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Abstract
This paper introduces our approaches for the orca activity and
continuous sleepiness tasks in the Interspeech ComParE Chal-
lenge 2019. For the orca activity detection task, we extract deep
embeddings using several deep convolutional neural networks,
followed by the Support Vector Machine (SVM) based back end
classifier. Both STFT spectrogram and log mel-spectrogram are
explored as input features. To increase the size of training data
and deal with the data imbalance, we propose four kinds of data
augmentation. We also investigate the different ways of fusion
for multi-channel input data. Besides the official baseline sys-
tem, to better evaluate the performance of our deep embedding
system, we employ the Fisher Vector (FV) encoding on various
kinds of acoustic features as an alternative baseline. Experimen-
tal results show that our proposed methods significantly outper-
form the baselines and achieve 0.948 AUC and 0.365 Spear-
man’s Correlation Coefficient on the orca activity and continu-
ous sleepiness evaluation data, respectively.
Index Terms: ComParE challenge, deep neural networks, data
augmentation, fisher vector

1. Introduction
The goal of paralinguistic speech attribute recognition [1] is
to classify the paralinguistic attributes of audio data automat-
ically. This technology can be applied in many different ap-
plications, such as affective computing, disease detection, and
various kinds of interdisciplinary studies [1, 2]. In this year,
the Interspeech 2019 Computational Paralinguistic Challenge
(ComParE) introduces new attributes, namely Styrian Dialects,
Continuous Sleepiness, Baby Sounds, and Orca Activity.

In the baselines provided by the challenge organizers,
the OpenSMILE acoustic feature set [3], Bag-of-Audio-Word
(BoAW) features [4], and AuDeep representations [5, 6] are
extracted for the subsequent Support Vector Machine (SVM)
based classifier [7]. We extract the ComParE acoustic feature
set by applying functionals on low-level descriptors (LLDs)
with OpenSMILE [3] which is proven very effective in many
paralinguistic recognition tasks. To extract BoAW features, we
quantize the audio signals with a codebook learned from LLDs
at the beginning. After that, signals can be represented by his-
tograms of their acoustic LLDs. The baseline system generates
codebooks of different sizes to find the optimal setting. Au-
Deep features are extracted by recurrent sequence-to-sequence
autoencoders in an unsupervised manner.

In addition to the features given by the baseline system, we
also introduce features extracted by the Fisher Vector (FV) en-
coding method [8, 9]. Researchers have successfully applied
FV encoding in many paralinguistic tasks [10, 11]. For the orca
activity detection and the continuous sleepiness tasks, we adopt
FV encoding on various kinds of acoustic features, including

MFCC (Mel Frequency Cepstral Coefficient), LFCC (Linear
Frequency Cepstral Coefficient), IMFCC (Inverted Mel Fre-
quency Cepstral Coefficient), MGDF (Modified Group Delay
Function), and PLP (Perceptual Linear Prediction) [12, 13, 14].

Previous works show that convolutional neural networks
trained with the STFT spectrogram inputs achieved good per-
formance on many paralinguistic problems [15, 16, 17]. The
concept of deep embedding has also been widely used in many
tasks such as speaker verification [18, 19] and language identi-
fication [18, 20]. However, deep learning based methods may
suffer from over-fitting due to small scale and imbalance train-
ing data [1]. And applying SVM on top of these deep embed-
dings is shown to be effective and robust against over-fitting on
some paralinguistic speech attribute recognition tasks [21].

In this work, we propose a deep embedding system with
SVM based back end classifier to detect paralinguistic at-
tributes. The orca activity detection is a binary classification
task with a large scale multi-channel training database, which
makes it possible for us to address the problem with deep neu-
ral networks. First, we extract STFT spectrogram and log mel-
spectrogram as the inputs of our systems. Second, we em-
ploy several data augmentation methods to further increase the
size of training samples as well as reduce the data imbalance.
To extract the deep embeddings, we train three deep convolu-
tional neural networks, containing ResNet [22], Inception [23]
and DenseNet [24]. In this way, we can obtain discriminative
utterance-level embeddings for each signal. SVM is employed
for classification in our approach. In this task, official multi-
channel audio files enable us to compare different levels of fu-
sion strategies in terms of channels.

The rest of this paper is organized as follows. In Section
2, we introduce the Fisher Vector encoding method on various
kinds of acoustic features. In Section 3, we present our end-
to-end deep learning system, including feature extraction, data
augmentation, embedding extraction, and multi-channel fusion
schemes. Experimental results and discussion are provided in
Section 4 followed by the conclusion in Section 5.

