
UTTERANCE-LEVEL END-TO-END LANGUAGE IDENTIFICATION USING
ATTENTION-BASED CNN-BLSTM

Weicheng Cai1,2,Danwei Cai1, Shen Huang3 and Ming Li1∗

1Data Science Research Center, Duke Kunshan University, Kunshan, China
2School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

3Tencent Research, Beijing, China
ml442@duke.edu

ABSTRACT

In this paper, we present an end-to-end language identification
framework, the attention-based Convolutional Neural Network-
Bidirectional Long-short Term Memory (CNN-BLSTM). The model
is performed on the utterance level, which means the utterance-level
decision can be directly obtained from the output of the neural
network. To handle speech utterances with entire arbitrary and po-
tentially long duration, we combine CNN-BLSTM model with a
self-attentive pooling layer together. The front-end CNN-BLSTM
module plays a role as local pattern extractor for the variable-
length inputs, and the following self-attentive pooling layer is built
on top to get the fixed-dimensional utterance-level representation.
We conducted experiments on NIST LRE07 closed-set task, and
the results reveal that the proposed attention-based CNN-BLSTM
model achieves comparable error reduction with other state-of-the-
art utterance-level neural network approaches for all 3 seconds, 10
seconds, 30 seconds duration tasks.

Index Terms— Language identification, utterance-level, end-
to-end, attention, CNN-BLSTM

1. INTRODUCTION

Language identification (LID) can be defined as an utterance-level
“variable-length sequence classification” task. It is a problem in that
we are trying to retrieve information about an entire utterance rather
than specific word content [1]. Moreover, there is no constraint on
the lexicon words thus training utterances and testing segments may
have completely different contents [2]. Therefore, given the input
speech utterances of arbitrary duration, our goal may boil down to
transform them into fixed-dimensional representations, among them
the inter-class variability is maximized and simultaneously the intra-
class variability is minimized [3].

There are generally two categories to obtain the fixed-dimensional
utterance-level representations. The first comprises stacking self-
contained algorithmic components. The representative is the clas-
sical i-vector approach [4]. Firstly, variable-length feature se-
quences are extracted from raw audio signals. Then, selected feature
frames in the training dataset are grouped together to estimate
a Gaussian Mixture Model (GMM) based universal background
model (UBM) [5]. Sufficient statistics of each utterance on the
UBM is accumulated, and a factor analysis based i-vector extractor
is trained to project the statistics into a low rank total variability
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subspace. The main advantage of this type of methods is that the
system can accept variable-length input. Any input speech segment
of arbitrary duration can be transformed as a fixed-dimensional
i-vector representation.

Another category relies on the model trained by a downstream
procedure through a deep neural network (DNN). In the early stages,
the DNN-based LID model commonly performs prediction at the
frame level, and the original input feature sequences are resized or
cropped into multiple small xed-length segments, as is done in [6,
7, 8, 9]. Since the DNNs only provide frame-level prediction., the
final utterance level scores are derived by averaging the frame-level
posteriors.

To handle the variable-length speech utterances, recently, sev-
eral context-independent pooling layers such as temporal average
pooling (TAP) [10, 11] layer, self-attentive pooling (SAP) layer [12,
13], and learnable dictionary encoding (LDE) [14] layer has been
introduced for the utterance-level LID modeling. The pooling layer
is first introduced to speaker recognition task [15, 16], and typi-
cally built on top of the front-end CNN or time-delay neural net-
work (TDNN) [17] to get the utterance-level representation within
the network structure. With the merit of pooling layer, the DNNs
can train input segments with variable duration. In the testing stage,
the whole speech utterances of arbitrary duration can be fed into the
DNNs directly.

Besides the context-independent pooling layer, theoretically,
we can also get the fixed-dimensional utterance-level representation
through context-dependent recurrent manner. Since recurrent layer
can make full use of the context of feature sequences in the forward
direction, in our previous work [10], we applied recurrent layer
such as LSTM or Gated Recurrent Unit (GRU) to get the encoded
utterance-level representation. We regard the last output vector of
the LSTM/GRU layer as the encoded representation and put it into
the subsequent fully-connected (FC) layer, as demonstrated in Fig. 2.
It is surprised that although LSTM or GRU layers introduce much
more parameter than TAP layer, it results in degraded performance,
especially for the testing task over a long-range duration [10].

