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Abstract—A physical activity (PA) recognition algorithm for
a wearable wireless sensor network using both ambulatory
electrocardiogram (ECG) and accelerometer signals is proposed.
First, in the time domain, the cardiac activity mean and the
motion artifact noise of the ECG signal are modeled by a
Hermite polynomial expansion and principal component analysis,
respectively. A set of time domain accelerometer features is
also extracted. A support vector machine (SVM) is employed
for supervised classification using these time domain features.
Second, motivated by their potential for handling convolutional
noise, cepstral features extracted from ECG and accelerometer
signals based on a frame level analysis are modeled using
Gaussian mixture models (GMM). Third, to reduce the di-
mension of the tri-axial accelerometer cepstral features which
are concatenated and fused at the feature level, heteroscedastic
linear discriminant analysis is performed. Finally, to improve
the overall recognition performance, fusion of the multi-modal
(ECG and accelerometer) and multi-domain (time domain SVM
and cepstral domain GMM) subsystems at the score level is
performed. The classification accuracy ranges from 79.3% to
97.3% for various testing scenarios and outperforms the state-
of-the-art single accelerometer based PA recognition system by
over 24% relative error reduction on our 9-category PA database.

Index Terms—Physical activity recognition, Electrocardio-
gram, Accelerometer, Multimodal signal processing, Cepstrum.

I. INTRODUCTION

UTOMATIC recognition of physical activity (PA) with

wearable sensors can provide feedback about an indi-
vidual’s lifestyle and mobility patterns. Such information can
form the basis for new types of health assessment, rehabil-
itation, and intervention tools to help people maintain their
energy balance and stay physically fit and healthy.

Recently, promising results from wearable body accelerom-
eters in single or multiple locations for detecting PA have
been presented [1]-[9]. Both [3] and [4] offer comprehensive
summaries of existing accelerometer-based approaches. It has
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been shown in [2] that a system with five accelerometers
improved the average accuracy of PA recognition by 35%
compared to a system with a single accelerometer. However,
placing wearable sensors in multiple body locations can be
quite cumbersome when the user has to collect data on a daily
basis or for longer periods of continuous monitoring. Thus,
many approaches based on multiple integrated sensor modal-
ities have been proposed, since it is much more comfortable
for the user to wear a single device. Moreover, incorporating
multimodal information can yield additional physiological and
environmental cues, such as heart rate, light, skin resistance,
temperature, audio, global positioning system (GPS) location,
etc [10]-[13]. It is in this context that we examined the
validity and feasibility of using multimodal wearable sensors
in a laboratory setting within the KNOWME network to
discriminate between various categories of PAs.

The KNOWME network [14]-[17] is developed to target
technology-centric applications in health care such as pedi-
atric obesity. The KNOWME network utilizes heterogeneous
sensors simultaneously, which send their measurements to
a Nokia N95 cellphone via Bluetooth, as shown in Fig. 1.
Flexible sensor measurement choices can include ECG signals,
accelerometer signals, heart rate, and blood oxygen levels as
well as other vital signs. Furthermore, external sensor data are
combined with data from the mobile phone’s built-in sensors
(GPS and accelerometer signal). Thus, the mobile phone can
display and transmit the combined health record to a back-end
server (e.g. Google Health Server [18]) in real time.

In this study, we use ECG and accelerometer signals in
the KNOWME network to detect PA categories. This sensor
choice is common and frequently used in many studies for
multimodal PA recognition [12], [13], [19], [20]. ECG is
a physiological signal which accompanies physical measure-
ments and therefore has great potential to increase the accuracy
of PA recognition. There already exist several commercial
ECG monitors with built-in accelerometers [21]; thus, users
only need to wear one single multimodal sensor of this type
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Fig. 1. KNOWME wearable body area network system
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and can feel more comfortable while carrying out their daily
lives. Finally, the ECG is a very important diagnostic tool and
is widely used in a great majority of mobile health systems.
A study of the relationship between PAs and the ECG signal
can be useful in health monitoring applications.

