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ABSTRACT

This paper describes the system developed by the DKU team for the
MISP Challenge 2021. We present a two-stage approach consisting
of end-to-end neural networks for the audio-visual wake word spot-
ting task. We first process audio and video data to give them a similar
structure and then train two unimodal models with unified network
architecture separately. Second, we propose a Hierarchical Modality
Aggregation (HMA) module that fuses multi-scale audio-visual in-
formation from pre-trained unimodal models. Our system has a clear
and concise framework consisting of end-to-end neural networks.
With this framework and extensive data augmentation methods, our
presented system achieves a false reject rate of 3.85% and a false
alarm rate of 3.42% on far-field audio in the development set of the
competition database, which ranks 2nd in the wake word spotting
track of the MISP challenge.

Index Terms— MISP Challenge, Audio-visual Wake Word
Spotting, Deep Neural Network, Multimodal Fusion

1. INTRODUCTION

Wake Word Spotting (WWS), also known as keyword detection, is a
task that aims at detecting the occurrences of the pre-defined wake
word in a continuous audio stream. With the rapid development of
various speech-enabled applications, WWS systems are increasingly
interested.

Traditional WWS approaches mainly rely on statistical models
(e.g., HMMs [1, 2, 3]) and Vertibi search algorithms [4] to calculate
the likelihood ratio of the wake word occurrence. Recently, many
researchers turn to focus on deep neural network based WWS sys-
tems, including convolutional neural networks [5], temporal convo-
lutional neural networks [6, 7], recurrent neural networks [8, 9], and
Transformers [10]. These methods demonstrate a large potential and
achieve better performance than traditional methods.

One difficulty in WWS applications is that the false alarm rate
often increases in complex acoustic environments (far-field audio,
background noises, and reverberations) and conversational multi-
speaker interactions with a large portion of speech overlap. There-
fore, many methods have been proposed to tackle these challenges.
Wu et al. [11] incorporate domain knowledge into network training
and improve the performance of the wake word classifier on far-field
conditions. Park et al. [12] utilize a smoothed max-pooling loss
to mitigate the inaccurate alignments by employing Large Vocabu-
lary Continuous Speech Recognition (LVSCR) in complex acoustic
environments. Furthermore, it is reasonable to tackle these prob-
lems by introducing information from additional modalities, such as
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video and text, yielding boosted robustness against various environ-
ments and speaker identities in practical applications. For instance,
Ding et al. [13] propose an audio-visual neural network based on
a multi-dimensional convolutional neural network (MCNN) to per-
form audio-visual WWS.

This paper focuses on building a straightforward but robust
audio-visual wake word spotting system in complex environments.
We first train unimodal neural networks for audio and video data in
an end-to-end manner, respectively. Next, a multimodal fusion layer
is proposed to process the embedding vectors extracted from each
unimodal branch and output the final prediction. In Task-1 of the
MISP Challenge 2021 [14], our audio-visual WWS system shows
considerable robustness in the home-living environments.

2. METHODS

This paper adopts a two-stage framework to cope with audio-visual
wake word spotting. Generally, we first investigate methods of train-
ing strong unimodal backbone models to process audio and video
signals individually. Then, we study how to fuse multimodal infor-
mation to optimize the final system.

2.1. Unimodal Models

Residual connections [15] and three-dimensional convolutional lay-
ers [16] are proven to be effective in deep learning and have been
widely used in different tasks (e.g., Video Action Recognition [17,
18, 19], Speaker Identification [20]). Hence, we choose to construct
the neural networks based on residual 3-D CNNs (ResNet-3D [21]).
To simplify the problem, we design audio and video backbone mod-
els to have the same network architecture, except that the dimensions
of model inputs are different. Table 1 describes the structure of the
backbone model.

Unlike the classical ResNet, ResNet-3D replaces 2-D convolu-
tional kernels with 3-D ones with an extra dimension T . Therefore,
some preprocessing methods for raw audio and video signals are
needed to adapt to the required shape of the model inputs. As video
data comprises consecutive images, it is easy to use the dimensions
(H,W, 3) to represent each RGB image and T to indicate the num-
ber of frames. By this method, the video inputs are organized to have
the shape of (T,H,W, 3). For audio signals, the 1-D waveforms are
firstly transformed to 2-D features in the frequency domain (e.g.,
DCT, Filter Bank, MFCC [22]). Then, we use a sliding window to
split the feature map along the time axis, and each sliced part is re-
garded as a frame-level acoustic feature with a shape of (H,W, 1).
By stacking all sliced T frames, we organize the audio inputs in the
shape of (T,H,W, 1). Finally, both audio and video inputs have the
same structure (T,H,W,C), so we can implement similar neural
network architectures for audio and video backbone models.
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Fig. 1. Proposed Framework of Hierarchical Modality Aggregation (HMA)

2.2. Hierarchical Modality Aggregation

As the signals from one modality are sensitive to disturbances in
complex environments, it is essential to take advantage of comple-
mentary information in multimodal data to build a robust system.
Therefore, we propose a hierarchical fusion mechanism to extract
audio-visual information from the pre-trained unimodal models.