The recurrent layer may suffer from “the curse of sentence
length” [18] when it plays a role as encoding layer. However, we
could not neglect the power of the recurrent layer in modeling the
temporal dynamic behavior for the time sequence. This kind of
context-dependent temporal structure may be useful for recognizing
spoken language. Therefore, motivated by the success of connecting
CNN and recurrent layer in some speech recognition [19, 20] and
neural language understanding [21] tasks, we replace the front-end
CNN module with a tandem CNN-BLSTM structure. Rather than
directly using the output of the last time step as the encoded output
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Fig. 1. Our proposed attention-based CNN-BLSTM framework for LID. It accepts input data sequence with variable length, and produces an
utterance-level result directly from the output of the DNN.
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Fig. 2. Diagram of the recurrent encoding layer

information, we employ the recurrent layer as part of our front-end
local pattern extractor. Based on the tandem CNN-BLSTM, we
additionally apply another attention-based pooling layer on the out-
puts of all time steps to extract the fixed-dimensional representation.
The model is performed on the utterance level, which means the
utterance-level decision can be directly obtained from the output of
the neural network, given variable-length input sequences.

2. ATTENTION-BASED CNN-BLSTM

2.1. System overview

The speech signal is naturally with variable length, and we usu-
ally don’t know exactly how long the testing speech segment will
be. Therefore, a flexible processing method might be able to accept
speech segments of arbitrary duration. Fig. 1 shows our utterance-
level DNN architecture.

The front-end tandem CNN-BLSTM module plays a role as lo-
cal pattern extractor for the variable-length input sequence. The
CNN-BLSTM learned high-level abstract pattern is still with tempo-
ral order. The remaining question is: how to aggregate them together
over the entire and potentially long duration? Concerning about
that, an SAP layer is designated on top of the CNN-BLSTM to get
the fixed-dimensional utterance-level representation. The utterance-
level representation after the SAP layer can be further processed
through an FC layer and finally connected with a classification out-
put layer. Each unit in the output layer is represented as a target

Input sequence Learned representation

D ⇥ L
C ⇥H ⇥W

Fig. 3. The input-out structure of CNN. It receives a two-
dimensional feature matrix D × L, and produces a 3D tensor block
C ×H ×W

language category.
After model have been trained, given testing utterances of ar-

bitrary duration, the utterance-level posteriors could be directly ob-
tained from the output of the neural network.

2.2. Tandem CNN-BLSTM

2.2.1. CNN

CNN is a kind of specialized neural network for processing data with
a known grid-like topology, and it uses learned filters to convolve
the feature maps from the previous layer. To some extent, therefore,
the convolution layer of CNNs operates in a sliding window manner
acting as an automatic local feature extractor.

For a given input temporal ordered feature sequence with the
shape D × L (where D denotes the feature dimension of the acous-
tic features, and L denotes the number of frames), typically, as
described in Fig. 3 the CNN learned representations are a three-
dimensional tensor block with the shape of C × W × H , where
C denotes the number of channels, H and W denotes the height
and width of the feature maps. Generally, W and H are much
smaller than the original D and L, since we have many downsample
operations within the CNN structure.

2.2.2. BLSTM

For LID task, it might be beneficial to have access to future as well
as past context. However, standard LSTM networks ignore future
context. BLSTM extend the unidirectional LSTM networks by in-
troducing a backward direction layer. The model is, therefore, able
to exploit information both from the past and future [22].
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Fig. 4. The input-out structure of BLSTM layer. It receives a
variable-length sequence C × W , also produces a variable-length
sequence 2R×W

The CNNs produce the three-dimensional output with the shape
of C × H × W . However, BLSTM expects inputs to be a two-
dimensional tensor. Therefore, we first pool the output of CNN along
its height axis and then squeeze it into a two-dimensional C × W
representation by removing the dimension of size 1. Here, C not
only denotes the number of channels of CNN but also represents the
input feature dimension for BLSTM. Similarly, W not only denotes
the width of the CNN feature maps but also represents the time step
in BLSTM. It is noticed that W is a variable number considering
different input frames L.

