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Autism Spectrum Disorder (ASD) is a group of lifelong neurodevelopmental disorders

with complicated causes. A key symptom of ASD patients is their impaired interpersonal

communication ability. Recent study shows that face scanning patterns of individuals with

ASD are often different from those of typical developing (TD) ones. Such abnormality

motivates us to study the feasibility of identifying ASD children based on their face

scanning patterns with machine learning methods. In this paper, we consider using

the bag-of-words (BoW) model to encode the face scanning patterns, and propose

a novel dictionary learning method based on dual mode seeking for better BoW

representation. Unlike k-means which is broadly used in conventional BoW models to

learn dictionaries, the proposed method captures discriminative information by finding

atoms which maximizes both the purity and coverage of belonging samples within one

class. Compared to the rich literature of ASD studies from psychology and neural science,

our work marks one of the relatively few attempts to directly identify high-functioning

ASD children with machine learning methods. Experiments demonstrate the superior

performance of our method with considerable gain over several baselines. Although

the proposed work is yet too preliminary to directly replace existing autism diagnostic

observation schedules in the clinical practice, it shed light on future applications of

machine learning methods in early screening of ASD.

Keywords: discriminative dictionary learning, autism spectrum disorder, mode seeking, machine learning,

eye gaze

1. INTRODUCTION

Autism spectrum disorder (ASD) refers to a group of developmental disorders, including a
wide range of symptoms, skills, and levels of disability. Children with ASD often suffer certain
lifelong disabilities which have considerable impacts to their families (Amaral et al., 2008; Lobar,
2016). While the number of ASD children has risen dramatically in recent years, traditional
ASD diagnostic approaches are both time and labor consuming, causing hinderance to early
diagnosis and intervention (Zheng et al., 2013). Currently, the widely used assessments include the
Autism Diagnostic Observation Schedule-Generic (ADOS-G) (Lord et al., 2000) and its revised
version ADOS-2 (Gotham et al., 2007). These diagnostic methods were carefully designed to
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measure certain behaviors and impairments. Despite their high
validity, the accompany and administration of clinically trained
professionals are often required. The human-in-loop nature of
these tests not only lead to time cost, but also the demand of well
controlled protocols and experienced professionals.

Recent behavioral studies found that ASD individuals show
abnormal scanning patterns when looking at faces (Yi et al.,
2014, 2016). Similar atypical visual attention is also observed
natural static images with general objects (Jones and Klin,
2013; Wang et al., 2014, 2015). In these studies, eye gaze
captured by eye tracking techniques played a central role in
analyzing the ASD behaviors. In the studies, a set of images
are displayed on the screen and an eye tracker returns a set
of the viewer’s eye gaze location (x-y coordinates) on each
image. The underlying motivation is that eye gaze patterns, such
as the content of viewed objects, fixation durations, viewing
frequency of different areas, speed/direction of saccades as well
as temporal relations, may encode rich amount of ASD related
information. The above studies also motivated recent attempts
that use machine learning to identify ASD through abnormal
visual attentions (Liu et al., 2015, 2016). These two works present
early attempts to apply machine learning frameworks to identify
children ASD by analyzing the eye movement patterns. In
particular, the experiments are conducted on the dataset from Yi
et al. (2016) where each participant is shown multiple faces,
and therefore recorded with multiple face scanning sequences.

FIGURE 1 | An overview of the evaluation protocol. Each subject views a set of face images, while the set of eye gaze coordinates on each viewed image are

recorded using eye tracking devices. The proposed method encodes the eye gazes at image level with the BoW model.

Inspired by the area of interest (AOI) approach widely used in
human behavior analysis, the authors consider a bag-of-words
modeling where they use k-means to find areas with high fixation
concentration in a data-driven manner, and encode each eye
movement sequence into a single feature vector. These areas
are referred to as “dictionary words,” and each feature vector
is a normalized histogram representing the frequency of the
eye fixations falling into different areas. Finally, kernel support
vector machine (SVM) classifiers are trained and evaluated in
a “leave-one-out” cross-validation manner, where each time the
features of the eye movement sequences from a single participant
are held for testing while the rest ones are used for training.
Such framework proved to deliver promising results, which
demonstrate the feasibility of using machine learning to identify
ASD based on face scanning patterns.