2. Fisher Vector Encoding
Fisher Vector encoding (FV) [8, 9] is a widely used represen-
tation method for image classification. In recent years, it has
been successfully applied in several paralinguistic speech at-
tribute recognition problems [10, 11]. In this paper, we employ
FV encoding on several kinds of acoustic features. Different
from BoAW representation, FV encoding makes use of the first
and second statistics of input features which are informative.
Compared to the GMM mean-supervector method [25], the FV
Encoding extracts both the mean and the variance on each Gaus-
sian component. To classify these utterance-level representa-
tions, We apply the SVM and GBDT (Gradient Boosting Deci-



sion Tree) algorithm.
To acquire FV encodings [8, 9], in the first step, we extract

the acoustic features and train aK-component GMM (Gaussian
Mixture Model). The GMM model can be parameterized as
{µk,Σk, πk}Kk=1. µk, Σk, πk represent the mean vector, co-
variance matrix and weight of the kth component of the GMM
model. Then, according to the GMM, we are able to represent
the occupancy probability qk(t) of a given feature xt by
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Next, we compute the derivations of means and covariances of
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T represents the number of frames. Diagonal covariances
are computed with σ2

i = diag(Σi). The number of GMM com-
ponents is K, and k refers to the kth component. The dimen-
sion of the acoustic features is D, and d denotes the dth dimen-
sion of a vector.

Finally, a sequence of acoustic features can be represented
by a fixed dimensional vector with size 2×K ×D:

Φ = [· · ·uT
k · · ·vT

k · · · ]T . (4)

Traditionally, We use MFCC and PLP Cepstrum/Spectrum
to train the GMM for FV encoding [10, 11]. Here, we further
explore more acoustic features including IMFCC [12], LFCC
[12], and MGDF [13]. Besides training a GMM separately for
each type of acoustic features, we concatenate different kinds of
features on the feature level and train a single large dimensional
GMM for FV encoding. We employ both the SVM and the
GBDT algorithm for the back end classifiers. [26].

3. End-to-End Deep Learning Based
System

This section introduces the details of our deep embedding sys-
tem for detecting the orca activity. First, spectral features are
extracted. Second, we augment the training data using four dif-
ferent schemes. Then, we employed three different deep neural
network structures to obtain the embeddings followed by the
SVM for classification. Finally, multi-channel information fu-
sion methods are performed on different levels. The illustration
of the proposed framework shows in Figure 1.

3.1. Feature Extraction

Short Time Fourier Transform (STFT) spectrum is a common
choice as the input of CNN network [20, 27].

For variable STFT spectrograms, we adopt the structure of
the Global Average Pooling (GAP) layer [28]. The GAP layer
can deal with variable lengths in both the time and frequency
axis, allowing batches to have different sizes of the feature map.
In the evaluation phase, we do not have to resize the input fea-
tures. This structure can extract the utterance-level representa-
tions for audio signals with different durations, which is suitable
for utterance-level audio classification [20, 28].

Inspired by the bird sound detection and bird species clas-
sification works [29], we select the log mel-spectrogram as our
input feature for the reason that animal sounds could share some
common patterns. The feature used for detecting birds can also
be effective for detecting orca [29].

We extract the log mel-spectrogram following the process
described in [29]. First, we apply STFT on audio signals to
obtain the power spectrum. Then, the linear spectrogram is
transformed into mel-spectrogram. Next, we normalize the mel-
spectrogram and convert it to decibel units. At last, we resize
the log mel-spectrogram to a fixed size using Lanczos filter
[29, 30].

3.2. Data augmentation

Data augmentation is a common approach when training clas-
sification models with an insufficient amount of training data.
By data augmentation, we manage to reduce the data imbalance
problem as well as enhance the system’s performance.

Traditionally, data augmentation is performed by adding
external noises to positive samples. In this task, however, we
already have the real environmental noises as negative samples,
which we can utilize directly. We use several different methods
of data augmentation, and all of them are carried out on the time
domain.

For each authentic orca audio sample, we randomly select
another sample in the noise set or the orca set to add on top
of it. And we augment negative samples by adding two ran-
dom noise signals together. The additional file’s amplitude is
assigned with an arbitrary weight between 0 and 0.5. Since the
lengths are variable, we perform clipping and repeating. Be-
sides these methods, we also apply speed perturbation with fac-
tors 0.9, 1.0, and 1.1.

3.3. Embedding

Deep convolutional neural network plays an important role in
many areas, including paralinguistic speech attribute recogni-
tion in recent years [15, 21]. The convolutional structure can
capture the patterns on the images, and more generally, on spec-
trograms or other time-frequency representations.

The deep convolutional neural network is considered as a
local pattern extractor [21]. Here, instead of directly using the
original fully-connected layer for classification, we adopt the
SVM as our classifier.

