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Abstract— Multihypothesis activity-level detection in a wire-
less body area network (WBAN) is considered. The fusion
center receives biometric samples from heterogeneous sensors.
The number of samples collected from each of the sensors
is optimized to minimize the probability of misclassification
between multiple hypotheses at the fusion center. As each sensor
has different discrimination capabilities and the particular
Bluetooth-based implemented experimental WBAN, optimal
sample allocation results in an overall energy savings. For
example, activating all sensors equally yields a 97% accuracy;
in contrast, optimal allocation results in 95% accuracy with
approximately 30% energy-savings. As the number of samples
is an integer, further energy reduction is achieved by devel-
oping an unconstrained approximation to the probability of
misclassification which allows for a continuous-valued vector
optimization. The unconstrained optimization yields approxi-
mately optimal allocations with significantly lower complexity.

I. INTRODUCTION

Wireless body area networks (WBANs), an emerging
class of sensor networks, are emerging as useful tools for
continuous health monitoring. In this paper, we continue to
develop the KNOWME network [1], a WBAN that is targeted
to applications in pediatric obesity. Herein, we derive an
energy-efficient mechanism for activity-detection that can be
implemented with low-complexity and examine its efficacy
in a “free-living” environment. Our KNOWME WBAN em-
ploys heterogeneous sensors in a star topology, which send
measurements to a Nokia N95 cellphone fusion center via
Bluetooth. The Bluetooth standard for data communication
uses a “serve as available” protocol, in which all samples
taken by each sensor are collected by the fusion center.
However, continuous functioning of Bluetooth requires un-
desirably high energy consumption, drastically reducing the
battery life of the cellphone. There has been significant prior
work on activity detection using on-body sensors; however
much of the work exploits many accelerometers alone (e.g.
[3], [7], [9]), or gyroscopes. More recent work [5], [4], [8]us-
ing multiple heterogeneous sensors has focused higher layer
communication network processing and hardware design.
In contrast, our work explicitly focuses on developing the
statistical signal processing techniques required for activity-
level detection.Previous works on developing energy-efficient
WBAN systems have used sleeping/waking cycles [2] and
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unused time redistribution [11], among many other tech-
niques, to minimize power consumption. Our work offers
a new approach in that the energy-efficiency of the system
is a result of an optimized resource allocation (how many
samples per sensor?, see Section IV-A). Our contributions
are three-fold: development of a signaling/sampling protocol
for free-living scenarios using a finite-state machine for tran-
sitions of activity (seee.g. [3]), energy savings assessment
and use of our activity-detection/sampling methods on real
data.

II. SYSTEM OVERVIEW

The target functionality of the KNOWME network for
activity-level detection is a “free-living” scenario: thesensors
and cellphone, worn throughout the day, estimate energy
expenditure and serve as a modality for intervention. The op-
eration of the energy-efficient activity-detection mechanism
is via alternating training and optimized phases.

During the training phase, the fusion center employs
equal allocation for each sensor and detects the current
activity/state. The current state is used to derive the optimal
allocation which is subsequently employed in the optimized
phase wherein a subset of sensors are active. Optimized
allocation is dependent on the current activity state and
thus is time-varying. The finite-state machine, in Figure
1, is exemplary of the nominal prior probabilities used to
determine which sensors to turn off in order to save power,
but maintain the detection accuracy. Our previous work [14]
considered the optimal allocation problem for thestatic case
which did not explicitly account for the current state of the
subject. This work develops a framework which results in
determining the evolution of the optimal resource allocation
as the subject transitions through different states. We observe
that the training phase also allows for some self-correction
if state detection in the optimized phase is incorrect.

Fig. 1. Finite-state machine with nominal prior probabilities used for the
optimal resource allocation case-study.

III. PROBLEM FORMULATION

In this section, we first present the signal model for our
wireless body area network, and then outline our optimiza-



tion problem: minimize the probability of misclassification
at the fusion center. We note that obtaining the optimal allo-
cation of samples requires an exhaustive search over the total
integer number of samples,N , since all possible partitions
of the samples between the heterogeneous sensors must be
considered to find the optimal allocation. As the total number
of available samples and number of sensors increases, the
combinatorial search becomes undesirably computationally
expensive. To this end, we develop an analogous optimization
problem which yields an approximately optimal solution, but
which can be solved using lower complexity continuous-
valued vector optimization techniques.

