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Abstract. The optimal allocation of samples for activity-level detec-
tion in a wireless body area network for health-monitoring applications
is considered. A wireless body area network with heterogeneous sensors
is deployed in a simple star topology with the fusion center receiving
biometric samples from each of the sensors. The number of samples col-
lected from each of the sensors is optimized to minimize the probability
of misclassification between multiple hypotheses at the fusion center.
Using experimental data from our pilot study, we find equally allocating
samples amongst sensors is normally suboptimal. A lower probability of
error can be achieved by allocating a greater fraction of the samples to
sensors which can better discriminate between certain activity-levels. As
the number of samples is an integer, prior work employed an exhaustive
search to determine the optimal allocation of integer samples. However,
such a search is computationally expensive. To this end, an alternate
continuous-valued vector optimization is derived which yields approxi-
mately optimal allocations which can be found with significantly lower
complexity.

1 Introduction

Wearable health monitoring systems coupled with wireless communications are
the bedrock of an emerging class of sensor networks: wireless body area networks
(WBANS). Such networks have myriad applications, including diet monitoring
[16], detection of activity [3I2], and health crisis support [6]. This paper focuses
on the KNOWME network, which is targeted to applications in pediatric obesity,
a developing health crisis both within the US and internationally. To understand,
treat, and prevent childhood obesity, it is necessary to develop a multimodal sys-
tem to track an individual’s level of stress, physical activity, and blood glucose,
as well as other vital signs, simultaneously. Such data must also be anchorable to
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Fig. 1. The Nokia N95 cellphone fusion center (A), and the Alive Technologies oximeter
sensor (B) and ECG sensor (C)

context, such as time of day and geographical location. The KNOWME network
is a first step in the development of a system that could achieve these targets.

A crucial component of the KNOWME network is the unified design and
evaluation of multimodal sensing and interpretation, which allows for automatic
recognition, prediction, and reasoning regarding physical activity and socio-
cognitive behavior states. This accomplishes the current goals of observational
research in obesity and metabolic health regarding physical activity and energy
expenditure (traditionally carried out through careful expert human data cod-
ing), as well as enabling new methods of analysis previously unavailable, such as
incorporating data on the user’s emotional state.

The KNOWME network utilizes heterogeneous sensors, which send their mea-
surements to a Nokia N95 cellphone via Bluetooth, as shown in Figure 1. The
Bluetooth standard for data communication uses a “serve as available” proto-
col, in which all samples taken by each sensor are collected by the fusion center.
Though this is beneficial from the standpoint of signal processing and activity-
level detection, it requires undesirably high energy consumption: with a fully
charged battery, the Nokia N95 cellphone can perform over ten hours of tele-
phone conversation, but if the GPS receiver is activated, the battery is drained
in under six hours [20]. A similar decrease in battery life occurs if Bluetooth is
left on continuously. One of the aims of this paper is to devise a scheme that
reduces the Bluetooth communication, thus resulting in energy savings.

Our pilot study [I] suggested that data provided by certain types of sensors
were more informative in distinguishing between certain activities than other
types. For example, the electrocardiograph sensor was a better discriminator
when the subject was lying down, while data from the accelerometer was more
pertinent to distinguishing between higher-level activities. In the present work,
we exploit the advantages gained by focusing on particular sensors when selecting
from a specific set of hypothesized activity states, thus providing a more energy-
efficient detection mechanism.

The goal of the present work is to characterize the optimal allocation of sam-
ples for heterogeneous sensors in order to minimize the probability of misclas-
sification at the fusion center. Making optimal time-resource allocation a pri-
ority leads us to consider that sensors whose measurements are not currently
being utilized can turn off their Bluetooth, resulting in a health-monitoring



Optimal Allocation of Time-Resources 275

application that is more energy-efficient than previous models. To achieve this
goal, we consider the centralized approach adopted in [I], wherein detection is
performed at the Nokia N95 fusion center, and present numerical results for the
M-ary hypothesis testing problem with multiple sensors.

