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Abstract—Alcohol intoxication can affect people both phys-
ically and psychologically, and one’s speech will also become
different. However, detecting the intoxicated state from the speech
is a challenging task. In this paper, we first implement the
baseline model with ComParE feature and then explore the
influence of the speaker information on the intoxication detection
task. Besides, we apply a ResNet18 based model to this task.
The model contains three parts: a representation learning sub-
network with Deep Residual Neural Network(ResNet) of 18-layer,
a global average pooling(GAP) layer and a classifier of 2 fully con-
nected layers. Since we cannot perform speaker z-normalization
on the variant-length feature input, we employ the batch z-
normalization to train the proposed model. It also achieves
similar improvement like applying the speaker normalization
to the baseline method. Experimental results show that speaker
normalization on baseline model and batch z-normalization on
ResNet18 based model provides 4.9% and 3.8% improvement
respectively. The results show that speaker normalization can
improve the performance of both the baseline model and the
proposed model.
Index Terms: intoxicated speech detection, Convolutional
Neural Network, computational paralinguistics

I. INTRODUCTION

One of the major causes of traffic accidents is alcoholic
intoxication. Currently, the known methods to detect the
alcoholic state are measuring the breath alcohol concentra-
tion(BrAC) and the blood alcohol concentration(BAC). In
fact, alcohol can affect one’s cognitive and motor function
in various ways, leading to obvious changes in behavior.
Alcohol has long-term cognitive effects and impairs one’s
information processing even during decreasing blood-alcohol
concentration[1]. These impairment can be reflected in several
aspects: vision[2], hand-writing[3, 4] and speech[5].

There are several investigations on how alcohol can affect
one’s speech. When under the influence of alcohol, people’s
speech have more filled pauses compared to speech in a sober
condition, which means that disfluency events occur in the
intoxicated speech more frequently[6]. The accuracy of GMM-
UBM speaker recognition(SR) system also degrades when the
database contains the intoxicated data[7]. Compared to the
baseline SR system without alcohol intoxication, the results
indicate a generally negative influence of alcohol intoxication.
Additionally, alcohol intoxication can affect one’s speaking
fundamental frequency(F0). In [8–10] a notable increase in
average f0 with intoxication is found, whereas a decrease is
reported in [11, 12].

As knowing the effects of alcohol on speech, some listening
experiments are proposed to recognize the intoxicated speech
manually. Pisoni et al.[13] perform an experiment that college
students and State Troopers hear 192 sentences from 8 talkers.
The mean accuracy across all of the sentences was 61.5%
for the college students, and 64.7% for the State Troopers.
The BAC level can affect recognition accuracy significantly.
Klingholz et al.[14] shows that when the BAC exceeds 1.0 per
mill, the recognition rate can achieve a maximum of 82.0%.
When the BAC is lower than 1.0 per mill, however, the accu-
racy decrease to 54.0%. Recently, Baumeister and Schiel’s[15]
experiments show that the average overall performance of
the listeners on ALC dataset is 61.8%. Since these human
performance experiments can achieve a higher recognition
rate than chance, the machine learning methods may also be
applied to intoxication detection, as other paralinguistic tasks
such as fatigue detection.

In the INTERSPEECH 2011 Speaker State Challenge[16],
the unweighted accuracy(UA) of official baseline in the In-
toxication Sub-Challenge is 65.9% on the test set. Bone et
al.[17] perform global and iterative speaker normalization on
the feature and finally achieve the UA of 70.54%, which is
an improvement of 4.64% absolute over the baseline model.
They also refine their work in 2014 and finally achieve the
UA of 71.4% on the test set[18].

Since the speaker normalization is so robust and signifi-
cantly improve the performance of intoxicated speech detec-
tion task, we also propose a batch level speaker normalization
method with a residual neural network(ResNet). The experi-
ment results show that using speaker normalization improve
the performance of both the baseline system and the proposed
system.