As shown in Fig. 4, the output of the BLSTM is also a variable-
length sequence of shape 2R×W , where R denotes the output fea-
ture dimension of the BLSTM.

2.3. Attention mechanism

In our previous work, we employ a TAP layer on top of the CNN
and pool the CNN extracted feature maps equally. Considering
the BLSTM produced variable-length sequences, we can also use
the same TAP layer to aggregate the variable-length sequence to-
gether. However, not all frame of features contributes equally to
the utterance-level representation. For example, the last time step in
the forward direction and the first step in backward direction may
be encoded more information about the sequence. Therefore, we
introduce an attention-based pooling layer to pay attention to such
frames that are important to the classification and aggregate those
informative frames to form an utterance-level representation.

We implement the SAP layer the same as in [12]. That is,
we first feed the variable-length sequence produced by BLSTM
{x1,x2, · · · ,xT } into a multi-layer perceptron (MLP) to get
{h1,h2, · · · ,hT } as a hidden representation. In this paper, we
simply adopt a one-layer perceptron,

ht = tanh(Wxt + b) (1)

Then we measure the importance of each frame as the similarity of
ht with a learnable context vector µ and get a normalized impor-

MLP Transformation

…

2R⇥W

2Rµ
Weights

…

Fig. 5. The input-out structure of SAP layer. It receives a variable-
length sequence 2R × W , produces a fixed-dimensional utterance-
level representation of size 2R

tance weight αt through a softmax function.

αt =
exp(hT

t µ)󰁓T
t=1 exp(h

T
t µ)

(2)

The context vector µ can be seen as a high-level representa-
tion of a fixed query “what is the informative frame over the whole
frames [23]. It is randomly initialized and jointly learned during the
training process.

After that, as demonstrated in Fig. 5, the utterance-level rep-
resentation e can be generated as a weighted sum of the BLSTM
produced variable-length sequence based on the learned weights αt,

e =

T󰁛

t=1

αtxt (3)

3. EXPERIMENTS

3.1. Data description

We conducted experiments on the 2007 NIST Language Recognition
Evaluation (LRE). Our training corpus including Callfriend datasets,
LRE 2003, LRE 2005, SRE 2008 datasets, and development data for
LRE07. The total training data is about 37000 utterances.

The task of interest is closed-set language detection. There are
14 target languages in the testing corpus, which included 7530 utter-
ances with three nominal durations of 30, 10 and 3 seconds.

3.2. Neural network training

Audio is converted to 64-dimensional log Mel-filterbank energies
with a frame-length of 25 ms, mean-normalized over a sliding win-
dow of up to 3 seconds. A frame-level energy-based voice activity
detection (VAD) selects features corresponding to speech frames.

In order to get higher-level abstract representation, we design
a deep CNN based on the well-known ResNet-34 architecture [25],
as described in Table 2. All the convolutions are with kernel size
k = 3×3, padding size p = 1. Stride size s = 1 while downsample
option in Table 2 is set to false, s = 2 while true. Followed by the
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Table 1. Performance on the 2007 NIST LRE closed-set task. N/R: Not reported
System System Description Front-end module Encoding layer Cavg(%) EER(%)

ID 3s 10s 30s 3s 10s 30s
1 CNN-TAP [10] CNN TAP 9.98 3.24 1.73 11.28 5.76 3.96
2 CNN-SAP [12] CNN SAP 8.59 2.49 1.09 9,89 4.27 2.38
3 CNN-LSTM [10] CNN LSTM 10.17 4.66 N/R 9.80 4.26 N/R
4 CNN-GRU [10] CNN GRU 11.31 5.49 N/R 10.74 6.40 N/R
5 LSTM-Attention [24] LSTM Attention N/R N/R N/R 14.72 N/R N/R
6 CNN-BLSTM TAP CNN-BLSTM TAP 9.83 3.31 2.03 11.22 5.26 3.67
7 CNN-BLSTM SAP CNN-BLSTM SAP 9.22 2.54 0.97 9.50 3.48 1.77
8 Fusion ID2 + ID7 7.98 2.30 0.89 8.03 3.05 1.56