The ECG sensor measures the change in electrical potential
over time. A single normal cycle of the ECG represents the
successive atrial depolarization/repolarization and ventricular
depolarization/repolarization. The advantage of the wearable
ECG devices is that they can be used both in a hospital setting
and under free living conditions. The practical challenge is that
the ECG signal is often contaminated by noise and artifacts
within the frequency band of interest, which can manifest with
similar morphologies as the ECG itself [20]. Instant heart rate
extracted from the ECG signal has been studied in distin-
guishing PAs in conjunction with accelerometer data [12]-
[14], [22], and results showed that only modest gains were
achieved [22]. Recently, it has been shown in [19], [23] that the
motion artifacts in a single-lead wearable ECG signal induced
by body movement of an ambulatory patient can be detected
and reduced by a principal component analysis (PCA) based
classification approach. Thus, in addition to heart rate details,
ECG signals contain additional discriminative information
about PA. In the proposed work, we extend the development
in [23] by using Hermite polynomial expansion (HPE) and
PCA to describe the cardiac activity mean (CAM) and motion
artifact noise (MAN), respectively. Furthermore, instant heart
rate variability (mean/variance) and heartbeat shape variability
(noise measure within a window) are combined with HPE and
PCA coefficients to generate a set of ECG temporal features
and used for PA classification.

In contrast to the ECG signal, the accelerometer signal has
been studied extensively for PA recognition. There exists a
wide range of features and algorithms for supervised classifi-
cation of PAs with accelerometer derived features. Commonly
used methods in the context of activity recognition include
Naive Bayes classifiers [1], [2], [6], [9], [22], C4.5 decision
trees [1], [2], [6], [9], [12], [13], [22], nearest neighbor meth-
ods [1], [2], [9], boosting [6], [10], support vector machines
(SVMs) [6], [8], and Hidden markov models (HMM) [5],
[7]. A comparison of these methods is reported in [3], [4],
[6], [9]. Moreover, a variety of features in both time and
frequency domains have been adopted [1]-[4], [9]. In general,
the SVM classifier based on temporal feature statistics was
found to be one of the best performing systems [6], [8]. In
this work, a set of conventional temporal features is extracted
from accelerometer signals and used for PA classification.

The temporal features from ECG and accelerometers are
modeled using a support vector machine (SVM). The gen-
eralized linear discriminative sequence (GLDS) kernel [24]
was employed due to its good classification performance
and low computational complexity. The GLDS kernel uses
a discriminative classification metric that is simply an inner
product between the averaged feature vector and model vector
and thus is very computationally efficient with small model
size, making it attractive for mobile device implementations.

More recently, promising results in biometrics [25] have
shown that cepstral features of stethoscope-collected heart
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Fig. 2. The proposed physical activity recognition system overview

sound signals can be used to identify different persons. This
inspired us to explore the potential of cepstral domain ECG
features for PA detection. Compared to time-domain fiducial
points or the PCA approach, cepstral feature calculation uses
short fixed length processing windows and thus does not need
the pre-processing steps of heartbeat segmentation and normal-
ization. Furthermore, for accelerometer signals, the evaluation
in [4] shows that Fast Fourier Transform (FFT) features always
rank among the features with the highest precision, but the
FFT coefficients that attain the highest precision are different
for each activity type. Therefore, combining different FFT
coefficients within filter bands might provide a good com-
promise versus using individual spectral coefficients. Thus, in
the proposed work, linear filter bank based cepstral features
extracted from both accelerometer and ECG signals are used to
measure the cepstral characteristics of different PAs. The cep-
stral features corresponding to different PA types are modeled
using Gaussian Mixture Models (GMMs). We combine both
temporal and cepstral information at the score level to improve
the system performance. We hypothesize that cepstral features
can capture the spectral envelope variations in both ECG and
accelerometer signals and thus can complement conventional
time domain features. Also, as described in Section II, cepstral
features provide a natural way for handling convolutional
noise inherent in the sensor measurements. Moreover, fusing
system outputs from multiple modalities at the score level
can also improve performance [26]. ECG and accelerometer
cepstral features are not concatenated and fused at the feature
level due to compatibility issues arising from different time
shift and window length configurations and different sampling
frequencies. However, the cepstral features from each axis
of the accelerometer are concatenated to construct a long
cepstral feature vector in each frame. Heteroscedastic linear
discriminant analysis (HLDA) [27] is used to perform feature
dimension reduction. As a special form of (single state) HMM,
a GMM model is developed for each activity by using a
sequence of feature vectors, rather than individual instances,
with a view toward better capturing the temporal dynamics.
As shown in Fig. 2, after the classification scores of both the
temporal feature based SVM systems and the cepstral feature
based GMM systems are available, the four individual system
outcomes are fused at the score level to generate the final
recognized activity.

Just as individual variability can have significant impact on
the interpretation of both the accelerometer and ECG data
[28], [29], session variability is another important issue in
PA recognition. In real life applications, many other factors
can influence or even modify the desired sensor signals, such
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as sensor placement location, user emotion, fitness, etc. Even
within the same activity, an individual can perform various
styles of PA, which might not appear in the training set,
and thus decrease the system performance. In this study, the
session variability of the ECG and accelerometer signals is
studied under subject dependent modeling framework.