In this paper, we aim to propose improved machine learning
approaches to better encode abnormal eye movement patterns
and identify ASD. Our work follows the same framework
and protocol proposed by Liu et al. (2016), where the gaze
coordinates of diagnosed (ASD/non-ASD) subjects (Yi et al.,
2015) are encoded into features under the BoW model, and
classified by kernel SVMs under the “leave-one-out” cross-
validation evaluation protocol, as shown in Figure 1. A major
novelty of this paper lies in proposing a new dictionary learning
method where high quality dictionary words are discriminatively
mined. Instead of using k-means to learn words with highly

Frontiers in Computational Neuroscience | www.frontiersin.org 2 November 2021 | Volume 15 | Article 662401

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Liu et al. Discriminative Dictionary Learning for ASD

FIGURE 2 | Heat maps of quality objective values at different face locations. The values encode the different visual preferences between ASD and TD subjects. TD

subjects tend to fixate gazes near right eye and mouth, while ASD subjects show certain level of avoidance of eye contact. Our target is to locate these highly different

regions, treating them as BoW dictionary to encode the gazes. (Left) Quality objective value. (Right) Taking absolute of the left image.

concentrated attentions, our method seeks to locate words that
favors concentration difference between ASD and TD gazes. We
also propose a theoretically unified view toward modeling word
quality, by considering purity and coverage which correspond
to inter-class difference and word frequency. We model the
quality objective as a product of purity and coverage, and
show that such objective can be naturally approximated via
kernel density estimation and optimized via dual mode seeking.
Figure 2 visualizes the estimated objective values at different
locations. Our contributions can be summarized as follows:
(1) Our work presents an improved data-driven representation
framework based on Liu et al. (2016) with strong motivations
in machine learning. (2) Our work also presents an interpretable
model that is well-founded in the psychology and autism research
communities by showing strong connections to the well-known
iMap approach (Caldara and Miellet, 2011). (3) The proposed
framework leads to so far the state-of-the-art performance
on two major ASD identification datasets. We believe the
research conveys good contributions by benefiting a variety of
downstream autism research.

2. RELATED WORK

Our work is related to or partly inspired by a wide
variety of previous work, ranging from psychology, psychiatry,

behavior analysis to machine learning. Below we give a brief
summarization of these work.

2.1. Psychology, Psychiatry, and Behavior
Analysis in Autism Research
Analysis of visual attention of ASD children is theoretically
supported by considerable amounts of work from the
communities of psychology, psychiatry, and behavior analysis.
One of the most important work is the area of interest
(AOI) (Klin et al., 2002; Van der Geest et al., 2002) approach.
Specifically, subjects are shown with human face images on the
screen and their eye movement patterns are captured. In the
data analysis step, the viewed images are manually partitioned
into semantically meaningful regions (eye, nose, and mouth,
etc.), with the frequency (counts) of eye fixations falling into
each region counted and analyzed. A brief illustration of the
AOI approach from Yi et al. (2014) is illustrated in Figure 3.
Note that the regions in AOI are partitioned empirically and
can be influenced by the semantic meanings. In addition, the
spirit of AOI turns out to be highly related to the well-known
BoWmodel in machine learning because counting the frequency
is essentially feature encoding with histogram, whereas the
partitioned regions correspond to the concept of dictionary
words (or codebook) in BoW. Therefore, feature representation
with BoW consists of two steps: (1) Partitioning the face image
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FIGURE 3 | Illustration of the dictionary words projected onto the viewed image from Liu et al. (2016). (Left) Partitioned regions as dictionary words in AOI. (Right)

Regions learned by k-means.

into regions that are found by data-driven approaches like
k-means; (2) Counting the histogram of fixations falling into
different regions and treating it as the feature This histogram is
named as BoW feature representation.

Besides AOI, another method toward analyzing visual
attentions is the iMap approach (Caldara and Miellet, 2011),
where a heat map of visual attention is generated by smoothed
eye fixations. This heat map indicate the density of eye-
gaze coordinates. Different constitutes of subject would have a
difference heat map. Recently, a variety of studies have reported
the application of AOI and iMap in analyzing abnormal attention
in ASD (Young et al., 2009; Jones and Klin, 2013; Yi et al.,
2015, 2016). Again, the concept of Gaussian smoothing in
iMap coincides with kernel density estimation (Rosenblatt, 1956;
Parzen, 1962), and the concept of taking a difference map
shows a very deep connection to our proposed discriminative
framework with density difference and mode seeking (Cheng,
1995; Comaniciu and Meer, 2002). This presents a strong
scientific justification of our approach from the perspective of
behavior/psychology study.

2.2. Machine Learning for Autism Research
While the above studies form the theoretical foundations
of this research, most of them are restricted to statistical
studies to discover patterns indicating ASD symptoms. With
the fast development and success, machine learning have been
introduced to identify ASD. Using machine learning benefits the

identification process from two aspects: (1) Replacing human-
in-loop operations with machine learning methods makes the
identification process much more scalable (Crippa et al., 2015).
(2) Learning based methods can generate useful mid-level scores
which reduce subjectivity in ASD identification and help better
ASD diagnosis (Stahl et al., 2012; Zhou et al., 2014; Crippa et al.,
2015; Wang et al., 2017).