Table 2. Attention-based CNN-BLSTM network structure. N/A:
Not available

Layer Output size Downsample Channels Blocks

Conv1 64 × L False 16 -

Res1 64× L False 16 3

Res2 32 × L
2

True 32 4

Res3 16 × L
4

True 64 6

Res4 8 × L
8

True 128 3

Pool 128× L
8

N/A N/A N/A

BLSTM 256× L
8

N/A N/A N/A

SAP 256 N/A N/A N/A

Output 14 N/A N/A N/A

deep CNN, two layer 128-dimensional BLSTM is built to capture
the temporal structure, and produces a variable-length sequence of
shape 256× L

8
. After the CNN-BLSTM front-end module, a SAP is

designated on top to get the utterance-level representation.
Therefore, given the input data sequence of shape 64 × L,

where L denotes variable-length data frames, we finally get 256-
dimensional utterance-level representation. The number of output
classes is 14.

We use common stochastic gradient descent (SGD) with mo-
mentum 0.9 and weight decay 1e-4. The learning rate is set to 0.1,
0.01, 0.001 and is switched when the training loss plateaus. Since
we have no separated validation set, the converged model after the
last optimization step is used for evaluation.

In the training stage, the model is trained with a mini-batch size
of 128. We design a data loader to generate the variable-length
training examples dynamically. For each training step, an integer
L within [200,1000] interval is randomly generated, and each data
in the mini-batch is cropped or extended to L frames. Therefore,
a dynamic mini-batch of data with the shape of 128 × 64 × L is
generated on-the-fly, and L is a batch-wise variable number.

In the testing stage, all the 3 seconds, 10 seconds, and 30 seconds
duration data is tested on the same model. Because the duration
length is arbitrary, we feed the testing speech utterance to the trained
neural network one by one.

3.3. Evaluation

Table 1 shows the performance on the 2007 NIST LRE closed-set
task. The performance is reported in average detection cost Cavg

and equal error rate (EER).

For our purpose in exploring how to exploit the temporal struc-
ture in the neural network and using BLSTM as part of the front-end
module, we first implement two CNN baseline system without any
recurrent layer.

For CNN-TAP system, the front-end CNN is directly connected
with a TAP layer to get the utterance-level representation. For CNN-
SAP system, the TAP layer is replaced by an SAP layer. Compar-
ing the results of CNN-TAP and CNN-SAP, we can find that the
attention-based pooling mechanism can improve the system perfor-
mance significantly.

When we apply context-dependent GRU/LSTM as our encod-
ing layer rather than the context-independent TAP or SAP layer, the
performance gets much worse. Especially, when the full 30-seconds
duration utterance is fed into the CNN-GRU/CNN-LSTM trained
within 200 ∼1000 frames (about 2∼10 seconds), the performance
drops sharply and almost near random.

In previous work [24], Geng et al. utilized LSTM as the front-
end module and introduced an attention-based mechanism to get the
utterance-level representation. They only give results on the 3 sec-
onds short duration task, and the performance is not as good as those
systems using deep CNN as the front-end module.

In our experiment, first, we introduce BLSTM into the raw
CNN-TAP baseline system and implement a tandem CNN-BLSTM
TAP system. It is very interesting that although CNN-BLSTM mod-
ule introduces much more parameters comparing with the original
CNN, it results in slightly degraded performance. It might be the
reason that the BLSTM produced output representation are naturally
“unequal”. For example, the last step in the forward direction and
the first step in the backward direction may be encoded with more
information about the utterance than other time steps.

Therefore, a simple average operation might not be appropri-
ate, and we replace the TAP layer with the SAP layer. The network
architecture of the final tandem CNN-BLSTM SAP system is de-
scribed in Table 2. The performance is not only much superior to the
CNN-BLSTM-TAP system but also better than the CNN-TAP and
CNN-SAP baseline system, especially for the 30 seconds long dura-
tion task. Moreover, the score-level fusion of system ID2 and ID7
can further improve the performance significantly.

4. CONCLUSIONS

In this paper, we implement an attention-based CNN-BLSTM
model for utterance-level end-to-end LID. The front-end tandem
CNN-BLSTM module plays a role as local pattern extractor for the
variable-length inputs, and the following SAP layer is built on top
to get the fixed-dimensional utterance-level representation. The ex-
periment results show the superiority of the tandem CNN-BLSTM
SAP system, especially for the long duration task.
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