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Abstract
Autism Spectrum Disorders (ASD), a neurodevelopmental dis-
ability, has become one of the high incidence diseases among
children. Studies indicate that early diagnosis and intervention
treatments help to achieving positive longitudinal outcomes. In
this paper, we focus on the speech abnormalities of young chil-
dren with ASD and present an automated assessment frame-
work to assist clinicians in quantifying atypical prosody related
to ASD. First, we use the openSmile toolkit to extract utterance
level large dimensional acoustic features followed by a support
vector machine (SVM) backend as the conventional baseline.
Second, we propose several end-to-end deep neural network se-
tups and configurations to model the atypical prosody label di-
rectly from the speech spectrogram. Third, we fuse the deep
learning framework with the conventional baseline at the score
level to further improve the system performance. We collect a
database of spontaneous speech recorded during the Autism Di-
agnostic Observation Schedule (ADOS) Modules 2 tasks. This
database consists of 70 children and 58 of them are diagnosed
as ASD with different severity. Experimental results on this
database show that our proposed methods can effectively pre-
dict the atypical prosody score for young children with the risk
of ASD.
Index Terms: atypical prosody, deep learning, autism spectrum
disorder, recurrent neural network

1. Introduction
Autism Spectrum Disorders (ASD) refers to a group of symp-
toms related to social impairments and communication difficul-
ties. It has become one of the high incidence diseases among
children. The latest analysis from the Centers for Disease Con-
trol and Prevention estimates that 1 in 68 children has ASD in
the United States [1]. Early behavioral/educational interven-
tions have been proved to be very successful in many clinical
studies. This attaches great significance to the recognition of
common ASD signs and make a diagnosis at the early stage.

In paralinguistics, prosody relates to several communicative
functions such as intonation, tone, pitch, stress, and rhythm.
Prosody can reflect many important elements of language in-
cluding the emphasis, contrast and affective state of the speaker
[2]. These are all critical information in human communication.
Nevertheless, speech abnormalities, or say atypical prosody is
one of the common symptoms reported for ASD. Specifically,
children with ASD may speak in flat, robot-like or a sing-song
voice, which is an important sign the clinicians should consider
during the diagnosis.

The Autism Diagnostic Observation Schedule (ADOS) is
a standard instrument to help clinicians observe children’s lan-

guages and behaviors relevant to the diagnosis of autism. It
consists of a series of structured and semi-structured tasks as-
sessing social interaction, communication, play, and imagina-
tive use of materials [3]. There are four modules designed to
be performed according to subject’s language capability. More-
over, speech abnormality is an observation item listed in all the
modules. The ADOS screening provides a code to quantify this
item on an integer scale from ’0’ to ’2’, with ’0’ representing ap-
propriate prosody; ’1’ standing for some changes on pitch/tone,
a bit flat/exaggerate intonation, slightly abnormal volume, a lit-
tle slow/fast/jerky rhythm; ’2’ designating markedly and con-
sistently abnormalities on the aforementioned aspects.

In the ADOS screening, therapist identifies subject’s atyp-
ical prosody level and gives a code. As many research and
treatment methods in the psychology field, this kind of evalua-
tion or diagnosis requires experienced experts or clinicians with
intensive specialized training. Another problem is the subjec-
tive disagreements between clinicians, which makes the results
become ambiguous. Researchers have proposed strategies to
utilize signal processing techniques to support clinicians with
quantitative analysis [4, 5, 6] of ASD children’s prosody. How-
ever, their experiments mainly focus on children and adoles-
cents with higher ages and better language capabilities under the
ADOS Module 3 setup. Furthermore, since pattern recognition
and machine learning methods have presented promising per-
formance in modeling behavior symptom and relationship with
expert’s experience [7, 8], some automated screening and eval-
uating tools based on the objective features extracted directly
from recording are proposed [9, 10]. These automated coding
tools showed potential to be scalable and assist clinicians to an-
alyze the variation trend of a specific symptom during long term
tracking assessments.

In this paper, we focus on the speech abnormalities and
present an automated assessment framework to distinguish the
severity level of atypical prosody for young children under the
ADOS Module 2 setup. Specifically, we model the speech
abnormalities using both the traditional strategy and the deep
learning framework. We demonstrate that the end-to-end tech-
niques can achieve similar performance against the baseline
system even on a small-scale dataset. Since we directly model
the ASD related atypical prosody code from the spectrograms
in the end-to-end approach, there is no prior in-domain knowl-
edge required for feature engineering. Moreover, the fusion of
the two systems can further improve the overall system perfor-
mance in terms of the unweighted average recall (UAR). This
result shows that the end-to-end framework has great potential
in the field of behavior signal processing (BSP) [11]. We also
investigate the cutoff boundary of the code 0/1/2 by merging
0/1 or 1/2 as a new code. Classification results indicate that our



Table 1: Demographic statistics ADOS module 2.