Motivated by the abnormal eye movement patterns observed
in Yi et al. (2014, 2016), Liu et al. (2015, 2016) followed the
same dataset introduced in Yi et al. (2014, 2016) and proposed
a machine learning based ASD identification framework using
BoW representation and kernel SVM. Inspired by AOI, Liu et al.
(2015, 2016) proposed to adopt data-driven approach (k-means)
to group fixation coordinates into partitioned regions, and counts
the frequency of fixations falling into each region. The histogram
of the fixations is then used to represent the feature of the
eye movement sequence. The difference between AOI and k-
means is that the latter is data-driven which does not require
manual partitions (see the right image in Figure 3). However, k-
means tends to favor dictionary words with high sample densities
but does not explicitly include discriminative class information,
whereas this work aims to the issue and introduce discriminative
class information into dictionary learning. Besides Liu et al.
(2015, 2016), another closely related work is Jiang and Zhao
(2017) where deep network is used to identify ASD by analyzing
the viewed contents of test subjects.
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2.3. General Machine Learning Research
The concept of adding supervised discriminative information
to dictionary learning is not new. A number of previous
work on sparse dictionary learning have reported improvements
over unsupervised dictionary learning when label information
is incorporated (Mairal et al., 2008; Jiang et al., 2011; Yang
et al., 2011). While these work presented elegant optimization
frameworks for learning sparse dictionaries, their method can
not be directly applied to our task given the low dimensional
input.1 Of course, one may argue that higher dimensional
inputs can be obtained by sampling the time series of the
coordinates in a relatively long window. However, this is much
less supported by previous clinical studies in psychology and
behavior analysis, and often does not work well since high-order
temporal context information along temporal dimension are
usually quite random and fixational eye movements have large
effects on visual perception than saccades (Krauzlis et al., 2017).

The discrete and non-convex nature of k-means makes it even
more difficult to incorporate discriminative label information
to the learning process similar to sparse dictionary learning.
A typical method to heuristically incorporate discriminative
information is to learn class-specific dictionary by performing
k-means on the class-wise data subsets (Altintakan and Yazici,
2015). Other related methods include the descriptive word
ranking (Zhang et al., 2009) as well as large-margin clustering
using SVM and iterative cross-validation (Doersch et al., 2012;
Singh et al., 2012).

One related work which partly inspired our proposed
framework is Doersch et al. (2013), where the authors discover
mid-level image patches with discriminative mode seeking,
and formulate the mode seeking process as a constrained
optimization problem. While resembling their method in high-
level motivations, our work differs from them in several aspects:
(1) Doersch et al. (2013) is heavily tailored to handle image
classification problems and very high dimensional features.
While our method addresses a completely different application.
(2) We observe that directly using density ratio as in Doersch
et al. (2013) sometimes leads to super large values and undesired
learning behaviors when the denominator is small. Instead we
consider an alternative purity measurement term where the
purity is normalized between 0 and 1. (3) Our model considers
the joint optimization of purity and coverage, while the density
ratio somewhat discards the coverage information of dictionary.
(4) We show that the proposed optimization framework can
be elegantly formulated as a supervised mean shift, which
is considerably simpler than the constrained optimization in
Doersch et al. (2013).

3. LEARNING DISCRIMINATIVE
BAG-OF-WORDS DICTIONARY

Dictionary learning presents an important problem in BoW
representation as the quality of learned dictionary words
has direct impacts on the quality of represented features.

1Our input are x-y coordinates with the dimension of 2.

Often, one would hope that the dictionary can encode as
much discriminative information as possible, such that the
feature coefficients on this dictionary show significant inter-class
differences which benefit the classification task. An important
question one may ask is: How to quantitatively measure the
quality of a given dictionary?

3.1. Notations and Definitions
Before delving into technical details, we list the notations and
their definitions in this subsection for the algorithmic clarity. For
the rest of the paper, we use X = {xi|xi ∈ R

2, i ∈ 1, . . . ,N}

to denote the entire set of 2D eye fixation coordinates on all the
viewed faces from all the participants in the training set, where
N is the total number of coordinate samples. We use X

+ =

{xi|i ∈ 1, . . . ,N+} to denote the set of coordinates from the
participants diagnosed with ASD in the training set, and similarly
X
− = {xi|i ∈ 1, . . . ,N−} the set of coordinates from the rest

participants, where X = X
+ ∪ X

−.
Toward encoding the fixation coordinates with BoW

representation, we assume that the coordinates are grouped into
K clusters with a cluster partitioning C ∈ {1, . . . ,K}N , where C is
a labeling configuration of cluster ids for each coordinate. Each
cluster corresponds to a dictionary word. Our goal is to find an
optimized cluster partitioning that leads to improved dictionary
quality and BoW representation.