In summary, we address the PA recognition problem with
multimodal wearable sensors (ECG and accelerometer) in this
work. The contributions are as follows: (1) The cardiac activity
mean (CAM) component of the ECG signal is described by
Hermite polynomial expansion (HPE) in the temporal feature
extraction. (2) In the SVM framework for both ECG and
accelerometer temporal features, the GLDS kernel makes the
classification computationally efficient with a small model
size. (3) A GMM system based on cepstral features is proposed
to capture the frequency domain information in a robust
fashion against convolutional effects, and HLDA is used to
reduce the feature dimension of tri-axial accelerometer based
measurements. (4) Score level fusion of the multi-modal and
multi-domain subsystems is performed to improve the overall
performance (5) The effects of session variability of ECG and
accelerometer measurements on PA recognition are studied.

The remainder of the paper is organized as follows. The
description of the proposed multimodal PA recognition system
will be provided in the following sections: feature extraction in
Section II, activity modeling in Section III, and system fusion
in Section IV. Section V presents the experimental setup and
results followed by a discussion in Section VI. Section VII
provides the paper’s conclusion.

II. FEATURE EXTRACTION

A feature is a characteristic measurement, transform, or
structural mapping extracted from the input data to represent
important patterns of desired phenomena (PA in our case) with
reduced dimension. For example, the standard deviation of an
accelerometer reading and the mean of the instantaneous heart
rate via the ECG are good candidates as PA cues or features.
Furthermore, utilizing the complementary characteristics of
different types of features can offer substantial improvement
over single type features in the recognition accuracy depending
upon the information being combined and the fusion method-
ology adopted [26]. In this section, we describe the proposed
time domain and cepstral feature extraction process in detail.

A. Temporal feature extraction

We consider four types of temporal features. Features in
the first set, which we denote as ‘“conventional”, were se-
lected based on their efficacy as demonstrated in the liter-
ature regarding wireless body area sensor networks; for the
accelerometer, the conventional features are shown in Table
I, and for the ECG sensor, the mean and variance of the
instantaneous heart-rate constitute the conventional features.
The other three features sets are comprised of features that
describe the discriminative activity information for the ECG
signals. These features result from more complex processing
of the ECG signal: (i) the principal component analysis
(PCA) error vector, which has been previously studied in
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Fig. 3. The mean and standard deviation of normalized ECG signals.

[23] for body movement activity recognition, (ii) the Hermite
polynomial expansion (HPE) coefficients, and (iii) the standard
deviation of multiple normalized beats which are novel to our
work. These techniques model the underlying signals, and the
resultant model parameters are the features. First, we describe
the required pre-processing of the collected biometric ECG
signal, then we describe the ECG temporal feature extraction,
and finally we outline the temporal accelerometer features.
1) Pre-processing of the ECG Signal: Each type of body
movement induces a particular type of motion artifact in the
ECG signal. If there are M hypothesized activities, for the j**
heartbeat observation under the it activity, the continuous-
time recorded ECG signal, r;;(t), is modeled as [19], [23]

75 (t) = 0i(t) + xa; (t) + iz (1), (1)

where 6;(t) is the cardiac activity mean (CAM) which is the
normal heart signal, x;;(¢) is an additive motion artifact noise
(MAN) due to i'" class of activities, and 7;;(t) is the sensor
noise present in the ECG signal. Since the length of each
heartbeat is different due to inherent heart rate variability,
the first step of pre-processing normalizes each heartbeat
waveform to the same time duration (in the phase domain)
and amplitude range [20], [23]. Due to the low signal to noise
ratio (SNR) of the ECG signal in high intensity PA, fake
peak elimination and valid beat selection [20] are performed
to enhance the robustness and reduce the peak detection error.

The D-dimensional vector representation of r;;(t) over
one heartbeat is denoted 7;; and the D-dimensional vector
representations of the corresponding CAM, MAN, and sensor
noise components are €;, x;;, and 7;;, respectively. Fig. 3
shows the mean and standard deviation of the normalized
ECG signal for different activities. One of our innovations
over [23] is the recognition that both CAM and MAN carry
discriminative information between different PAs.