A. Signal Model

Each of the heterogeneous sensors send its biometric
samples directly to the cellphone via the Bluetooth protocol.
There are a number of key assumptions that we make. First,
we approximate the statistics of the features as Gaussian. The
features we use are such that one could argue that the central
limit theorem holds and thus the Gaussian approximation
is not inappropriate. Furthermore, our prior work suggests
that the Gaussian model is in close approximation with
measured data for the features of interest [1]. To capture
the temporal correlation of our features, we use the AR(1)
model to represent a biometric time-series, and assume both
the sensing and the communication of the measurements
to be noisy given the measurement systems and wireless
channels, respectively. The AR model has been previously
employed to estimate ElectroEncephaloGram (EEG) signals
[12] and physiological hand-termors [16]. Again, we find
good approximation with our data and this model. Finally,
we presume that the different sensor signals are statistically
independent. We have measured the correlation between
our features and found the correlation to be low [1]. This
assumption is further supported by the fact that certain
sensors better discriminate between some subsets of activities
than others.

We now propose the following signal model for the
decoded and processed samples received by the fusion center:

yi = θ + zi, i = 1, . . . , Nk (1)

for thek-th sensor, wherezi represents the independent and
identically distributed (iid) zero-mean Gaussian measurement
and channel noise. For a general feature/sensorAk, θ is a
normally distributed random variable, specified as

θj = µjAk
+ wi (2)

for hypothesisHj , wherewi represents thebiometric noise
and is modeled using the AR(1) model,i.e.

wi = ϕwi−1 + ε , i = 2, . . . , Nk, (3)

for k-th sensor which has been allocatedNk samples, and
ε is zero-mean Gaussian with varianceσ2

jAk
. To simplify

notation, we omit the hypothesis subscriptj when expres-
sions and definitions are applied to a generic hypothesis.
We denote the number of samples sent by theK sensors as
N1, N2, . . . , NK , respectively, and impose a constraint ofN

total samples,i.e. N1 + N2 + · · · + NK = N , for a specific
time-period.

The M -ary hypothesis test using the model in (1) is the
generalized Gaussian problem which is specified as

Hi : Y ∼ N(mi,Σi), i = 1, . . . , M, (4)

where mi,Σi, i = 1, 2, . . . , M are the mean vectors and
covariance matrices of the observations under the each of
theM hypotheses. For theK featuresA1, A2, . . . , AK from
the sensors, the mean vector and covariance matrix for the
observations for hypothesisHj for j = 1, · · · , M are of the
form

mj = [µjA1
µjA2

· · · µjAK
]
T and

Σj = diag(Σj(A1),Σj(A2), . . . ,Σj(AK)) ,
(5)

respectively. Note thatµjAi
is a Ni × 1 vector andΣj(Ai)

is a Ni × Ni matrix.
For a particular featureAk, the covariance matrix can be

expressed as

Σ(Ak) =
σ2

Ak

1 − ϕ2
T + σ2

zI, (6)

where T is a Toeplitz matrix whose first row/column is
[1 φ φ2 · · · φNk−1], andI is theNk × Nk identity matrix.
This results in the covariance matricesΣj , j = 1, . . . , M be-
ing block-Toeplitz matrices. To derive a vector optimization
that circumvents an exhaustive search, we may replace the
Toeplitz covariance matrices with their associated circulant
covariance matrices1 given by

Σ(Ak) ≈
σ2

Ak

1 − ϕ2
C + σ2

zI, (7)

whereC is a circulant matrix whose first row is identical to
that of T.

B. Probability of Error Derivation

We derive a closed-form approximation for the probability
of error in the multi-hypothesis case via a union bound
incorporating the Bhattacharyya coefficients between pairs
of hypotheses. Extending our work in [14] that considered
the static case, the analysis herein depends on the current
stateS. A result by Lianiotis [10] provides an upper bound
on the probability of error given as

P (ǫ|S) ≤
∑

i<j

(

Pi|SPj|S

)1/2
ρij|S , (8)

where Pi|S and Pj|S are the a priori probabilities for
hypothesesHi and Hj from the current state, andρij|S is
the state-dependent Bhattacharyya coefficient defined as

ρij|S =

∫

[fi(x)fj(x)]1/2 dx . (9)

1Note the inverse of the Toeplitz covariance matrix in (6) converges to
the inverse of the circulant covariance matrix in (7) in the weak sense as the
number of samples grows large. A sufficient condition for weak convergence
is that the strong norm of the inverse matrices be uniformly bounded [13].
This is the case for our matrix forms for0 < φ < 1.