3.2. A Unified View Toward Dictionary
Quality
In Doersch et al. (2013), the authors proposed the concept of
purity to measure how discriminative a dictionary word is, and
coverage to measure how representative it is. We follow this idea
to learn dictionaries that have larger values in both terms. Given
a certain cluster partition C and the cluster index k, the purity for
positive class P+(k | C) can be modeled as:

P+(k | C) =
N+(k | C)

N+(k | C)+ N−(k | C)
, (1)

where N+(k | C) and N−(k | C), respectively, denotes the
numbers of positive and negative samples assigned to cluster
partition C. Again, note that such measurement differs from
the density ratio in Doersch et al. (2013), in the sense that
Equation (1) is normalized between 0 and 1. Similarly, the purity
of negative class can be defined as:

P−(k | C) =
N−(k | C)

N+(k | C)+ N−(k | C)
. (2)

While it is desirable to increase the dictionary purities for both
classes, increasing the purity of both positive and negative classes
is contradicting in the same word. What truly matters is the
difference of sample numbers and its ratio vs. the word size. As a
result, we look into the following purity measure:

P(k | C) =
|N+(k | C)− N−(k | C)|

N+(k | C)+ N−(k | C)
, (3)
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which is able to measure the level of purity for both classes with
a unified representation. On the other hand, the coverage for
positive and negative class can be modeled as:

C(k | C) = N+(k | C)+ N−(k | C). (4)

A dictionary ideally should have good purity and coverage
simultaneously. A natural way is to treat the product of both
benchmarks as the objective, which shares similar spirit to the
f-measure.2 Therefore, the word quality can be estimated as:

Q(k,C) , P(k | C)C(k | C) = |N+(k | C)− N−(k | C)| (5)

The problem of finding a good dictionary word can therefore be
formulated as maximizing the quality estimation objective with
respect to k and C:

max
C

∑

k

Q(k,C) (6)

3.3. Approximating With Kernel Density
Estimation
Directly optimizing the objective in Equation (6) is difficult
since the optimization is non-continuous, non-convex, and the
solution space of C is huge. Our approach here is to approximate
with kernel density estimation and mode-seeking. Specifically,
when the size of each dictionary word is reasonably small, a
good approximation to N+(k | C) and N−(k | C) is the local
density estimator:

P̂(xk | X
+) ∝ N+(k | C) P̂(xk | X

−) ∝ N−(k | C) (7)

where xk is the location of the k-th dictionary word in feature
space. In addition, we define P̂(xk|X

+) to be the following
Gaussian kernel density estimator:

P̂(x | X+) ,
cd

Nhd

∑

xi∈X
+

exp
(

−
||x− xi||

2

2h2

)

P̂(x | X−) ,
cd

Nhd

∑

xi∈X
−

exp
(

−
||x− xi||

2

2h2

)

(8)

where d = 2 is the dimension, h is the bandwidth that controls
the kernel smoothness, and cd = 2π (−d/2) is a normalization
constant. The word quality located at x can thus be estimated as:

Q(x) = |P̂(x | X+)− P̂(x | X−)| (9)

3.4. Finding Q(x) Local Maxima With Dual
Mode Seeking
Our goal is to find a set of local maxima of Q(x) which indicate
the locations of high quality words. Note that Equation (9) is
a continuous function with respect to x. This allows one to

2One may also consider linear combination but this leads to the weight issue

between purity and coverage for the different scales.

optimize it with respect to x using gradient ascent. Since Equation
(9) contains absolute values, we consider the alternative objective:

Q∗(x) = P̂(x | X+)− P̂(x | X−) (10)

Assuming that the gradient ascent/descent process guarantees
the monotonic increasing/decreasing of Q∗(x), we have the
following theorems:
Proposition 1: Q(x) = −Q∗(x),∀x ∈ {x|Q∗(x) < 0}.
Remark: The proof is omitted as it is strightforward. Proposition
1 indicates that the landscape of Q(x) is equal to flipping the
negative part of Q∗(x) as positive.
Proposition 2: Gradient ascent on Q(x) is equal to gradient
ascent on Q∗(x), ∀x ∈ {x|Q∗(x) > 0}.
Proposition 3: Gradient ascent on Q(x) is equal to gradient
descent on Q∗(x), ∀x ∈ {x|Q∗(x) < 0}.
Remark: Proposition 2 and 3 can be directly concluded from
Proposition 1. As a result, performing mode seeking on Q(x) can
be alternatively done by performing dual gradient ascent/descent
on Q∗(x) with respect to the gradient ∇Q∗(x). To simplify the
computation, note that we have:

∇P̂(x | X+) =
1

h2
P̂(x | X+)(xm+ − x)

∇P̂(x | X−) =
1

h2
P̂(x | X−)(xm− − x) (11)

where xm+ is the weighted mean of positive data samples
weighted by kernels:

xm+ =

∑

x∈X+ exp(−||x− xi||
2/2h2)xi

∑

x∈X+ exp(−||x− xi||2/2h2)
(12)

xm− is defined similarly. The gradient of objective function is
therefore computed as:

