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Abstract— Multihypothesis activity-level detection in a wire- unused time redistribution [11], among many other tech-
less body area network (WBAN) is considered. The fusion nigques, to minimize power consumption. Our work offers
center receives biometric samples from heterogeneous sens. 5 oW approach in that the energy-efficiency of the system

The number of samples collected from each of the sensors . It of timized I i h
is optimized to minimize the probability of misclassificaton is a result of an optimized resource allocation (how many

between multiple hypotheses at the fusion center. As eachrser ~ Samples per sensor?, see Section 1V-A). Our contributions
has different discrimination capabilities and the particular  are three-fold: development of a signaling/sampling proto

Bluetooth-based implemented experimental WBAN, optimal  for free-living scenarios using a finite-state machine fant
sample allocation results in an overall energy savings. For sitions of activity (seeeg. [3]), energy savings assessment

example, activating all sensors equally yields a 97% accucg; L . )
in contrast, optimal allocation results in 95% accuracy wih and use of our activity-detection/sampling methods on real

approximately 30% energy-savings. As the number of samples data.

is an integer, further energy reduction is achieved by devel II. SYSTEM OVERVIEW
oping an unconstrained approximation to the probability of . .
misclassification which allows for a continuous-valued veor The target functionality of the KNOWME network for

optimization. The unconstrained optimization yields appoxi-  activity-level detection is a “free-living” scenario: tlsensors
mately optimal allocations with significantly lower compleity.  and cellphone, worn throughout the day, estimate energy
expenditure and serve as a modality for intervention. The op
l. INTRODUCTION eration of the energy-efficient activity-detection medkanm
Wireless body area networks (WBANSs), an emergings via alternating training and optimized phases.
class of sensor networks, are emerging as useful tools forDuring the training phase, the fusion center employs
continuous health monitoring. In this paper, we continue tequal allocation for each sensor and detects the current
develop the KNOWME network [1], a WBAN that is targetedactivity/state. The current state is used to derive thenugti
to applications in pediatric obesity. Herein, we derive amllocation which is subsequently employed in the optimized
energy-efficient mechanism for activity-detection that b& phase wherein a subset of sensors are active. Optimized
implemented with low-complexity and examine its efficacyallocation is dependent on the current activity state and
in a “free-living” environment. Our KNOWME WBAN em- thus is time-varying. The finite-state machine, in Figure
ploys heterogeneous sensors in a star topology, which sehdis exemplary of the nominal prior probabilities used to
measurements to a Nokia N95 cellphone fusion center vi¢etermine which sensors to turn off in order to save power,
Bluetooth. The Bluetooth standard for data communicatiobut maintain the detection accuracy. Our previous work [14]
uses a “serve as available” protocol, in which all samplesonsidered the optimal allocation problem for 8iatic case
taken by each sensor are collected by the fusion cent&hich did not explicitly account for the current state of the
However, continuous functioning of Bluetooth requires unsubject. This work develops a framework which results in
desirably high energy consumption, drastically reducimg t determining the evolution of the optimal resource allowati
battery life of the cellphone. There has been significargrpri as the subject transitions through different states. Wervies
work on activity detection using on-body sensors; howevdhat the training phase also allows for some self-correctio
much of the work exploits many accelerometers alamg. ( if State detection in the optimized phase is incorrect.
[31. [71, [9]), or gyroscopes. More recent work [5], [4], [8k-
ing multiple heterogeneous sensors has focused highar laye
communication network processing and hardware design.
In contrast, our work explicitly focuses on developing the
statistical signal processing techniques required faviagt
level detection.Previous works on developing energy-effic
WBAN systems have used sleeping/waking cycles [2] angg. 1. Finite-state machine with nominal prior probatskt used for the
optimal resource allocation case-study.
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tion problem: minimize the probability of misclassificatio total samplesi.e. Ny + Ny +--- + N = N, for a specific

at the fusion center. We note that obtaining the optimalalldime-period.