The rest of our paper is organized as follows. Section 2
describes the information of Alcohol language corpus dataset.
Section 3 is our proposed method. Experiments and results are
presented in Section 4. Section 5 is the conclusion.

II. METHOD

In this section, we introduce our baseline system using
ComParE acoustic feature set followed by the SVM. Besides,
we propose a deep neural network system applying ResNet as
pattern extractor on ALC dataset.
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Fig. 1. Architecture of proposed model with batch z-normalization

A. ComParE Baseline

The baseline system is based on the recent ComParE
challenge[19], using the Support Vector Machines (SVM) with
the linear kernel as the classifier.

We employ the ComParE acoustic feature set for the base-
line system. This feature set is the official baseline feature
which has been used in ComParE Challenge since 2013[20].
It contains 6373 static features which are generated by various
functionals on low-level descriptors (LLDs). Features like
voice quality features, F0, energy, cepstral, spectral, HNR
(logarithmic harmonic-to-noise ratio) are included in the set.
We extract the feature set and LLDs with the OPENSMILE
toolkit[21, 22].

Practically, we scale the features to zero mean and unit
standard deviation within all data and apply the linear Support
Vector Classification (linearSVC) to the intoxication detection
task. Additionally, speaker normalization has been proved to
be robust on this task [17, 18]. Differences between speakers
could affect the detection of intoxication. Intuitively, elimi-
nating the speaker information would help improve accuracy.
Therefore, we also perform speaker normalization on both
training and testing data, which means that the z-normalization
is applied to the features within each speaker.

B. ResNet based framework

ResNet has been proved efficient on image classification
task [23]. The network learns with the reference of the
information from each input layer. With this structure, the
model can be easier to optimize.

In recent years, Cai et al.[24, 25] apply ResNet to the
areas of speaker verification and language identification task
and achieve a much more favorable performance than the
traditional methods. In many paralinguistic speech attribute
recognition tasks, ResNet is also widely applied to learn the
attributes.

In the light of previous works, we adopt ResNet as our
deep pattern extractor. Our proposed network architecture is
illustrated in Fig 1. In this section, we introduce our framework
as follows.

1) Frame-level feature extraction: First, we extract frame-
level spectral features from raw wavform using STFT as well
as other hand-crafted filters. The shape of the output feature is
D × T , where D means the dimension on the frequency axis

and T denotes the number of frames. The filter bank is used
as our input feature here.

2) CNN representations: We use ResNet structure acting as
a local pattern extractor to fetch the abstract representations
of the frame-level features. The shape of feature matrix D×T
is then transformed into C × H ×W . C, H and W denote
the number of channels, the height, and width of the ResNet
feature maps.

3) Utterance-level embedding extraction: Since the audio
signals are variable, the shapes of output CNN representations
are not constant. We need to further extract a fixed size features
for the back end classifier. To achieve this goal, we adopt the
Global Average Pooling (GAP) layer on top of the ResNet
structure. The GAP layer accumulates the statistics by taking
the means along with the time-frequency axis. Given an output
feature map F with a size of C×H ×W , the process can be
formulated as:

uk =
1

H ×W
×

i=1∑
H

j=1∑
W

Fi,j,k (1)

With the GAP layer, we can get an utterance-level feature
u = [u1, u2, . . . , uC ] for each sample.

In the training stage, the input frame-level features are fed
into the ResNet with different sizes of batches. Truncating and
padding are applied to ensure every input feature in a batch
is in the same size. In the evaluation stage, we directly input
the frame-level features to the network to obtain fixed size
utterance-level representations.

4) DNN classifier: We construct a two fully-connected
layer structure as our back end classifier. The two output
units of the final layer represent alcoholised(A) and non-
alcoholised(NA). Through this classifier, we can finally obtain
the decisions from the network.

C. Batch z-normalization

Z-normalization, also known as “Normalization to Zero
Mean and Unit of Standard Deviation”, is defined as:

x
′

i =
xi − µ

σ
(2)

where xi denotes the feature of each dimension.
Since ComParE feature set has a constant length of 6373,

we can easily apply speaker normalization to this feature.