Items Count/Statistics

Age(months) Range: 26-125, Mean: 56.31
Gender Male: 60, Female: 10
Language Mandarin: 65, Cantonese: 5
Atypical code(subjects) ’0’: 12, ’1’: 25, ’2’: 33
Diagnosis Autism: 48, ASD: 9, below ASD cutoffs: 13

algorithms are more confident to identify normal prosody from
abnormal prosody, which matches with the clinicians that the
boundary between slightly and serious abnormal is not so clear.

The rest of this paper is organized as follows. Section 2 de-
scribes our data corpus. Section 3 presents the specific methods
of our two different systems. Experimental setup and results are
provided in Section 4. Section 5 presents the conclusions and
our future works.

2. Dataset Description
We perform experiments on our in-house collected dataset. Our
audio database is collected in the real ADOS module 2 screen-
ing environment. As you can observe from Figure 1, our mul-
timodal behavior signal capture system is equipped with multi-
ple HD cameras and Kinect sensor to capture vision data while
child-psychologist interactions are conducting. As for audio
data, every participant wears a recording device (presented in
Figure 1) to collect the multi-channel audio data. By doing
this, we can obtain both child’s and clinician’s speech with high
quality and purity comparing to the single channel recording
method. The data collection is approved by the children’s fam-
ily, the institutional review board (IRB) of the hospital and the
university.

There are many spontaneous child-clinician interactions
during the ADOS screening with different sub-tasks. Since we
intend to focus on the speech abnormalities of ASD children, we
extract a subset from the ADOS sessions. For ADOS module
2, we select ”Demonstration Task”, ”Description of a Picture”,
”Telling a Story From a Book” and ”Birthday Party” these four
tasks. They are either designed to observe children’s sponta-
neous and expressive language capabilities or contain a large
proportion of speech conversations.

The demographic statistics of our database are showed in
Table 1. For module 2, our dataset contains 70 children with
13 of them below the ASD cut-off point. However, a few ASD
children can still have normal prosody and some normal chil-
dren may also have atypical prosody. Our focus is to predict the
atypical prosody code rather than the ASD label.

Figure 1: Data collecting environment and recording device.

3. Method
The baseline system is implemented using the OpenSmile fea-
ture extractor followed by a Support Vector Machine (SVM)
paradigm. Our end-to-end deep learning framework uses the
spectrograms information as the input, and does supervised
learning through neural networks. Section 2.2 and 2.3 introduce
these two systems in detail, respectively.

3.1. Multi-channel Speaker Diarization

Our database is collected using several recording devices car-
ried by each participant. Hence, the corpus contains multi-
channel time synchronized audio data. In order to obtain each
participant’s clean speech, we need to preprocess the data us-
ing multi-channel speaker diarization techniques. In this sce-
nario, each speaker’s voice is loudest on their own microphone.
As a result, the energetic difference between primary speech
and secondary speech is an available characteristic [12]. In
practice, we use the time-synchronized energy measurements
across channels to remove most secondary speech. Next, we
apply the children-customized single channel speaker diariza-
tion technique [13] to further purify the speech.

3.2. Baseline System

The baseline features are extracted using openSMILE, which is
a popular open-source toolkit for extracting large-dimensional
acoustic and prosodic features. We use the ”IS10avic.conf” as
the configuration file. This file is designed for Interspeech 2010
paralinguistics challenge [14] and the feature set contains 1584
utterance level features including pitch, loudness, jitter, MFCC,
MFB, LSP and statistical functionals.

We adopted SVM with linear kernels to train the supervised
classification model. SVM is efficient and can achieve satis-
fying performance in many applications with limited training
data. As a result, we use it to represent the baseline and make a
comparison with the deep learning framework.

3.3. End-to-end Framework

The existing acoustic features are basically proposed according
to human perception and experience. These features may not
capture the optimal discriminative information among all clas-
sification tasks. In recent years, the deep learning method has
been proved to be quite successful in acoustic modeling and au-
dio classification. As a result, we intend to apply the end-to-end
framework on our ASD related atypical prosody classification
task.

3.3.1. Perception Aware Spectrograms

It seems spectrograms are the standard way to represent audio
for deep learning systems [15, 16]. For training the network, we
extract the spectrogram from audio data as the network input.