Thus, the contribution of our work is describing the optimal allocation of
samples amongst heterogeneous sensors in a WBAN for activity-level detection.
Specifically, we derive a lower complexity (see Section B.2]) continuous-valued
vector optimization to minimize the probability of misclassification in the multi-
hypothesis case. We are currently developing an energy-efficient algorithm using
this optimal allocation of samples.

The remainder of the paper is organized as follows: prior relevant work on
activity-level detection and energy-efficient algorithms in WBANS, and their rela-
tionship to our work is presented in Section2 An overview of our activity-level detec-
tion system is described in Section[3] In this work, we focus on developing the time-
resource allocation algorithm. Specifically, in Section[d] we describe the signal model
used to develop our optimal allocation, outline the framework for minimizing the
probability of misclassification, and derive a lower complexity continuous-valued
optimization problem. Numerical results based on experimental data are presented
in Section[Bl Finally, we draw conclusions and discuss our future work direction and
extensions to the optimal time-resource allocation problem in Section[d]

2 Related Work

In recent years, there have been several projects investigating activity-level detec-
tion in a variety of frameworks. Much of the work appears to center on accelerom-
eter data alone (e.g. [BI8/I0]) with some systems employing several accelerometer
packages and/or gyroscopes. On the other hand, multi-sensor systems have also
been implemented and deployed for activity-level detection, context-aware sens-
ing and specific health-monitoring applications. For example, the work of Gao
et al [0] is tailored for emergency response and triage situations, while Dabiri
et al [5] have developed a lightweight embedded system that is primarily used
for patient monitoring. The system developed by Jovanov et al [9] is used in
the assistance of physical rehabilitation, and Consolvo et al’s UbiFit system [4]
is designed to promote physical activity and an active lifestyle. In these works,
emphasis is on higher layer communication network processing and hardware de-
sign. In contrast, our work explicitly focuses on developing the statistical signal
processing techniques required for activity-level detection.

Several context-aware sensing systems and activity-level detection schemes
have been designed using multiple accelerometers and heterogeneous sensors.
However, the long-term deployment of some systems are constrained by the bat-
tery life of the individual sensors or the fusion center. The problem becomes
more severe when Bluetooth, GPS measurements, and similar high-energy re-
quirement features and applications are part of the sensor network.

The notion of designing energy-saving strategies, well-studied and imple-
mented in the context of traditional sensor and mobile networks [TT/17], has
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also been incorporated into WBANSs for activity-level detection. For example,
the goal of the work by Benbasat et al [2] is to determine a sampling scheme
(with respect to frequency of sampling and sleeping/waking cycles) for multi-
ple sensors to minimize power consumption. A similar scheme which minimizes
energy consumption based on redistributing un-used time over tasks as evenly
as possible is described in the work by Liu et al [I3]. Yan et al [22] have in-
vestigated the Bluetooth and ZigBee protocols in WBANSs, and developed an
energy optimization scheme based on the tunable parameters of these protocols,
e.g. connection latency. Our approach is different in the fact that the energy-
efficiency of the system is a result of optimized detection performance. In the
next section, we describe our experimental setup, present the signal model used
to develop our optimal time-resource allocation, and outline the optimization
problem which uses the probability of error metric.

3 KNOWME Activity-Detection System Overview

The target functionality of the KNOWME network for activity-level detection,
and the current system implementation, is outlined in this section. We note that
our current work derives the optimal time-resource allocation algorithm for the
“static” case wherein we do not explicitly account for the current state of the
subject, i.e. the optimal allocation of samples does not evolve as a function of
time. Figure [2] shows an illustrative example of a state-transition diagram that
is used to determine the a priori probablities for a particular activity-level. For
example, if we know that the subject is standing, the transition probabilties
from the Standing state to the Lying, Sitting, Walking and Standing states
are given as 0.05, 0.4, 0.25 and 0.3, respectively. As is seen in Figure 2] the a
priori probabilities are distinct for each state. These are incorporated into the
probability of misclassification metric that we use to derive the optimal time-
resource allocation algorithm in Section

Fig. 2. Example of a state-transition diagram that may be used to determine the
transition probabilties in the KNOWME activity-detection system
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3.1 System Implementation