∇Q∗(x) =
1

h2

[

P̂(x|X+)(xm+ − x)− P̂(x | X−)(xm− − x)
]

(13)

One could see that Equation (13) is basically a weighted
combination of the mean shift vectors (Comaniciu and Meer,
2002) from positive and negative samples, where the weights
are the kernel densities. Accordingly, one may consider the
following dual mode seeking step to find local maxima of Q(x)
(see Algorithm 1):

3.5. Dual Mode Seeking as Supervised
Mean Shift
In reality, one does not need to explicitly flip the sign of ∇Q∗(x)
in order to perform dual mode seeking. Let yi ∈ {1,−1} indicates
the label of xi, the Equation (13) can be re-written as:

∇Q∗(x) =
cd

Nhd+2

[

N
∑

i=1

yik(x, xi)
][

∑N
i=1 yik(x, xi)xi

∑n
i=1 yik(x, xi)

− x

]

(14)

where we have:

N
∑

i=1

yik(x, xi) =

N
∑

i=1

yi exp
(

−
||x− xi||

2

2h2

)

=
Nhd

cd
Q∗(x) (15)
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Algorithm 1 Dual mode seeking.

1: Estimate word quality located at location x: P̂(xi|X
+) −

P̂(xi|X
−)

2: while not converged do

3: if P̂(xi|X
+)− P̂(xi|X

−) > 0 then
4: perform mode seeking with ∇Q∗(xi) until

convergence (gradient ascent)
5: else if P̂(xi|X

+)− P̂(xi|X
−) < 0 then

6: perform mode seeking with −∇Q∗(xi) until
convergence (gradient descent)

7: end if

8: end while

Note that dividing Equation (14) with
∑n

i=1 yik(x, xi) actually
gives a generalized form of mean shift. Also, the sign of g(x)
is exactly determined by

∑n
i=1 yik(x, xi). One may cancel the

flipping sign of dual mode seeking simply by iteratively shifting
with the following mean shift vector:

m(x) =

∑N
i=1 yik(x, xi)xi

∑n
i=1 yik(x, xi)

− x (16)

Note that an interesting aspect of the above mode seeking
algorithm (Equations 14–16) is that it can be viewed as a
generalized form of supervised mean shift algorithm, where the
labels yi introduce class-aware discriminative information into
the learning process.

3.6. Convergence With Back Tracking Line
Search
Unfortunately, unlike the conventional mean shift, performing
gradient ascent with Equation (16) does not guarantee the
monotonic increase of gradient and algorithm convergence, since
the sum of kernel weights contains negative terms. This often
happens when the densities of positive and negative classes are
approximately equal to each other. In this case the denominator
of Equation (16) is very small, leading to relatively large shifting
vector or potential numerical issues. This can be practically
solved by adaptive step size normalization with respect to the
denominator and step size reduction with back tracking line
search. Whenever the quality objective value of the next step is
not increased, back tracking line search multiplies the current
step size with 0.5. This guarantees the monotonic increase of the
objective and the algorithm convergence. In practice we observe
that mean shift with Equation (16) works well at most feature
space positions, and the need for performing back tracking line
search is reduced very fast as the density of one class quickly
dominates over another.

4. SUMMARY

4.1. Method Overview
Zooming out a bit, we briefly recap our full picture. We started
from the motivation to capture local modes that maximize
the difference between ASD and non-ASD subjects on the

attention maps. Our goal is to automatically identify these modes
through a data-driven method in contrast to manual selection.
In section 3.2, we start by defining quantitative measures of
the dictionary (cluster) quality with purity and coverage. We
then define the dictionary quality as the multiplication of
purity and coverage. We approximate the dictionary quality
with kernel density estimation in section 3.3, and further
approximate the optimization of dictionary as dual mode seeking
in section 3.4. Finally, we show that the proposed dual mode
seeking method can be generalized into a supervised mean
shift form in section 3.5, and addresses convergence issues
in section 3.6.

4.2. From Discriminative Modes to BoW
Representation
The discriminative mode seeking algorithm in section 3 returns
a set of local maxima of Q(x) which indicate locations of high
quality dictionary words. The subsequent question is how to
transform these maxima into BoW representation by learning a
particular clustering configuration C that favors these locations.

To this end, we consider a mean shift based clustering method
to obtain the dictionary words and C. The idea here is to initialize
a set of kernel locations x with the coordinate samples and
iteratively apply discriminative mode seeking in section 3 to
each kernel for adequate number of iterations. This will basically
shift each of the kernel from its initial feature space location to
local maxima of Q(x) through gradient ascent. We then treat
these shifted kernels as data samples and use k-means to obtain
a total of K cluster centroids which are mostly located on the
Q(x) maxima.