Figure 1 depicts the whole framework, namely Hierarchical
Modality Aggregation (HMA). Each unimodal neural network con-
sists of several residual blocks which can output intermediate feature
maps at different levels. We apply the global average pooling to
these feature maps and concatenate the obtained embedding vectors
at the same level from two modalities. Let ct denote the concate-
nated embedding vector at level t, and ht represent the hidden
feature vector that contains the bi-modal information extracted from
previous layers no later than level t.

At the first stage, we set the initial feature vector h1 to be the
first concatenated embedding vector c1. In the following, each ht is
processed by a dimension alignment module (a linear transformation
with a sigmoid activation) to generate h′

t, which has the same shape
aligned to the next bi-modal embedding vector ct+1. Then, we ap-
ply element-wise multiplication to h′

t and ct+1 to update the hidden
feature vector from ht to ht+1. We repeat this structure to aggre-
gate the intermediate audio-visual features from unimodal models
step by step. At the last stage, the feature vector containing multi-
scale audio-visual information is fed into an MLP to make the final
prediction. This way, our proposed method can extract multimodal
information hierarchically only through a series of fully-connected
layers, and it outperforms two widely-used fusion baselines.

3. EXPERIMENTS

3.1. Database and Evaluation Metrics

The training data is from Task-1 of the 1st Multimodal Information
Based Speech Processing Challenge (MISP 2021 [14]). This compe-
tition targets the home scenarios in which people speak Chinese or
interact with smart devices while TV is playing in the living room.
In this case, a WWS system is needed to detect the wake word ”Xiao
T, Xiao T” spoken by participants.

The released database has two subsets: training set (47k+ neg-
ative samples and 5K+ positive samples) and development set (2k+
negative samples and 600+ positive samples). Moreover, an evalua-
tion set (8K +) without annotations is provided to competition par-
ticipants. The testing results (the score of WWS) can be obtained

Table 1. Structure of Backbone Model
Layer Name Parameters

Inputs −
Conv 1

!
conv 3× 3× 3, 32
pool 3× 3× 1, −

"
× 1

ResBlock 1
!
conv 3× 3× 3, 32
conv 3× 3× 3, 32

"
× 3, /2

ResBlock 2
!
conv 3× 3× 3, 64
conv 3× 3× 3, 64

"
× 3, /2

ResBlock 3
!
conv 3× 3× 3, 64
conv 3× 3× 3, 64

"
× 3, /2

ResBlock 4
!
conv 3× 3× 3, 128
conv 3× 3× 3, 128

"
× 3, /2

ResBlock 5
!
conv 3× 3× 3, 256
conv 3× 3× 3, 256

"
× 3, /2

Global Avg Pool −
Dropout p = 0.2
Linear 1 256× 32
Linear 2 32× 2

by uploading model predictions to the official competition webpage.
Each sample includes five categories of synchronous data captured
by different devices:

• 6-channel far-field microphone array

• 2-channel mid-field microphone array

• single-channel near-field microphone

• mid-field high-definition camera

• far-field wide-angle camera

In such a classification task, the positive class represents the
existence of the wake word in a given sample, and the negative
class indicates the opposite. Following the requirements of the com-
petition committee, we use False Reject Rate (FRR), False Alarm
Rate (FAR), and the Score of WWS as the evaluation criteria. Let
Nwake denote the number of samples that contain the wake word,
and Nnon wake represent the number of samples without the wake
word. The FRR and FAR are defined as follows:

FRR =
NFR

Nwake
, FAR =

NFA

Nnon wake
(1)

where NFR denotes the number of samples containing the wake
word while not recognized by the system. NFA denotes the num-



ber of samples containing no wake words while predicted to be pos-
itive by the system. Hence, the final score of Wake Word Spotting
(WWS) is defined as:

ScoreWWS = FRR+ FAR (2)

3.2. Audio Backbone Model

3.2.1. Preprocessing

To fit the required inputs of the audio backbone model, we reshape
each audio clip to (T,H,W,C).