We test two different spectrograms. The first one is the tra-
ditional short-time Fourier transform (STFT) spectrogram. The
second one is the constant Q transform (CQT) spectrogram [17].
It is initially proposed in the field of music processing. Different
from STFT, CQT ensures a constant Q factor across the entire
spectrum. This change can bring a benefit for processing human
speech, which is a higher frequency resolution at lower frequen-
cies and a higher temporal resolution at higher frequencies.



Table 2: Deep learning network configurations (conv: convolu-
tional layer).

Network Detail

Combine CNN and RNN

conv1: 16 7×7 kernels, 1 stride
conv2: 32 5×5 kernels, 1 stride
conv3: 32 3×3 kernels, 1 stride
pooling: 3×3 pool, 2×1 stride
GRU: 500 hidden units
Classification layer

RNN
GRU with 500 hidden units
GRU with 500 hidden units
Classification layer

3.3.2. Deep Neural Networks

In order to learn the discriminative feature automatically, we
test several network setups including convolutional neural net-
work (CNN), recurrent neural networks (RNN) and the com-
bination of them. However, experimental results show that a
single CNN cannot work well on our dataset which might due
to the dynamic nature of prosody, so we only describe the other
two setups.

The combination of CNN and RNN shows great poten-
tial recently in speech application such as speech recognition
[18] and speech verification [19]. Since the system input is
STFT/CQT spectrogram, CNN can serve as the feature extrac-
tion tool, and the output is then fed forward into a RNN. In our
system, the 2-D spectrogram is extended to a 3-D tensor with
multiple channels (also known as feature maps) after several
convolution and pooling layers. Then we run a single gated re-
current unit (GRU) layer on 2D slices of that 3-D tensor along
the time axis [20]. We also attempt to run separate GRUs on
each channel, and these GRUs may share or not share weights.
Experimental results demonstrate that a single GRU works bet-
ter than multiple GRUs on our dataset which might due to the
lack of training data . After that, the outputs of GRU are fed to
a fully connected layer.

Another setup with good performance is the RNN itself.
The 2-D spectrogram contains a sequence of column vectors
along the time axis. We apply two layers of GRU cells on these
sequence to learn discriminative information. Table 2 presents
the detail of our network configurations.

4. Experimental Results
In this part, we will compare the classification results between
the openSMILE+SVM baseline system and our proposed end-
to-end framework. Besides the 0/1/2 three categories classi-
fication, we also investigate the cutoff boundary of the code
by performing two categories classification. Both STFT/CQT
spectrograms are evaluated as the network input.

For module 2, our dataset contains 70 children. In order to
train the classification model and test the system performance,
we separate them with 45 in training set and 25 in testing set
(no person overlap). Both set have the similar 0/1/2 code distri-
bution.

4.1. Evaluation Measure

The evaluation measure for our classification task is the un-
weighted average recall (UAR). UAR is defined as follows

where n is the number of classes.

UAR =
1

n
Σn

i=1
Nprediction=i

Nlabel=i
(1)

The reason to apply unweighted rather than weighted aver-
age recall (i.e. accuracy) is that our dataset has relatively un-
balanced distribution among different classes. UAR is more re-
liable and meaningful for this kind of tasks. We use the 0/1/2
code given by clinician as the ground truth label.

4.2. Three Categories Classification

There are 45 children in the training set, and the average audio
length for each child after voice activity detection and multi-
channel diarization is 135 seconds. In order to increase the
number of training instances, we split each recording to a group
of 3 seconds long short segments. The time shift between each
segment can be tuned to further augment training set and bal-
ance the category distribution. For the three categories classifi-
cation, we have 8832 segments in training set and each has 80%
overlaps with the previous segment. This means five times data
augmentation. Testing set contains 629 segments without inner
overlap.

The baseline system takes the 1584 dimensional feature
vector as the input and predict the category for each utterance.
Neural network processes the 256186 STFT spectrogram or
863352 CQT spectrogram and predict categories as well. As
you can see from Figure 3, SVM achieves the highest UAR 50%
(by chance 33%), which is still far away from satisfaction. This
might be due to the unclear and subjective boundary between
code 1 and 2 in terms of the severity levels. Another possible
reason could be the unbalanced distribution among categories.
The number of code 0,1 and 2 in the training set is 1309,4595
and 2928, respectively. Neural networks may not learn enough
information for code 0. We also notice that RNN works better
than the combination of CNN and RNN. The reason might be
the over-fitting problem. Without large-scale training data, we
cannot drive CNN to learn a proper feature representation. Un-
der the circumstances, complex network architecture can easily
become over-fitting. Moreover, it seems that CQT spectrograms
is not as effective than STFT spectrograms in our task which is
different as reported in [21]. This might be because the dynamic
nature of prosody information and the low time domain resolu-
tion for low frequencies may degrade the performance.