Specifically, we use all the fixation coordinate samples in
the training set for density estimation. For speed purpose, we
sample 1 out of 20 training coordinates to initialize the kernel
locations, and perform 30 rounds of mean shifts on these kernels.
We keep these settings the same across all our experiments.
Once obtaining the cluster centroids, we assign each coordinate
sample to the nearest centroid, therefore obtaining a cluster
labeling C and the dictionary words. We then use the words to
compute the BoW feature to encode the fixation coordinates for
each sequence.

5. EXPERIMENTAL RESULTS

In this section, we report comprehensive evaluations of our
method on several datasets.

5.1. Dataset Description
We consider two datasets in this paper. The first one, child
dataset (Yi et al., 2015), includes three groups of children: 29
4-to 11-year-old Chinese children with ASD, 29 Chinese TD
children with matched age, and another group of 29 Chinese
TD children matched with IQ. All children with ASD were
diagnosed by experienced clinicians and met the diagnostic
criteria for autism spectrum disorder according to the DSM-
IV (American Psychiatric Association, 1980). Participants were
asked to view three Chinese faces (same-race faces) and three
Caucasian faces (the other-race faces), and try to memorize
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and recognize the faces. Note that the sensitive information
including child’s face, name, age were removed by the authors (Yi
et al., 2016) in the dataset. More details of the participants,
the material, and the experimental procedures are provided
in Yi et al. (2016).

The second one, adult dataset, focuses on adolescents and
young adults, and is a slightly cleaned up version of the dataset
used in Yi et al. (2014) and Liu et al. (2015). The dataset includes
19 ASD and 46 non-ASD young adults. As a result, the results
on the adult dataset between this paper and Liu et al. (2015) may
have certain mismatches, and are not directly comparable.

For both datasets, the eye gaze movements of each person
were recorded by a Tobii T60 eye tracker. A set of face
images 700 ∗ 500 are displayed on the screen and eye gaze of
each subject is automatically estimated, returning a series of
projected coordinates.

5.2. Evaluation Protocol
Following Liu et al. (2015, 2016), we evaluate the proposed
method by leave-one-out cross-validation testing, where each
subject is consecutively held out for testing while the rest are
used for training. By doing this each time we divide the image-
level BoW features into two sets: one for testing and the other
for training a prediction model. Following Liu et al. (2015, 2016),
we train an RBF kernel SVM as the prediction model, and
predict the test subject score as the mean over the soft SVM
prediction scores on the images viewed by each test subject.
Finally, a global threshold T is set for all testing subjects to obtain
the subject-level predictions. For the fairness of comparison, we
vary and search the hyperparameters of all comparing methods
and report the best performance. Specifically, For the proposed
method and baselines which include the k-means clustering step,
we search the number of clusters within {35, 40, 45, 50, 55,
60, 65, 70}. We also search the γ and C values in kernel SVM
for all comparing methods, by varying them as exponentials of
2. The search ranges of γ and C are set to 2−6 ∼ 20 and
26 ∼ 216, respectively.

5.3. Evaluation Benchmarks
In our experiment, we consider the following benchmarks to
quantitatively evaluate the prediction performance:
Accuracy (Acc): The number of correctly predicted subjects vs.
the total number of subjects.
Area under the curve (AUC): The total area under the ROC
curve vs. the whole area. And the ROC curve is a set of
(subject-level) true positive rates vs. false positive rates obtained
by synchronously varied the global threshold T for all testing
predictions.
Purity: To analyze the level of determinativeness of the
dictionaries learned by different methods, we also visualize the
dictionary purity profile of comparing methods.
Sensitivity: Ratio of correct true positives vs. positives.
Specificity: Ratio of correct true negatives vs. negatives.

5.4. Baselines
We compare our method with several dictionary learning
baselines that are closely related to BoW representations:

K-means. As described and reported in Liu et al. (2016).
Class k-means. K-means on both positive and negative data
separately with approximately the same number of clusters.
Mean shift. Applying the conventional mean shift (Comaniciu
and Meer, 2002) on all the data, followed by k-means
dictionary learning.
Class mean shift. mean shift on both positive and negative data
separately, followed by k-means dictionary learning.
Discmode seek. Applying discriminativemode seeking (Doersch
et al., 2013) on all the data, followed by k-means
dictionary learning.

Note that both class k-means and class mean shift can be
regarded as variants of Altintakan and Yazici (2015) where the
concept of class-aware BoW representations is adopted to our
problem. In addition, the bandwidths of density estimators in
mean shift, class mean shift, and the proposed method are
also cross-validated.