• The raw signal is converted into a 2-D spectral feature map
by Filter Bank (implemented in the Torchaudio toolkit [23])
with a filter number of 80, a frame length of 25 ms, and a
frameshift of 10 ms.

• The full feature map is split into a series of frame-level blocks
by a sliding window along the time axis. The window size is
set to 80 with a stride of 4. Then, we stack all sliced fea-
ture blocks consecutively to obtain the data with a shape of
(T, 80, 80, 1)

• In our experiments, the T is set to the constant (64). We uti-
lize the random clipping or zero padding techniques for each
sample to give it a fixed block number. Thus, the shape of
each audio sample becomes (64, 80, 80, 1).

• Before being fed into a neural network, each sample should
be standardized to have a mean of 0 and a standard deviation
of 1.

3.2.2. Data Augmentation

From the perspective of data augmentation, we assemble a set of
transformations based on sox effects. The audio sample could ran-
domly undergo the following procedures with a probability of 0.5.

• Each audio is randomly selected to change its tempo or vol-
ume. The tempo variation is in the range [0.9, 1.1], and the
volume changes in the range [0, 20].

• Each audio is randomly selected to change its speed to be-
come faster or slower, with the ratio in the range [0.8, 1.2].

• For samples with more than T feature blocks (described in
Section 3.2.1), we utilize a clipping method that chooses a
random portion from the original sequence.

3.2.3. Ablation Experiments

We train the audio backbone model with the Adam optimizer, utiliz-
ing an initial learning rate of 0.001. To tackle the imbalance between
positive and negative samples, we adopt the weighted CrossEntropy
Loss (negative:positive=1:5) with the label smoothing method [24].

Table 2 shows the experimental results of the audio backbone
model. The baseline represents the model trained without any extra
tricks. In addition, we introduce considerable data augmentation that
brings a significant performance improvement. Furthermore, we im-
plement beamforming (MVDR [25]) to multi-channel audio signals
to exhaust the potential of microphone arrays. Instead of single-
channel audio, incorporating beamforming-enhanced audio samples
into the training data can improve the performance further.

Table 2. Experimental results of the audio backbone model. DA and
BF represent the data augmentation and beamforming preprocess,
respectively. The symbol + denotes the cumulative addition of the
current method based on the above ones, and ∗ indicates the best
model tested on the evaluation set.

Method Field Dev (%) Eval (%)
FRR FAR Score Score

Baseline
Near 0.96 1.78 2.74 -
Mid 3.37 5.24 8.61 -
Far 9.77 6.83 16.61 18.7

+ DA
Near 1.92 1.64 3.56 -
Mid 3.37 4.67 8.04 -
Far 8.17 5.34 13.51 15.8

+ BF∗
Near 1.12 1.87 2.99 -
Mid 2.56 5.39 7.95 -
Far 6.41 6.01 12.42 12.2

3.3. Video Backbone Model

3.3.1. Preprocessing

This work considers only lip regions of the videos as model inputs
instead of full faces. Similar to the audio backbone model, there are
multiple steps for transforming raw videos to lip-region videos in the
shape of (T,H,W,C).

• The face detector (RetinaFace [26]) extracts all face images
and the corresponding 5 facial landmarks in each video.

• We assume that a talking face will not move dramatically in a
short time window. Based on the sequential coordinates of the
detected faces, the K-means algorithm in Scikit-learn toolkit
[27] is used to cluster faces of the same person in one given
video.

• The far-field wide-angle video may contain multiple peo-
ple while only one is the target speaker. We deploy a face
recognizer (ArcFace [28]) to select the target speakers from
pairwise mid-field videos that only have one identity in each
video.

After obtaining the facial images of each target speaker, we crop
the lip regions based on the detected facial landmarks. Let p1, p2,
and p3 represent coordinates of the detected nose, left corner of
mouth and right corner of mouth, respectively. The Region of In-
terest (RoI) bounding box is defined as:

xcenter, ycenter =
p2 + p3

2
(3)

width = min {3.2× dMN , 2×max {dMN , dp1p2}} (4)

where dp1p2 denotes the distance between p1 and p2, and dMN

denotes the euclidean distance between p1 and the box center. This
formula is an empirical setting introduced in a lip-reading database
(CAS-VSR-W1k [29]), which is a widely used protocol.