However, when training a neural network, the length of the
feature is different, and the content in each utterance is also
distinct. To reduce the influence of speaker information, we
perform z-normalization after the GAP layers, but it also
means that the data in one batch must belong to the same
speaker, as shown in Fig 1.

Although the batch z-normalization can reduce the speaker
information, it means that in each batch the training data
should be extracted from the same speaker. In the testing
step, we should also know the speaker label, but sometimes
the speaker labels are unknown. Therefore, we employ the
clustering method to predict the speaker label for testing data.

III. EXPERIMENTS AND RESULTS

A. Dataset Description

Alcohol language corpus(ALC) comprises intoxicated and
sober speech of 162 German speakers(84 male and 78 female)
within the age range 21 to 75[26, 27]. The type of speech
ranges from reading single digits to full conversation style, and
the level of intoxication was measured by BAC or BrAC before
the speech record. Each recording contains several speech
items: monologues, dialogues, numbers, command&control,
addresses, and tongue twisters.

Speakers can choose the BAC he/she wanted to reach during
the intoxication test. After consuming the alcohol, the actual
level of intoxication was measured by breath alcohol, and
blood samples were taken immediately before the speech
recording. If the breath alcohol concentration is above 0.05%,
the participant is eligible for the speech test, and his/her
recordings can be labeled as alcoholished(A). Then, at least
one week later, the speaker is recorded again, and his/her
recordings will be labeled as non-alcoholished(NA). Mean-
while, the information of each speaker, such as gender, age,
and weight, was also documented for the additional research
and investigation.

In our experiment, we only use the data in BLOCK 10
to 40. BLOCK10 and BLOCK30 are intoxicated data, and
BLOCK20 and BLOCK40 are sober data. Since some speakers
with small BAC are also grouped to intoxication, we label
speakers with BAC equal or below 0.5 per mill to non-
alcoholised(NA) and those with BAC exceeding 0.5 per mill to
alcoholised(A), which is the same as the setup of Intoxication
Sub-Challenge in 2011[16].

B. Data preprocessing

All waves in ALC are 44100 Hz and too long for paralin-
guistic tasks. We first downsample audio files to 16000 Hz
and apply voice activity detection(VAD) to the downsampled
audio. Then, we randomly split all wav to shorter utter-
ances(duration: 3.50 ± 1.48) and drop the original utterances
shorter than 2 seconds, finally producing 29267 utterances
from 162 speakers. For our experiments, we randomly picked
22758 utterances from 132 speakers for training and 6509
utterances from 30 speakers for testing. After preprocessing,
we can obtain 20372 non-alcoholished(NA) utterance and
8895 alcoholished(A) utterance.

TABLE I
THE DETAILED NETWORK STRUCTURE OF OUR RESNET18 BASED

NETWORK

Layer Input size Output size Structure

Conv1 1× 64× L 16× 64× L 3× 3, stride 1

Res1 16× 64× L 16× 64× L block × 2

Res2 16× 64× L 32× 32× L
2

block × 2

Res3 32× 32× L
2

64× 16× L
4

block × 2

Res4 64× 16× L
4

128× 8× L
8

block × 2

GAP 128× 8× L
8

128 pooling

z-norm 128 128 z-normalization

FC 128 64 fully-connected

Output 64 2 fully-connected

The acoustic feature is filter-bank of 64 dimensions with
25ms frame length and 10 frame shift; then an utterance level
mean subtraction is applied to all feature.

C. Baseline method

The description of the baseline feature is in Section 3.1,
which is a 6373-dimensional feature set. We train several
linearSVC models on the training data and test on the testing
data, producing three baseline due to different data processing.

For baseline 1, we scale the training data with the MIN-
MAXSCALER of SCIKIT-LEARN[28] and use the parame-
ters from the training set to scale the testing data.

For baseline 2, we perform the z-normalization for each
speaker on both training and testing data.

