The MCD has reduced 3.56dB
after conversion. In the case of the F0 correlation coefficient,
the LPPP system outperforms significantly in comparison to
the CVMCC system.

4.2. Subjective Evaluations

We ask 22 subjects to score the converted speech regarding
naturalness, intelligibility, and similarity. The term natu-
ralness is used to present a score that indicates how much
the speech like human speaking speech. The term intelligi-
bility provides a score that indicates how much the speaker
can understand the converted speech, and similarity denotes
the sound similarity between converted speech and normal
speech.

Fig. 3. The mean opinion score of subjective evaluations

The mean opinion score (MOS) [19] is shown in figure
3. It is obvious that the intelligibility and the similarity of
converted speech in the LPPP system outperform those in the
CVMCC system. However, LPPP yields a tiny improvement
in terms of naturalness.

5. CONCLUSION

This paper presents a new conversion framework in electrola-
ryngeal (EL) speech enhancement. By developing a phonetic
acoustic model for extracting phonetic feature that used to es-
timate F0 contour, the quality of the converted speech is fur-
ther improved. The performance of the system has been eval-
uated through both subjective and objective measurements.
The result shows that the proposed system yields significant
improvement in continuous F0 estimation. Moreover, the
converted EL speech is further enhanced when adopting the
phonetic feature for F0 estimation rather than acoustic feature
regarding the intelligibility and the similarity with the normal
speech.
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