Thus, the optimization problem considered can be stated as

min
N

P (ǫ|S) subject to
K
∑

k=1

Nk = N, Nk ≥ 0 ∀k, (10)

whereN = (N1, N2, . . . , NK) is the allocation of samples
amongst theK sensors. In the case of the multivariate Gaus-
sian, if fi(x) = N(x; mi,Σi), the Bhattacharyya coefficient
is given by:

ρij|S = exp

(

−
1

8
mT

d Σh
−1md −

1

2
ln

|Σh|
√

|Σi||Σj |

)

,

(11)
wheremd = mi −mj , |Σ| = detΣ, and 2Σh = Σi + Σj .

Given the block-diagonal structure of the covariance ma-
trix in (5), the terms of the Bhattarcharyya coefficientρij|S

are decomposed as follows:

detΣi =
K
∏

k=1

detΣi(Ak), (12)

and µT
d Σ

−1
h µd =

K
∑

k=1

µT
dAk

Σ
−1
h (Ak)µdAk

, (13)

where µd = µj − µi and µdAk
= µjAk

− µiAk
. Thus,

computing each of the terms for an individual featureAk

is sufficient to evaluate the probability of error specified in
(8). For every unique allocation of samples amongst sensors,
the structure of the covariance matrix is distinct, and thus
an exhaustive search over all possible partitions of the total
number of samples is required to find the optimal allocation
of samples to minimize the probability of error.

To evaluate the term in (12), we use the Toeplitz structure
in (6), and rewrite the covariance matrix as follows [6]:

Σ(Ak) = ΣD(Ak) + Σoff(Ak) (14)

= αI +
σ2

Ak

1 − φ2
(T − I), (15)

whereα = σ2
Ak

/(1 − φ2) + σ2
z . Given this expansion, the

determinant of the covariance matrix can be computed using

detΣ = detΣD · det
(

I + Σ
−1
D Σoff

)

, (16)

wherein, usingA = Σ
−1
D Σoff , we now evaluate

det (I + A) = exp (tr (log (I + A))) (17)

= exp

(

tr

(

A −
A

2

2
+

A
3

3
· · ·

))

.(18)

From the form in (16), and using the geometric progression
identity for

∑n
k=0 krk, we evaluate the single feature term

in (12) as

detΣ(Ak) = αNke−C[−1+φ2N
k−Nk(1−φ−2)], (19)

whereC = 1/α2(σ2
Ak

/(1 − φ2))2φ−2/(1 − φ−2)2.
To evaluate the term in (13), the circulant approximation

in (7) is employed and we can simplify (13) as

(µyAk
− µxAk

)2
Nk
∑

i=1

Nk
∑

j=1

[

Σ
−1
y (Ak)

]

ij
, (20)

which shows that we only require the sum of all the elements
of the inverse matrix. To this end, we employ a result by
Wilansky [15] and note that the sum of the elements of the
n-th row of Σ(Ak) can be simplified as

Nk
∑

j=1

[Σ(Ak)]nj =
σ2

Ak

1 − φ2
·
1 − φNk

1 − φ
+ σ2

z (21)

using the geometric progression identity for
∑n

k=0 rk. Thus,
for a single block of the covariance matrixΣ(Ak), we can
evaluate the term in (13) as

(µyAk
− µxAk

)2Nk

[

σ2
yAk

(1 − φNk)

(1 − φ2)(1 − φ)
+ σ2

z

]−1

. (22)

Note that the simplified expressions in (19) and (22) are
used to compute the bound on the probability of error in (8),
but are independent of the discrete block-diagonal structure
of the covariance matrix in (5). Thus, an exhaustive search
over K integer partitions ofN total samples is converted
to a continuous-valued vector optimization which is solved
with lower complexity.