cation of samples requires an exhaustive search over tile tot The M-ary hypothesis test using the model in (1) is the
integer number of samplegy, since all possible partitions generalized Gaussian problem which is specified as

of the samples between the heterogeneous sensors must be )

considered to find the optimal allocation. As the total numbe Hi: Y ~N(m, %), i=1,...,M, (4)

of available samples and number of sensors increases, fffere m;,3;.i = 1,2,..., M are the mean vectors and

combinatorial search becomes undesirably computatipnalloyariance matrices of the observations under the each of

expensive. To this end, we develop an analogous optimizatigne 7 s hypotheses. For thi featuresA,, A, ..., Ax from

problem which yields an approximately optimal solutiont bughe sensors, the mean vector and covariance matrix for the

which can be solved using lower complexity continuousypservations for hypothesi§; for j = 1,---, M are of the

valued vector optimization techniques. form ! T

A Signal Model m; = (A, pia, - piagl and (5)
Each of the heterogeneous sensors send its biometric X, = diag(3;(A41),3;(A42),...,%;(4k)),

samples directly to the cellphone via the Bluetooth protoco . .
There are a number of key assumptions that we make. Firgle,spectlvely. Note that; 4, is @ Ni x 1 vector andX; (4;)

we approximate the statistics of the features as Gaussien. T aN; x Nit.malltrle. wrel, th . tri b
features we use are such that one could argue that the centrat'I:Or a particufar teaturely, the covariance matrix can be

limit theorem holds and thus the Gaussian approximatio?f(pressed as
is not inappropriate. Furthermore, our prior work suggests 0,24k )
that the Gaussian model is in close approximation with B(Ag) = 1_¢2T+Uz1a (6)

measured data for the features of interest [1]. To capture ) ) ) ] ]
the temporal correlation of our features, we use the AR(% here2T IS aNToleplltz matrix whose first row/column is
model to represent a biometric time-series, and assume bgth® ¢~ -+ ¢7* '], andLis the N x Ny, identity matrix.
the sensing and the communication of the measuremert8iS results in the covariance matricgs, j = 1,..., M be-
to be noisy given the measurement systems and wireleS9 bI(_)ck—Toephtz matrices. T_o derive a vector optimipati
channels, respectively. The AR model has been previoudfjat circumvents an exhaustive search, we may replace the
employed to estimate ElectroEncephaloGram (EEG) signal gepl!tz covariance matnces with their associated caoul
[12] and physiological hand-termors [16]. Again, we findcovarnance matricésgiven by
good approximation with our data and this model. Finally, o
we presume that the different sensor signals are statlgtica A ~
independent. We have measured the correlation between 4
our features and found the correlation to be low [1]. ThisvhereC is a circulant matrix whose first row is identical to
assumption is further supported by the fact that certaifhat of T.
sensors better discriminate between some subsets oft@stivi
than others.

We now propose the following signal model for the We derive a closed-form approximation for the probability

decoded and processed samples received by the fusion:cerféérerror in the multi-hypothesis case via a union bound
incorporating the Bhattacharyya coefficients betweenspair

yi=0+z, i=1,...,Ng (1) of hypotheses. Extending our work in [14] that considered
for the k-th sensor, where; represents the independent andhe static case, the analysis herein depends on the current

identically distributed (iid) zero-mean Gaussian measeret  StateéS. A result by Lianiotis [10] provides an upper bound
and channel noise. For a general feature/sersord is a O the probability of error given as

2
QC + Uzlv (7)

B. Probability of Error Derivation

normally distributed random variable, specified as 1/2

y P P(elS) < Z(Puspﬂs) / Pij|S s (8)