However, in most situation, we do not know the information
about the speakers. Therefore, for baseline 3, we extract
the i-vector of each utterance in testing data with a pre-
trained GMM-UBM based speaker recognition system, which
is trained on the voxceleb[29] with kaldi toolkit[30]. Then
we perform the L2-normalization on all i-vector and employ
the spectral clustering on testing data to obtain the clustered
speaker label. Therefore we can perform the z-normalization
again on training and testing data even though we do not know
the speaker label of testing data.

D. Proposed method

There are also three ResNet models due to different data
processing. In our experiment, we use ResNet18 for training.
The detailed network structure is in Table I and Fig 1.

For the first proposed method without the speaker normal-
ization, we can randomly select data from 132 speakers for
training and test each utterance from 30 speakers, as mentioned
in Section 4.1.

For the second proposed method that uses the true speaker
label for speaker normalization, we have to pick up the data
from the same speaker for training each batch and perform
the batch z-normalization as speaker normalization. Also, the
testing data have to be grouped by the speaker label; then we
test each group with batch z-normalization.

For the third proposed method that uses the spectral clus-
tered label for speaker normalization, the setup of the training



TABLE II
UAR OF EACH METHOD

System UAR

baseline 1(without normalization) 0.616
baseline 2(with speaker normalization) 0.669
baseline 3(with spectral clustering
and speaker normalization) 0.665

ResNet(without normalization) 0.633
ResNet(with batch z-normalization) 0.677
ResNet(with spectral clustering
and batch z-normalization) 0.671

step does not change. For the testing step, the only difference is
that we grouped the data by the label from spectral clustering.

E. Results

The metric we use in out experiments is unweighted average
recall(UAR). The recall of each class is defined as:

recall =
1

T

T∑
t=1

TP [t]

TP [t] + FN [t]
(3)

where T is the number of samples and TP, FP, and FN denote
true positive, false positive, and false negative, respectively.
Then UAR can be calculated by:

UAR =

∑n
i=1 ri
n

(4)

where n is the number of class and ri is the recall of each
class.

The results in Table II shows that the UAR of baseline 1
and baseline 2 are 0.616 and 0.669, respectively. The baseline
3, which speaker labels on testing data are given by the result
of spectral clustering, achieves the UAR of 0.665. The UAR of
baseline 2 and baseline 3 are better than the UAR of baseline
1, and it is a surprise to see that the UAR of baseline 2 and
baseline 3 are very similar. The result shows that even we
do not know the speaker label of testing data, the speaker
normalization using clustering result as the label can also
contribute to the intoxication detection task.

For the proposed method, we train each network for 50
epochs, and the result is the mean of 3 times training. If we do
not perform speaker normalization on the network, the UAR is
only 0.633. When performing the batch z-normalization with
true speaker label, the UAR increase to 0.677. In addition,
when given the speaker label from clustering, the performance
also improves and the UAR is 0.671. All results show that
the proposed methods perform better than baseline, and the
improvement on both the baseline and the proposed methods
prove that speaker normalization can improve the accuracy of
intoxication detection task.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a ResNet based model for intox-
ication detection task. First, the model can receive variant-
length acoustic feature and produce a time-invariant deep

embedding feature for the last two fully-connected layers
to classify. Second, batch z-normalization is proposed. The
results show that ResNet with batch z-normalization achieve
a similar improvement as the baseline method with speaker
normalization. The improvement of batch z-normalization on
the proposed model shows that the embeddings after the TAP
layer still contain some speaker information, even though the
model is used for classifying the intoxicated state. After batch
z-normalization, the speaker information decreases, thus we
can obtain a better performance.Third, we extract the i-vector
and use the spectral clustering predicted label as the speaker
label. Both the baseline and proposed methods do not degrade
too much. All the results show that speaker information is an
essential factor to be considered in the intoxication detection
task.

In the future, we will further investigate the influence of
speaker information on intoxication detection and explore the
speaker normalization in an end-to-end framework.
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