Our current implementation of the KNOWME software connects a Nokia N95
8GB phone to multiple bluetooth-enabled body sensors which continuously col-
lect data and relay it to the phone. The phone, which serves as the fusion center,
has a Dual ARM 11 332 MHz CPU, 128MB RAM, and is a Bluetooth 2.0 EDR
compliant Class 2 device, running Symbian OS 9.2. The software running on the
phone is written for Python for S60 devices. The software is configured to con-
nect to multiple Bluetooth devices; on starting the data collection, the software
opens a new thread for each device specified. The data received from the sensors
can be parsed and analyzed on-the-fly in the write thread on the phone to de-
cide whether to disconnect or disable a sensor or not. The thread handling that
sensor can be put in a wait state after disconnecting, and can be signalled later
when it is decided that we need data from that sensor again. We note that we
are still currently working on implementing the optimal allocation of samples; in
its current form, all sensors transmit an equal number of samples to the fusion
center.

4 Problem Formulation

In this section, we first present the signal model for our wireless body area
network which is deployed in a simple star topology, and then outline our opti-
mization problem: We minimize the probability of misclassification at the fusion
center, given samples from all the sensors. We note that obtaining the optimal
allocation of samples requires an exhaustive search over the total number of sam-
ples, N, since all possible partitions of the samples between the heterogeneous
sensors must be considered to find the optimal allocation. This was considered
for the binary hypothesis case with two sensors in our previous work [19]. As the
total number of available samples and number of sensors increases, the combi-
natorial search becomes undesirably computationally expensive.

To this end, we develop an analogous optimization problem which yields an
approximately optimal solution, but which can be solved using lower complexity
continuous-valued vector optimization techniques. The derivation of the alter-
nate problem is outlined, and the algorithmic complexities of the two optimiza-
tions are compared; numerical simulations are presented in the following section.

4.1 Signal Model

Heterogeneous sensors are deployed in a simple star topology as shown in
Figure [[l Each sensor sends its biometric samples directly to the cellphone via
the Bluetooth protocol. There has been extensive research in the modeling of
physiological time-series data, and the autoregressive (AR) model has been em-
ployed in a variety of contexts. Physiological hand-tremors are represented using
an AR(3) model in [23], while the works in [I4/I5] use an AR model to estimate
ElectroEncephaloGram (EEG) signals. The AR model, while not always an ex-
act match to the data, is one of the less complicated models used since it allows
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for a more thorough analysis and development of solutions. In our work, we use
the AR(1) model to represent a biometric time-series. Furthermore, both the
sensing and the communication of the measurements are assumed to be noisy
given the measurement systems and wireless channels, respectively.

We now propose the following signal model for the decoded and processed
samples received by the fusion center:

y¢=9+zi,i:1,...,Nk (1)

for the k-th sensor, where z; represents the independent and identically dis-
tributed (iid) zero-mean Gaussian measurement and channel noise. For a general
feature/sensor Ay, 6 is a normally distributed random variable, specified as

9]‘ = A, T W; (2)

for hypothesis H;, where w; represents the biometric noise and is modeled using
the AR(1) model, i.e.

Wi = QW;—1 + €, i:27"°7Nk7 (3)

for k-th sensor which has been allocated Nj samples, and ¢ is zero-mean Gaussian
with variance o7, . The choice of the Gaussian model is motivated by several
factors. An analysis of the data collected during our pilot study [I] suggested that
the Gaussian model is a relatively good fit for the biometric samples collected by
the fusion center. A more complicated model with a better fit to the data may
be chosen, but the Gaussian model lends itself to analysis, and the development
of tractable solutions. To simplify notation, we omit the hypothesis subscript ;
when expressions and definitions are applied to a generic hypothesis. We denote
the number of samples sent by the K sensors as Ny, No, ..., Nk, respectively,
and impose a constraint of N total samples, i.e. Ny + No+---+ Ng = N, for a
specific time-period.