Gj = [jA, =+ w; (2) 1<j
for hypothesisH;, wherew; represents theiometric noise  Where P s and Pjs are thea priori probabilities for
and is modeled using the AR(modeli.e. hypothesed?; and H; from the current state, ang; s is
the state-dependent Bhattacharyya coefficient defined as
w; = w1+, i=2,..., N, 3)
. 1/2

for k-th sensor which has been allocatdy samples, and Pijls = / [fi(@) fi(@)] " d . )

€ is zero-mean Gaussian with varianc%Ak. To simplify

notation, we omit the hypothesis subscriptvhen expres-  INote the inverse of the Toeplitz covariance matrix in (6)wesges to

sions and definitions are applied to a generic hypothesfé? inverse of the circulant covariance matrix in (7) in thea sense as the

We d h b f | by AR number of samples grows large. A sufficient condition for kveanvergence
e denote the number of samples sent by Aheensors as is that the strong norm of the inverse matrices be uniforndyriaed [13].

N1, N, ..., Nk, respectively, and impose a constraint™df This is the case for our matrix forms for< ¢ < 1.



Thus, the optimization problem considered can be stated ahich shows that we only require the sum of all the elements

K of the inverse matrix. To this end, we employ a result by
min P(¢|S) subject tOZ Ny, =N, Np>0Vk, (10) Wilansky [15] and note that the sum of the elements of the
N =1 n-th row of 3(A;) can be simplified as
whereN = (N1, Na,..., Ng) is the allocation of samples N o2 1— N
amongst thek” sensors. In the case of the multivariate Gaus- > B4, = T ;2 Tt of (1)
sian, if f;(z) = N(x;m;, X;), the Bhattacharyya coefficient j=1
is given by: using the geometric progression identity fo},_, 7*. Thus,
( 1 ) 1 2] ) for a single block of the covariance matr®(A;), we can
pijls =exp | =g MgXn Mg — 5 I—F—m= 1, evaluate the term in (13) as
: 8 2 N EE t3)
(12) 2 (1 - ¢Ne) 1
2 TyAs 2
wheremy = m; —m;, |X| =det X, and 2%, = X, + ;. (Hya, — Haa,) N m + o . (22)
Given the block-diagonal structure of the covariance ma-
trix in (5), the terms of the Bhattarcharyya coefficignf;s Note that the simplified expressions in (19) and (22) are
are decomposed as follows: used to compute the bound on the probability of error in (8),
K but are independent of the discrete block-diagonal stractu
det®; = H det 3;(Ax), (12) of the covariance matrix in (5). Thus, an exhaustive search
b1 over K integer partitions ofN total samples is converted
1% to a continuous-valued vector optimization which is solved
and IS g = ZﬂgAkzil(Ak)udAk, (13) Wwith lower complexity.
k=1 IV. NUMERICAL SIMULATIONS

where jig = p1; — pi and paa, = pja, — pia,. Thus, In this section, we present a numerical analysis of the
computing each of the terms for an individual featl_}_t@ . optimal allocation algorithm using experimental data col-
is sufficient to evaluate the probability of error specified i |5.oq using graduate student test subjects. Data from- trai
(B). For every unique allocation of samples amongst sensomg and testing periods of 10 and 4 minutes, respectively.
the structure of the covariance matrix is distinct, and thL\7<\,,ere collected for seven activities (Sit, Stanoi, Sit&Fidge '
an exhaustive search over all possible partitions of the tOtStand&Fidget, Lie down, Walk and Run) from two ac-

number of samp_le_s i_s required to fi_n_d the optimal aIIOCatiOEelerometers and an ECG monitor. A 20-minute free-living
of samples to minimize the probability of error. rperiod concluded the experiments which were conducted
[

. Tg eval(ljjate thte ttehrm n (1_2)' we us? _the T?GIFI'tZ stgL{ctu ifi video-monitored simulated living environment. To chari
in (6), and rewrite the covariance matrix as follows [6]: our results we focus on the two sensor case, although our