Each extracted lip-region video is resized to have a resolution of
112×112 with 3 RGB channels. The dimension T is set to 64, which
means each video is sampled to contain 64 frames. Therefore, the
shape of the video sample becomes (64, 112, 112, 3). Lastly, each
video is normalized to be within the range of [0, 1].



3.3.2. Data Augmentation

We also use some video-based data augmentation techniques. The
video sample could randomly undergo the following procedures with
a probability of 0.5.

• Each video is randomly selected to change its playing speed
(FPS) by adding or removing some redundant frames. The
scale of speed variation is in the range [0.75, 1.25].

• Each video is randomly selected to take a frame-wise rotation
with an angle in the range [1, 15].

• Each video is randomly selected to be flipped horizontally
(frame by frame). Moreover, the frame-level cropping is im-
plemented with the random scale within [0.8, 1].

• Each video is randomly selected to have a color transfor-
mation in terms of contrast, brightness, and saturation. Be-
sides, each video has a probability of 0.2 to be converted to a
grayscale one.

3.3.3. Ablation Experiments

For the video backbone model, we employ the same basic settings
for model training as the audio backbone model. Table 3 shows the
experimental results of the video backbone model. The baseline rep-
resents the model trained without any extra tricks. When adding the
described video data augmentations, the generalization capability of
the trained model is enhanced. Last but not least, we also pre-train
the backbone model on a lip-reading database named CAS-VSR-
W1k database [29] and have it fine-tuned on the MISP database with
the above training setup. It is found that the pre-training further im-
proves the model performance on the evaluation set.

3.4. Multimodal Fusion

3.4.1. Preprocessing and Data Augmentation

Since the multimodal model takes both audio and video data as in-
puts, the described data processing and augmentation methods for
audio and video are still workable. This part introduces two addi-
tional data augmentation methods specified for the fusion stage.

• Paired audio and video do not necessarily come from the
same field. For instance, the far-field audio (from different
channels) and mid-field video can be joined to make a new
training sample.

• Paired audio and video do not necessarily come from the
same identity. The audio and video samples can be paired
to be fed into the model as long as they belong to the same
category.

3.4.2. Ablation Experiments

We again adopt the same training setup as the previous models. Ta-
ble 4 shows the performances of fusion-based models. First, we im-
plement the late fusion method by simply averaging the score-level
predictions from two unimodal models. Furthermore, we test the
early fusion method, which means two unimodal models are con-
catenated at the intermediate feature vectors and followed by a se-
ries of fully-connected layers. Finally, it is found that our proposed
Hierarchical Modality Aggregation (HMA) method obtains the best
performance in mid-field and far-field cases and the highest score on
the evaluation set.

Table 3. Experimental results of the video backbone model. DA
represents the data augmentation.The symbol + denotes the cumu-
lative addition of the current method based on the above ones, and ∗
indicates the best model tested on the evaluation set.

Method Field Dev (%) Eval (%)
FRR FAR Score Score

Baseline Mid 9.13 10.44 19.57 -
Far 15.06 13.66 28.72 29.0

+ DA Mid 6.41 4.81 11.22 -
Far 8.81 8.71 17.52 26.4

+ Pre-train∗ Mid 4.81 8.32 13.13 -
Far 8.65 8.41 17.06 21.7

Table 4. Experimental results of the multimodal fusion. LF and EF
represent the Late Fusion method and Early Fusion method, respec-
tively. Due to the lack of near-field videos, each near-field audio is
tested by pairing with its corresponding mid-field video.

Method Field Dev (%) Eval (%)
FRR FAR Score Score

LF Near 1.92 9.48 11.40
Mid 0.16 9.67 9.83 -
Far 1.92 9.48 11.4 11.8

EF Near 1.12 1.06 2.18
Mid 0.48 3.03 3.51 -
Far 4.01 4.09 8.1 8.3

Ours Near 0.8 1.25 2.05
Mid 0.64 2.74 3.38 -
Far 3.85 3.42 7.27 7.1

4. CONCLUSION

This paper presents the audio-visual wake word spotting system de-
veloped by the DKU team for the MISP Challenge 2021. We design
an end-to-end neural network based system free from tedious front-
end preprocessing and feature extractions, whose unimodal back-
bone networks consist of 3-D convolutional layers with residual con-
nections. Moreover, we propose a concise framework to hierarchi-
cally extract and fuse multi-scale multimodal information to boost
our system’s robustness against the noise in home-living scenarios.
In the end, our proposed system obtains a false reject rate of 3.85%
and a false alarm rate of 3.42% on the far-field development set of
the MISP database as well as the WWS score of 7.1% on the evalu-
ation set.
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