IV. NUMERICAL SIMULATIONS

In this section, we present a numerical analysis of the
optimal allocation algorithm using experimental data col-
lected using graduate student test subjects. Data from train-
ing and testing periods of 10 and 4 minutes, respectively,
were collected for seven activities (Sit, Stand, Sit&Fidget,
Stand&Fidget, Lie down, Walk and Run) from two ac-
celerometers and an ECG monitor. A 20-minute free-living
period concluded the experiments which were conducted
in video-monitored simulated living environment. To clarify
our results we focus on the two sensor case, although our
methods are directly applicable to multiple sensors. Our
analysis uses data from two accelerometers and an ECG
monitor across three sessions (conducted at different times,
on different days) for subject-dependent training, and data
from a fourth session is used for testing and yields the de-
tection probabilities reported later in the section. In contrast
to our earlier work which considered the static case [14],
the numerical results presented here consider the evolution
of the optimal allocation as the subject transitions through
different activities.

For clarity, we focus on the case with four hypotheses (Sit,
Stand, Walk and Run), and two features: the accelerometer
variance and the ECG period, which are allocatedN1 and
N2 samples, respectively. The distributions associated with
each of the hypotheses for these two features, for a single
participant, are shown in Figure 2.

The nominal probabilities used to derive the bound on the
probability of error in (8) are as in Figure 1. We evaluate our
energy-efficient activity-detection mechanism using a 522-
sample (approximately 20 minute) free-living scenario. The
testing scenario, decisions taken by the detector and the
evolution of the optimal allocation are shown in Figure 3 for
the case wherein 10 of every 30 samples is used for training.
The third subplot (% ACC) shows the optimal allocation of
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Fig. 2. Gaussian distributions associated with each of the four activities
for the ACC StdDev and ECG Period features.

TABLE I

DETECTION ACCURACY FOR DIFFERENT TRAINING SCENARIOS.

Training frequency Detection accuracy

10 of 50 samples 90.2%
25 of 125 samples 90.4%
10 of 30 samples 95%
25 of 75 samples 92.3%

samples to the accelerometer. We note that allocation is time-
varying and depends on the current state of the subject. Table
I shows the detection accuracy achieved for different training
periods.

0 100 200 300 400 500
2

4

6

8

10

T
ru

th

0 100 200 300 400 500
2

4

6

8

10

D
ec

is
io

n
s

0 100 200 300 400 500
0

50

100

%
 A

C
C

Fig. 3. The free-living testing scenario (3=Sit, 5=Stand, 8=Walk, 10=Run),
detector decisions and optimal allocation of samples to ACC.

We use the following algorithm to quantify the energy-
savings associated with not using both sensors. Given the
probability of error for an optimal allocation ofN samples,
we compute the minimumM > N equally allocated samples
required to achieve the same probability of error. We find
that using only the accelerometer or only the ECG results
in energy-savings of 43% and 46%, respectively. Thus, we
find that as an alternative to 97% accuracy using samples
from all sensors, our mechanism achieves 95% accuracy with
approximately 30% energy-savings.

A. Complexity Reduction

The vector optimization is significantly lower complexity
than the exhaustive search. GivenN samples andK sensors,
O(NK−1) function evaluations required for an exhaustive
search, where a function evaluation is a single computation
of the Bhattacharyya coefficient in (11). On the other hand,
the continuous-valued vector optimization is idependent of
the number of total samples available,i.e. O(1).

V. CONCLUSIONS AND FUTURE WORK

An energy-efficient and low-complexity mechanism for
free-living activity-detection is developed in this work.We
consider activity transitions, and find that unequally allo-
cating samples amongst sensors yields better performance,
or equivalent energy-savings, compared to equally allocating
samples. For example, we show using real data that activating
all sensors equally yields 97% accuracy; in contrast, optimal
allocation results in 95% accuracy with approximately 30%
energy-savings. The continuous-valued vector optimization
derived is lower complexity than an exhaustive search.

We are currently working on the system implementation of
the optimal allocation algorithm, and a hidden Markov model
approach is being incorporated, similar to the approach in [3],
in lieu of the training scenarios. In the future, the KNOWME
network will provide excellent tools to accurately measure
real-time obesity-related outcomes as well as a modality for
intervention.
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