5.5. Main Results on Child Dataset
Following Liu et al. (2016), we comprehensively evaluate
the proposed method and baselines on the complete child
dataset as well as controlled scenarios where the non-ASD
group is divided into IQ-matched and age-matched groups.
We denote these two settings as “ASD—TD-IQ” and “ASD—
TD-Age,” respectively. Results of the comparing methods are
reported in Table 1, indicating that the proposed overall
performs better.

For child dataset, each child is shown with face images
from two sources: Faces from the same race (Asian) and faces
from other races (Caucasian). This is another typical setting in
psychology study to analyze the ASD behavior. Following this
setting, we subdivide our dataset into two subsets, and conduct
the same evaluation. Table 2 shows the results of the proposed
method and comparing baselines on the child dataset. One could
see that compared with other baselines, our method has the
highest accuracy (91.95%) and AUC (93.4%) on the full dataset
as well as on the same race and other race subsets. This shows
the benefit from the improved dictionary word quality using
our method.

5.6. Main Results on the Adult Dataset
Following the experimental settings of the complete child dataset,
we also evaluate the proposed method and baselines on the adult
dataset, with the results reported in Table 3. One could again
observe that our method outperforms all comparing baselines
with a sizable margin.

5.7. ROC Curves
We show the ROC curves of all the comparing methods on
both the child dataset and the adult dataset in Figure 4. In
general, an ROC curve closer to top left corner indicates the
better prediction quality of a model. This can be quantified by
the AUC score, an better reflection of the holistic ROC curve
performance than accuracy since AUC is a cumulative measure
over the entire range of thresholds. Overall, one could see that
our method (in blue color) gives the best performance in the
ASD and non-ASD classification task. The corresponding AUC
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TABLE 1 | Results on child dataset with different TD Groups.

Dataset All data ASD—TD-IQ ASD—TD-Age

Eval metric Acc AUC Acc AUC Acc AUC

K-means 88.51 89.63 86.21 88.94 84.48 85.37

Class K-means 87.36 90.79 83.91 84.74 82.76 85.38

Mean shift 89.66 92.51 87.93 88.59 87.93 88.59

Class mean shift 88.51 92.83 86.21 89.08 86.21 86.87

Disc mode seek 89.66 92.64 87.93 89.34 87.93 87.03

Proposed 91.95 93.40 89.66 90.96 87.93 87.45

Bold values indicate best performance.

TABLE 2 | Results on child dataset with different face subsets.

Dataset All data Same race Other race

Eval metric Acc AUC Acc AUC Acc AUC

K-means 88.51 89.63 81.61 82.40 90.80 94.41

Class K-means 87.36 90.79 86.21 84.13 89.66 93.40

Mean shift 89.66 92.51 85.06 86.50 90.80 93.34

Class mean shift 88.51 92.83 85.06 84.58 89.66 93.87

Disc mode seek 89.66 92.64 85.06 85.34 89.66 94.03

Proposed 91.95 93.40 87.35 86.27 90.80 94.48

Bold values indicate best performance.

TABLE 3 | Results on adult dataset.

Method Acc AUC

K-means (Liu et al., 2016) 72.31 71.51

Class K-means 73.85 66.48

Mean shift 72.31 68.97

Class mean shift 73.85 72.77

Disc mode seek 75.39 73.37

Proposed 75.39 75.06

Bold values indicate best performance.

scores are shown in both Tables 2, 3. The results show that the
AUC scores are 93.4% on the child dataset and 75.06% on the
adult dataset.

5.8. Sensitivity and Specificity
We report the sensitivity and specificity scores of all comparing
methods in Table 4, where the proposed method overall
outperforms comparing methods on both child data with
Sensitivity = 0.966 and on adult data Sensitivity = 0.316.
The high sensitivity means that our proposed method have
few false negative results, and thus fewer cases of disease are
missed. The sensitivity is very important for effective screening
program. And result shows that proposed machine learning
method would be useful for ASD early screening. We also
discuss the performance difference on child and adult dataset on
section 5.12.

5.9. Sensitivity to SVM Parameters
Although slightly different optimal configurations may apply for
different methods, we observe a general trend that all comparing
methods tend to work best around γ = 2−3 ∼ 2−4 and C =

213 ∼ 214. We also observe a clear pattern for every method that
similar top results appear with multiple combinations of γ − C
pairs: increasing γ requires decreased C. Most importantly, all
comparing methods are not sensitive to the parameters—usually
with a universal 1 ∼ 2% decrease of performance within a large
parameter range.

5.10. Dictionary Purity Analysis
To analyze the discriminativeness of the dictionaries learned
by different methods, we also compare the word purities
of different methods in Figure 5. In particular, we first sort
the dictionary words from high to low by the positive
class purity, and then plot the purity of the top ranked
words. One could see from Figure 5 that the proposed
discriminative mode seeking method tends to have higher
purities on than the others. This shows a clear evidence that the
proposed method is able to explore the desterminative during
dictionary learning.