In our work, we train ResNet, Inception, and DenseNet as
our deep embedding extractors. ResNet [22] learns residual
functions concerning the layer inputs, which reduces the diffi-
culty of training a large neural network. Inception [23] network
consists of several well-designed Inception modules aiming to
reduce the parameters and best utilize computational resources.
DenseNet [24] connects every layer with other layers in a feed-
forward manner thus has the potential to reduce the problem
of gradient vanishing. Compared to other network structures
applied in previous paralinguistic challenges [15, 21], the net-
works we adopt here are much deeper. Therefore we focus on
the orca activity detection task due to the relatively large size of
training data.

3.4. Fusion on channels

The orca activity detection dataset contains multi-channel sig-
nals. Four or eight hydrophones collect the underwater signals
in towed-array on a 15-meter trimaran from different directions
and distances [1]. Intuitively, designing a system using multi-
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Figure 1: Structure of the proposed deep embedding system for orca activity detection.

channel data would have a better performance than the ones
built upon single channel data.

Inspired by [31], we investigate the multi-channel fusion
strategies on different levels using four channels of signals. The
first one is the multi-channel feature-level fusion. We extract
spectral features on each channel and feed the multi-channel
spectrograms directly into the multi-channel CNN networks.
The second level is the embedding level. We train four sepa-
rate models for embedding extraction, take the mean of the four
embeddings, and then use the SVM as the back end classifier.
For score-level fusion, we fuse the SVM scores for the four sub-
systems (each subsystem is for one channel).

4. Experiments
For the orca activity task, our goal is to build a robust bi-
nary classification system to distinguish between environmen-
tal noise and orca sounds. Area Under the Receiver Operating
Characteristic Curve (AUC) is used as the metric. For the con-
tinuous sleepiness task, we need to estimate the level of sleepi-
ness. In this task, Spearman’s Correlation Coefficient is utilized
as the metric.

The structure of this section is as follows. First, experi-
ments setup including feature extraction, as well as model train-
ing are presented in 4.1. Second, we compare and analyze the
results on different features, classifiers, augmentation schemes,
and fusion methods. Lastly, fused scores on the development
and evaluation set are shared in 4.6.

If not explicitly mentioned, in this section, we augment au-
dio signals with approaches in Section 3.2 and extract fixed
size log mel-spectrogram as input features. In general, SVM
back end, DenseNet, and multi-channel feature-level fusion are
adopted as our best single system.

4.1. Experiments setup

In the official baseline, ComPare Acoustic Feature set, BoAW
presentations, AuDeep features are extracted by OpenSMILE
[3], OpenXBOW [4], and Audeep toolkit [5, 6].

For the orca activity task, each audio file is down-sampled
from 44100 Hz to 22050 Hz at the very beginning. We imple-
ment the FV encoding with vlfeat library [32] on the MATLAB
platform. And MFCC, IMFCC, LFCC, MGDF, PLP/RASTA-
PLP spectrum, and cepstrum all have 20 coefficients respec-
tively. We compute delta and delta-delta coefficients for these
features. The number of GMM components used for FV en-
coding is selected to be 128 and the resulted dimensionality of
Fisher Vectors is 2× 60× 128 = 15360.

To classify the baseline and FV encoding representations,
we employ SVM with scikit-learn and GBDT algorithm with

Table 1: Comparison of different deep embeddings and classi-
fiers on the development set

Model FC SVM

ResNet 0.8408 0.923
Inception 0.8403 0.927
DenseNet 0.8430 0.934

LightGBM [26]. As for GBDT, the L1 loss and binary cross
entropy loss are chosen for the continuous sleepiness and orca
activity task, respectively.

In the deep embedding system, STFT spectrogram and log
mel-spectrogram are extracted with librosa [33] and scipy li-
brary [34]. As for the STFT spectrogram, we apply a 25 ms
sliding window with a step of 10 ms and employ 1024-points
FFT on each frame. The STFT spectrogram is then normalized
by mean subtraction.

For the log mel-spectrogram, we apply 256 mel-filters on
the STFT spectrogram, and the output power spectrogram is
then converted to decibel units. Furthermore, for each audio
file, the log mel-spectrogram is resized to a fixed shape of (299,
299).

Three kinds of convolutional neural networks, including
ResNet, Inception, and DenseNet are explored. The structures
follow the Pytorch [35] implementation of ResNet34, Incep-
tionV3, and DenseNet121. Categorical cross entropy is taken
as the loss function. Networks are optimized using Stochastic
Gradient Descent (SGD) with Nesterov momentum 0.9. During
the training process, the learning rate is first initialized as 0.01
and reduced by a factor of 10 every 12 epochs. We train each
CNN network for 30 epochs. After training, we directly extract
the embeddings from the penultimate layer of neural networks.