Since the features are modeled as Gaussian, and given that the AR(1) model is
linear, the M-ary hypothesis test using the model in () is simply the generalized
Gaussian problem which is specified as

HZ'I YNN(mi72i), Z':].,...“]w'7 (4)

where m;,3;,¢ = 1,2,..., M are the mean vectors and covariance matrices of
the observations under the each of the M hypotheses. For completeness, we recall
the density of the multivariate Gaussian given by:

1 1 T y—1
fX(.I‘l,...,J?N)— (27T)N/2|E‘1/2 €xXp <—2($—/J,) o) (.I‘—M)), (5)
where p is the mean vector and X is the covariance matrix. Empirical data from
our pilot study [I] suggests that the conditional correlation between features is
relatively small; and thus, for the K features Ai, Ao, ..., Ax from the sensors,
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the mean vector and covariance matrix for the observations for hypothesis H;
for j=1,--- , M are of the form

| Si(A) 0 0 0
o 0 Bj(ds) 0 o 0
m; = 1 and 3= 0 0 %;(43) - 0 . (6)
Hidw 0 0 0 - 3;(Ax)

respectively. Note that p;a4, is a N; x 1 vector and X;(A4;) is a N; x N; matrix.
We have assumed that the samples from different sensors are independent; this
is further supported by the fact that certain sensors yield a better performance
when discriminating between some subsets of activities.

Given the signal models in ([[l) and @]), for a particular feature Ay, the co-
variance matrix can be expressed as

2
B4 = M T4l (7)
1— 2 2

where T is a Toeplitz matrix of the form

1 o ¢r PNl
) 1 ¢ e PNET2
A ®

¢N;C71 ¢N;C72 ¢N;C73 1

and I is the Ny x N identity matrix. This results in the covariance matrices
X;,7=1,..., M being block-Toeplitz matrices. To derive a vector optimization
that circumvents an exhaustive search, we may replace the Toeplitz covariance
matrices with their associated circulant covariance matrices] given by

2

S(4,) = A C4ol 9
(Ap) = e + 021, 9)

1

where the matrix C is of the form

1 o ¢2 R ¢Nk—1
¢Nk*1 1 ¢ - ¢Nk*2
Np—2 4Np—1 Np—3
6 # S 1
1 'We note that the inverse of the Toeplitz covariance matrix in (@) converges to the
inverse of the circulant covariance matrix in (@) in the weak sense. Sun et al [18]
have derived that a sufficient condition for weak convergence is that the strong norm

of the inverse matrices be uniformly bounded. We find that this is the case for the
matrix forms in (7) and (@) for 0 < ¢ < 1.
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4.2 Probability of Error Derivation

We derive a closed-form approximation for the probability of error in the multi-
hypothesis case via a union bound incorporating the Bhattacharyya coefficients
between pairs of hypotheses. A result by Lianiotis [T2] provides an upper bound
on the probability of error, independent of the prior probabilities, given as

P(e) < Y (PP)? pij, (11)

i<j

where p;; is the Bhattacharyya coefficient defined as

— [ @) s (12)

Thus, the optimization problem considered can be stated as

K
ml\iIn P(e) subject to ;Nk =N, Nj;>0Vk, (13)

where N = (N7, Na, ..., Nk) is the allocation of samples amongst the K sen-
sors. In the case of the multivariate Gaussian, if f;(z) = N(z;m;, X;), the Bhat-
tacharyya coefficient is given by:

)

Pij = €Xp <—
where |X| =det X, and 23, =3; + ;.

Given the block-diagonal structure of the covariance matrix in (@), we first
decompose the terms of the Bhattarcharyya coefficient p;; for generic hypotheses
H; and Hj as follows:

1
8

1]

\/\ il125]

(mi —my) " Zn " (mi —my) +

K
det ;= [ det Zi(Ap), (15)
k=1
and
K
(g —pa)"3, = (wia, — 1ia)"E, (Ak) (ja, — pia)- (16)
k=1