As mentioned earlier in Section 1, human tagging usually
exhibits subjective variation among each other, which makes
our ground truth labels become ambiguous. We also discussed
with the clinicians about how to distinguish from code 0/1/2.
The answer is actually they are less confident to distinguish be-
tween slightly/serious abnormal than with/without abnormality.
This leads us to investigate the two categories classification.

4.3. Two Categories Classification

We test two partition manners towards the code 0/1/2.
First, we merge the instances with code 1 and 2 in the

training set to perform a two categories classification between
with/without atypical prosody (0 vs union(1,2)). Experimen-
tal results are shown in Table 4. We also evaluate SVM,
CNN+RNN and RNN these three systems. To our surprise,
RNN achieves 78.75% UAR with respect to segment, which is
higher than the baseline system. Given the fact that as a auto-
mated assessment framework, our goal is provide a speech ab-
normalities code for each subject. We further calculate the UAR
with respect to person, which is much meaningful and valuable



Table 3: Three categories classification results on testing set
(UAR(seg) stands for calculating UAR with respect to segment).

Model Inputs UAR (seg)
SVM OpenSmile features 50.5%

CNN + RNN
STFT spectrogram 34.62%
CQT spectrogram 35.48%

RNN
STFT spectrogram 45.62%
CQT spectrogram 36.56%

Table 4: Two categories classification results on testing set
(UAR(per) stands for calculating UAR with respect to person).

Model Partition UAR (seg) UAR (per)

SVM
0 and 1/2 74.7% 88.1%
0/1 and 2 64.6% 58.44%

CNN + RNN
0 and 1/2 69.85% 72%
0/1 and 2 53.56% 59.41%

RNN
0 and 1/2 78.75% 85.71%
0/1 and 2 59.98% 68.58%

fuse SVM&RNN
0 and 1/2 81% 90%
0/1 and 2 61.79% 65.58%

in real scenario. As you can see from Table 4, the UAR(per) of
SVM and RNN are very close. When we fuse these two sys-
tems, we get the highest UAR both with respect to segment and
person (i.e. 81% and 90%). This result demonstrates the end-
to-end framework has great potential in our task.

Then we merge the instances with code 0 and 1 in the
training set to perform a two categories classification as well
(union(0,1) vs 2). The results are also showed in Table 4. Com-
paring to the first partition manner, none of these systems can
achieve satisfying performance.

The results of these two partition manners probably reveal
the phenomenon that the boundary between code 1/2 are less
clear than code 0/1 in our dataset.

5. Conclusions and Future Work
In this paper, we focus on the speech abnormalities of young
children with ASD. We propose an automated assessment
framework to predict the severity level of atypical prosody. We
model the training data using both the conventional SVM model
and deep neural networks. For the three categories classifica-
tion task, all systems cannot achieve satisfying performance.
Then we perform two different partition on the 0/1/2 code,
and attempt to run two categories classification. Experimen-
tal results indicate that boundary between code 1/2 are less
clear than code 0/1 in our dataset. Even the clinicians are less
confident to distinguish between slightly/serious abnormal than
with/without abnormality. Particularly, the results of classifica-
tion on with/without atypical prosody (0 vs union(1,2)) are quite
surprising. RNN achieves very close performance comparing to
SVM baseline and the fusion of the two system achieves the best
performance. This result demonstrates the end-to-end frame-
work has great potential in our task.

Future work includes three parts. First, in order to uti-

lize the strong learning ability of the deep neural networks, we
need to collect more ADOS recordings, especially the subjects
with normal prosody (i.e. code ’0’), to augment our training
set as well as balance the distribution of different classes. Sec-
ond, since human tagging usually exhibits subjective disagree-
ments among each other, we intend to obtain labels from mul-
tiple evaluators and utilize some modeling methods to estimate
the ground truth [22, 23, 24]. Finally, we will use regression
method to investigate the coding strategy of the clinicians and
construct a better model. Considering the speech abnormali-
ties code, the demographic information as well as the language
acquisition questionnaire results, maybe we can help clinicians
predicting a subject’s language development score or even the
overall social communication score under the ADOS module 2
scenario.
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