4.2. Results on classifiers

We extract deep embeddings from three neural networks. From
Table 1, we can see that compared to the original fully-
connected layer (FC), SVM performs much better. In this task,
SVM is more robust and less likely to be over-fitting than the
FC layer based classifiers in the end-to-end system. Comparing
the performances of different networks, we can also find that
DenseNet performs the best.

4.3. Results on features

We can notice in Table 2 that the log mel-spectrogram achieves
better results than the STFT spectrogram. Log mel-spectrogram
can capture the patterns of bird sounds as well as orca sounds
[29].



Table 2: Comparison of different features on the development
set

Model Log mel-spec STFT-spec

ResNet 0.923 0.900
Inception 0.927 0.917
DenseNet 0.934 0.912

4.4. Results on data augmentation

Table 3: Comparison of different data augmentation methods
on the development set

Methods AUC

Origin 0.925
Orca + Noise→ Orca 0.929
Orca + Orca→ Orca 0.932
Noise + Noise→ Noise 0.928
Speed perturbation 0.932
All the aforementioned methods 0.934

Table 3 shows that all four data augmentation methods help
improve performance. It is worth noting that adding positive
samples to other positive samples seems to be a practical ap-
proach. Speed perturbation is also useful for improving per-
formance. Increasing negative samples has a relatively minor
impact on the final results.

4.5. Results on different fusion methods

Table 4: Comparison of different levels of multi-channel fu-
sion on the development set with log mel-spectrogram input and
SVM back end classifier

Methods DenseNet Inception

Single channel (best) 0.926 0.924
Feature-level fusion (multi-channel CNN) 0.934 0.927
Embedding-level fusion 0.935 0.933
Score-level fusion 0.932 0.933

In our experiments, we investigate three levels of multi-
channel fusions. To fuse in the feature-level, we directly feed
the multi-channel spectral features into the CNN model. And
for embedding-level fusion, the four embeddings are averaged
as the input of SVM. As for score-level fusion, we compute the
mean of the four SVM scores.

We find that the results between these three methods are
similar as shown in Table 4. Embedding-level fusion shows a
slightly better result. It is worth mentioning that the scheme
of multi-channel feature-level fusion consumes fewer compu-
tational resources than the score-level and embedding-level
method which require generating deep embeddings separately.
Multi-channel feature-level fusion makes more sense when the
computational resources are limited.

4.6. Comparison with the baseline

In this part, we compare our proposed methods with the baseline
systems. Results of both the development and evaluation set are
illustrated in Table 5.

For the official baseline, we select the scores generated with
ComParE acoustic feature set, BoAW, and AuDeep features.

Table 5: Comparison with the baseline

Orca Activity (AUC) Devel Test

Official baseline [1] 0.817 0.866 [1]
FV system 0.876 −
Official baseline + FV 0.880 −
Deep embedding with SVM 0.945 0.948
Deep embedding with SVM + FV 0.946 −
Continuous Sleepiness (Spearman) Devel Test

Official baseline [1] 0.308 0.343 [1]
FV system 0.316 −
Official baseline + FV 0.326 0.365

And the results of the FV system are produced with Fisher
Vectors encoding MFCC, LFCC, IMFCC, MGDF, and spec-
trum/cepstrum of PLP/RASTA-PLP [14]. For both official and
FV representations, we adopt the SVM and GBDT algorithm to
perform classification. The official baseline + FV utilize both
their final output scores. Our results of deep embedding system
are obtained by fusing the output scores of models considering
different features, classifiers, augmentation schemes, and multi-
channel fusion methods.

The scores on development set generated with different
classifiers and representations are fused with weights, and chal-
lenge organizers provide the baseline results on the evaluation
set [1].

In the tasks of both orca activity and continuous sleepiness,
FV features show better performances than baseline representa-
tions, which prove the effectiveness of the FV encoding method.
For orca activity detection, the deep embedding with SVM sys-
tem outperforms the baseline on both the development and eval-
uation set, which means our proposed algorithm is robust and
effective.

5. Conclusions
In this work, We introduce the Fisher Vector encoding scheme
for the continuous sleepiness and orca activity task in the Inter-
speech ComParE2019 Challenge. For orca activity detection,
we further propose a deep embedding with SVM system. Our
work focuses on feature extraction, classifier design, data aug-
mentation and fusion with multi-channel inputs. We find that
the log mel-spectrogram shows a better performance than the
traditional STFT spectrogram. SVM is proven to be more ef-
fective than the original fully-connected layer. Data augmenta-
tion by adding training samples and speed perturbation help im-
prove the results. Finally, the performances of the three multi-
channel fusion methods show little differences, while the multi-
channel feature-level fusion requires fewer computational re-
sources than others. With these systems, we manage to signif-
icantly outperform the baseline on both the development and
evaluation set.
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