Thus, computing each of the terms for an individual feature Ay is sufficient to
evaluate the probability of error specified in (Il). The structure of the covariance
matrix in (@) is block-Toeplitz, or approximated as block-circulant, where the
k-th block is of size Ny x Ng. For every unique allocation of samples amongst
sensors, the structure of the covariance matrix is distinct, and thus an exhaustive
search over all possible partitions of the total number of samples is required to
find the optimal allocation of samples to minimize the probability of error.
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To evaluate the term in (IH), we use the Toeplitz structure in (@), and rewrite
the covariance matrix as follows [7]:

2(Ag) = Zp(Ak) + Zomr (Ak) (17)
0 1) ¢2 ¢Nk'—1
2 ¢2 0 ¢ - d)xk_z
AR RS
d)N;—l ¢N;—2 d)N;—S O

where o = 0% /(1 — ¢*) + o2. Given this expansion, the determinant of the
covariance matrix can be computed using

det ¥ = det Bp - det (I + 35" Zogr) (19)
wherein, using A = EBIEOH, we now evaluate
det (I+ A) =exp (tr (log (I+ A))) (20)
A% A A4
:exp(tr(A— 5 + 3 T 4 —|—)> (21)
From the form in ([3), and using the geometric progression
- 1—rt (n 1)
k _
Zkr _r{(l—r)Q_ Ly }, forr#1, (22)
k=0
we evaluate the single feature term in (I5) as
det £(Ay) = aNkefc'[flJrqﬂNk ,Nk(hd,—z)]’ (23)
where )
o 1| oA ¢
T a2 1_¢2 (1_¢—2)2'

To evaluate the term in (I8), the circulant approximation in (@) is employed
and we can simplify (@) as

Nj Ny

(yan = poa)® YD) (5,1 (A] (24)

i=1 j=1

which shows that we do not need to compute X L but only require the sum of
all the elements of the inverse matrix. To this end, we employ a simple result by
Wilansky [2I] which states that if the sum of elements in each row of a square
matrix is ¢, then the sum of elements in each row of the inverse is 1/c. Note that
the sum of the elements of the n-th row of X(Ay) can be simplified as

o o4, 11— 2 2
Zl (E(Ak)],; = 1—¢2 1-¢ +o, +o, (25)
=

using the geometric progression,
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1—r
k _
Zr = 1_n, forr#1. (26)

Thus, for a single block of the covariance matrix X(Ay), we can evaluate the
term in (6] as
~1
2 N,
oy, (1 —07) 2 2
(ya, — poa,)*Ni | 27" +oZ+o2| . (27)
. * (1-¢*)(1-29)

Note that the simplified expressions in ([23) and [27) are used to compute the
bound on the probability of error in (IIl), but are independent of the discrete
block-diagonal structure of the covariance matrix in (B). Thus, an exhaustive
search over K integer partitions of N total samples is converted to a continuous-
valued vector optimization over [0, 1] which is minimized with lower complexity.
The optimization problem may be rescaled with no loss of generality.

5 Performance Analysis

In this section, we present a numerical analysis of experimental data collected
during our pilot study [I], and compare the complexity of the optimal exhaustive
search and the approximately optimal vector optimization. Data was collected
using graduate student test subjects; training and testing periods of 10 and 4
minutes, respectively, are collected for seven activities (Sitting, Standing, Sitting
and Fidgeting, Standing and Fidgeting, Lying down, Walking and Running) from
two accelerometers and an ECG monitor.

5.1 Optimal Allocation Using Sensor Data

We consider the case with four hypotheses (Sit, Stand, Sit&Fidget, and Stand&
Fidget), and three available features. The features considered, extracted from
the three sensors, are accelerometer mean, accelerometer variance, and the ECG
time-period, which are allocated N1, N2 and N3 samples, respectively. The un-
derlying distributions for these hypotheses, for a single participant, is shown in
Figure [ for each of the sensors/features.