S(Ar) = Ip(Ag) + Zog(Ag) (14) methoc_is are directly applicable to multiple sensors. Our
o2 analysis uses data from two accelerometers and an ECG
= ol + — ;2 (T -1, (15)  monitor across three sessions (conducted at differenstime

) ) y _ . on different days) for subject-dependent training, andadat
wherea = o3, /(1 — ¢7) + 0. Given this expansion, the from a fourth session is used for testing and yields the de-
determinant of the covariance matrix can be computed usifgction probabilities reported later in the section. Intcast

det 3 = det Bp, - det (I+ 2—1206) (16) to our earlier work which considered the static case [14],
_ _ . P ’ the numerical results presented here consider the evolutio
wherein, usingA = X" .4, we now evaluate of the optimal allocation as the subject transitions thioug
det (I—|— A) = exp (tI‘ (log (I—|— A))) (17) different activities.

A2 A3 For clarity, we focus on the case with four hypotheses (Sit,
exp (tr (A - )) (18) Stand, Walk and Run), and two features: the accelerometer

2 3 variance and the ECG period, which are allocatéd and
From the form in (16), and using the geometric progressioN, samples, respectively. The distributions associated with
identity for -, kr*, we evaluate the single feature termeach of the hypotheses for these two features, for a single

in (12) as participant, are shown in Figure 2.

det S(Ay) — Nk = Cl- 1462k N, (1-67)] (19) The r_19mina| propabilities use_d to derive the bound on the

’ probability of error in (8) are as in Figure 1. We evaluate our

whereC = 1/a(0%, /(1 — ¢%))*¢72/(1 — ¢~ 2)2. energy-efficient activity-detection mechanism using a-522

To evaluate the term in (13), the circulant approximatiosample (approximately 20 minute) free-living scenarioe Th
in (7) is employed and we can simplify (13) as testing scenario, decisions taken by the detector and the

N, Ny evolution of the optimal allocation are shown in Figure 3 for
(tya, — pzay,)? Z Z [2;1(14,6)]“ , (20) the case wherein 10 of every 30 samples is used for training.

i=1 j=1 The third subplot (% ACC) shows the optimal allocation of
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A. Complexity Reduction

The vector optimization is significantly lower complexity
than the exhaustive search. GivBhsamples and< sensors,
O(NX~1) function evaluations required for an exhaustive
search, where a function evaluation is a single computation
of the Bhattacharyya coefficient in (11). On the other hand,
the continuous-valued vector optimization is idependdnt o
—st the number of total samples availabie, O(1).

V. CONCLUSIONS AND FUTURE WORK

An energy-efficient and low-complexity mechanism for
free-living activity-detection is developed in this wonk/e
consider activity transitions, and find that unequally allo
cating samples amongst sensors yields better performance,
or equivalent energy-savings, compared to equally allogat
samples. For example, we show using real data that activatin
all sensors equally yields 97% accuracy; in contrast, cgdtim
allocation results in 95% accuracy with approximately 30%
energy-savings. The continuous-valued vector optinopati
derived is lower complexity than an exhaustive search.
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Fig. 2. Gaussian distributions associated with each of ¢ue &ctivities
for the ACC StdDev and ECG Period features.

TABLE |
DETECTION ACCURACY FOR DIFFERENT TRAINING SCENARIOS

[ Training frequency| Detection accuracy|

10 of 50 samples 90.2% : i .

25 of 125 samples 90.4% We are currently working on the system implementation of
10 of 30 samples 95% the optimal allocation algorithm, and a hidden Markov model
25 of 75 samples 92.3% approach is being incorporated, similar to the approac8lin [

in lieu of the training scenarios. In the future, the KNOWME

samples to the accelerometer. We note that allocation E}timnetwqu will pr_ovide excellent tools to accurately measure
varying and depends on the current state of the subjecteTakS?tal't'm?. obesity-related outcomes as well as a modality fo
| shows the detection accuracy achieved for different ingin intervention.
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