5.11. Mode Seeking Visualization
To show how the proposed dual mode seeking works, we
visualize the shifted samples at different iterations and compare
with mean shift in Figure 6. For the results of dual mode
seeking, samples with red color indicates that their initial
location before shifting belongs to the positive domain, while
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FIGURE 4 | ROC Curves of all comparing methods. (Left) Child dataset. (Right) Adult dataset. Best viewed in color.

TABLE 4 | Sensitivity and specificity scores on child dataset and adult dataset.

Dataset Child dataset Adult dataset

Eval metric Sensitivity Specificity Sensitivity Specificity

K-means (Liu et al., 2016) 0.931 0.862 0.158 0.957

Class K-means 0.966 0.897 0.158 0.978

Mean shift 0.862 0.914 0.211 0.934

Class mean shift 0.828 0.914 0.263 0.934

Disc mode seek 0.897 0.897 0.263 0.957

Proposed 0.966 0.897 0.316 0.934

Bold values indicate best performance.

FIGURE 5 | Positive and negative purity of different dictionary learning methods on child dataset. (Left) Purity curves of positive class. (Right) Purity curves of the

negative class. Best viewed in color.

samples with blue color indicates the opposite. One could
see that dual mode seeking is able to correctly find both

the positive modes and the negative modes belonging to
different classes. However, mean shift tends to find regions
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FIGURE 6 | Visualization of traditional mean shift (top) and the proposed dual mode seeking (bottom) at different iterations. For dual mode seeking, red indicates

p̂(xi |X
+) > p̂(xi |X

−) > 0, while blue indicates p̂(xi |X
+) < p̂(xi |X

−). (Left) Visualization on child dataset. (Right) Visualization on adult dataset. Every set of four images

correspond to the visualization of shifted samples at iteration 1, 5, 10, and 30 in mean shift or the proposed method. Best viewed in color.

with densest samples without considering discriminative class
information. It is also very interesting to see that on child
Dataset, samples with higher density of negative class tend to
concentrate near eyes and the center of the face, which again
verifies the strong tendency of less direct eye contacts with
ASD children.

5.12. Performance of Child Dataset vs.
Adult Dataset
Upon comparing the overall identification accuracies on child
dataset (Table 1) and adult dataset (Table 3), one could observe
that the performance on adult dataset is not as good as the
performance on child dataset. We suspect that when viewing face
images, children’s reactions are generally more spontaneous than
those of adults. Adults having ASD may have experienced years
of clinical intervention and social training. Such intervention
can be a likely cause that makes the eye gaze patterns of
adults less discriminative from typically-developed ones. This
suspect could also be verified by comparing the visualization
of dual mode seeking on both child dataset and adult dataset.
One could find discriminative regions on the result of child
dataset, while the result on adult dataset tends to have less
discriminative regions.

6. DISCUSSIONS AND REMARKS

The Experimental results indicate that our model gives
considerable improvement over several widely used dictionary
learning methods in terms of representing the face scanning
patterns for ASD identification. On the child dataset, our method
achieves an accuracy of 91.95% and an AUC score of 93.4%.
On different subsets of the child dataset (different TD groups
and different face race subsets), our method also outperforms
different baselines. The sensitivity and specificity scores of
different methods show that our proposed method has the
highest sensitivity which may benefit early ASD screening since
fewer cases of positive will be missed. However, we notice that the

performance on the adult dataset is less promising compared to
the child dataset. The conjecture of such observation is stated in
section 5.12.

When comparing among the baselines, one could observe
a general trend that the methods based on mode seeking
(mean shift, class mean shift, discriminative mode seeking,
and the proposed method) tend to outperform k-means
based method since they generate arbitrary shaped dictionary
clusters that better capture important patterns in the feature
space. On the other hand, methods based on k-means
assume more regular shaped dictionary clusters which are
less discriminative. In addition, the connection between mode
seeking based methods and the iMap approach (Caldara
and Miellet, 2011) also partly explains the popularity of
iMap in the behavioral research community from a pattern
recognition perspective.

7. CONCLUSIONS

In this paper, we propose a novel dictionary learning method
based on discriminative mode seeking. Our method incorporates
label information and can automatically mine discriminative
dictionary words through supervised mean shift. We also give
detailed motivation, intuition, as well as links to psychology
studies for the proposed method. Our method can be extended
to other types of features as well. For example we could apply
the same dictionary learning and BoW representations to motion
features and short coordinate sequences in order to incorporate
short temporal and higher order information. In addition, the
datasets used in this work only contain with children between age
5 and 10 and adults, with the races of the viewed faces limited to
Asian and Caucasian. Including participants with a wider range
of ages (especially children), races and genders, together with
designing a more comprehensive test protocol, will help to better
mitigate the dataset biases and consolidate the psychological
discoveries. We will leave this to be addressed and studied in
future work.
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