We assume that “Sit” is the current state, and that the transition probabilities
to the states (Sit, Stand, Sit&Fidget, and Stand&Fidget) are [0.3, 0.15, 0.5, 0.05].
We first compute the optimal solution via an exhaustive search over all possible
sample allocations, and then compute the approximately optimal solution via the
lower complexity vector optimization. Figureshows the results of an exhaustive
search for the numerical case specified above with N = 30 samples and ¢ = 0.25.
We have assumed that each of the sensors is allocated at least one sample, and we
see that the lowest probability of error is achieved for { N7 = 2, N, = 27, N3 = 1}.
Thus, the optimal allocation of samples in this case is to allocate most of
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Fig. 3. Distributions for four hypotheses and three features; ACC mean, ACC variance
and ECG period that are allocated Ni,N2 and N3 samples, respectively

the samples to the accelerometer variance feature, and no samples to the ECG
period.

The probability of error is also minimized via the vector optimization based
on the closed-form approximations derived in the previous section. The mini-
mization problem is rescaled, without loss of optimality, so that N = 1 and
we use an initial guess of Nog = (1/3,1/3,1/3). We employ Matlab’s fmincon
optimization function, and find N* = (0.08,0.92, 0), which corresponds to an al-
location of (4,26,0) amongst the three sensors. The optimal and approximately
optimal solutions are indicated on Figure @l along with the probability of error
corresponding to an equal allocation of samples. We find that the approximately
optimal solution (P(€) = 0.017) obtained via the vector optimization provides
an improvement compared to the equal allocation case (P(e) = 0.138). This
vector optimization requires 29 function evaluations, and the exhaustive search
requires 406 function evaluations for N = 30 samples.

We recall that the optimal allocation of samples will be different when the
current state changes, and for different values of transition probabilties from the
current state to the next possible state.
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Fig. 4. Minimizing the probability of error P(e€) via an exhaustive search and the real-
valued continuous optimization yields approximately equal solutions

5.2 Algorithm Complexity and Scalability

Computing the optimal allocation of samples via the vector optimization is much
lower complexity than the exhaustive search.Given N samples and K sensors,
the number of function evaluations required are

<NI+([_(1_1> ~ O (N1, (28)

A functional evaluation is defined as a single computation of the Bhattacharyya
coefficient in (I4). The notation O(-) denotes the complexity of an algorithm
in the asymptotic sense, i.e. a complexity of O(N?) means that as the number
of samples, N, gets very large, the exhaustive search will require N? function
evaluations.

On the other hand, the vector optimization via Matlab’s fmincon function,
for the N = 30 case, requires between 30-60 function evaluations, and does not
depend on the number of total samples available since the optimization problem
has been rescaled. As N gets large, computing the optimal allocation of samples
via the continuous optimization yields a significant reduction in complexity; in
the K = 3 case considered herein, the number of function evaluations is reduced
from O(N?) to O(1); the latter notation means that the number of function
evaluations required will remain approximately constant, regardless of the total
number of available samples, N.
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The model and derivation presented in this work incorporates 3 sensors and
multiple hypotheses. As more sensors are incorporated, the decreased complex-
ity due to the vector optimization over an exhaustive search is much more pro-
nounced as is suggested by (28]). Furthermore, an increase in the total number
of samples will not affect the optimization.

6 Conclusion and Future Work

The problem of minimizing the probability of misclassification when discrimi-
nating between multiple hypotheses in the context of activity-level detection in
wireless body area networks has been considered. We find that equally allocating
samples amongst heterogeneous sensors is not optimal, and the probability of
error can be minimized by allocating more samples to sensors that can better
discriminate between a subset of hypotheses. Given a fixed number of samples,
the optimal allocation of samples may be obtained via an exhaustive search
which is computationally expensive. An alternative vector optimization derived
yields an approximately optimal solution with significantly lower complexity.
Since not all sensors are required to transmit all their measurements in a
specific time-period, the Bluetooth communication between a particular sensor
and the fusion center can be turned off. We are working on quantifying energy
savings that occur as a result of the optimized performance. Furthermore, we are
developing the KNOWME activity-detection system, described in Section[3] that
incorporates time-varying optimal allocations. During its development, these al-
gorithms will be trained and tested in overweight minority youth participants,
with the aim of providing accurate, user-friendly, interpretable real-time infor-
mation on hard to measure outcomes such as physical activity. In the future, the
KNOWME body-area network will provide excellent tools to accurately measure
real-time obesity-related outcomes as well as a modality for intervention.
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