2) Principal Component Analysis: Principal component
analysis (PCA) is used for feature extraction from the MAN
component ;. For the it" activity class, we use v; heartbeats
to estimate the CAM 8, (as in [23]),

- 1 &
6, = — i 2
ui;” 0

We note that the number of heartbeats available for training,
v;, is different for each of the activities. Subtracting the CAM
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from the signal r;; yields residual activity vectors #;;:

Tij = Tij — 0; = Xij + 0ijs 3)
where 1);; includes both the sensor noise and the CAM
estimation noise induced by the session variability. As noted
in [23], although the signal component due to MAN has
smaller amplitude than CAM, it has much greater amplitude
than the sensor noise, i.e., |n| < |x;| < 0;|, Vi (where ||
is the 2-norm). Thus, the MAN has a dominant influence
on the shape of the residual activity vector 7;. For each
activity class 7, we now compute eigenvectors and eigenvalues
using the eigen-decomposition of the covariance matrix X;
of 7;;. Let E; = [e;0,€;1,- -+ ,€ix;] be a set of eigenvectors
corresponding to the x; < D largest eigenvalues, and let p,;
be a vector representation of the j** normalized observation
ECG heartbeat after pre-processing. We subtract the class
mean 8;, see (2), from p,; to yield p;;. Thus, a measure of the
reconstruction error in i activity’s residual vector eigenspace,
for the jth ECG heartbeat observation, is defined as:

. _ _ 2
REXA(i) = |py; — (BiE] Dy, “4)

which is summed over v heartbeat observations. In the PCA
approach studied in [19] and [23], the decision is assigned to
the activity class label from¢ = 1, - - - , M for which the recon-
struction error REPA (1) is the minimum. However, the activity
class mean ; is pre-trained and fixed in all the testing situ-
ations. This can induce session-to-session variability issues.
Differences in sensor electrode placements and user emotion
states can cause fluctuations of the mean vector between the
training and testing data which affect the computation of the
residual activity vector. Furthermore, this PCA method does
not use the heart rate or other intra-beat statistical information,
and focuses only on the normalized heartbeat modeling. In this
work, we address this issue by adopting the PCA error vector
REP“* = [REP®A(1) REP“A(2) ... REPCA(M)] as one of
the temporal ECG features used for PA recognition.

3) Hermite polynomial expansion: A Hermite polynomial
expansion (HPE) is used to model the CAM component 8; of
the sampled ECG signal, and the resulting coefficients serve
as another feature set for classification. Hermite polynomials
are classical orthogonal polynomial sequence representations
[30] and have been successfully used to describe ECG signals
for arrhythmia detection [31] but do not appear to have been
previously used for PA detection. In Fig. 3, the shape of
the CAM component for each activity is different and thus
these signals can be used to distinguish between different PA
states. Rather than subtracting the activity mean to model the
motion artifact noise, we average the normalized ECG signal
to estimate the cardiac activity mean. Let vr denote the fixed
number of normalized heartbeats in each running window; the
CAM component of the x" window is estimated by

(k+1)vp

éi/{:; > vy ®)

Jj=(k)vp+1

Denote each estimated D-dimensional (D is an odd number)
CAM component vector and polynomial order by 8[n] and L,

TABLE 1
CONVENTIONAL TEMPORAL ACCELEROMETER FEATURES

mean absolute deviation Zero crossing rate energy
(20, 40, 60, 80)" percentile spectral entropy kurtosis
cross correlation mean crossing rate median

mean of maxima mean of minima mean
standard deviation root mean square skewness

respectively. The HPE of 6[n] can be expressed as [31]
L—1

f[n] = Z ai(n,d),

=0

where {¢;},1=0,1,---,L — 1 are the HPE coefficients, and
1(n,d) are the Hermite basis functions defined as:

1
Yi(n,6) = W

The functions H;(n/d) are the Hermite polynomials [30]:
Ho(t) =1, Hi(t) =21, ®)
Hi(t) = 2tH1(t) — 2(1 — 1) H (1) )

(D-1) (D-1)
e )

, (6)

e /2% /) (n)6). 7

It had previously been shown in [31] that, for Hermite basis
functions with different orders, the higher the order the higher
is its frequency of changes within the time domain and thus
resulting in a better capability for capturing morphological
details of ECG signals. The HPE basis functions can be
denoted by a D x L matrix B = [t¢pg 1 --- tp_1]; the

expansion coefficients ¢ = [co ¢; -+ cr_;]T are obtained by
minimizing the sum squared error E:
L—1 , )
E = ||0[n] — Z clwl(n,é)HQ =6- BCH2
1=0

— c=(BTB)"'BT4. (10)

As shown in [31], HPE based reconstruction is nearly identical
to the original waveform for ECG signals. The HPE coeffi-
cients c are also employed as ECG temporal features.

4) Standard deviation of multiple normalized beats: We
had previously observed that the variance of the accelerometer
measurements offered discrimination capability [14]; this fea-
ture for the ECG signal also has utility. From Fig. 3, we see
that higher intensity states (walking) have a larger standard
deviation than lower intensity ones (lying). If the user is lying
down or sitting, then the normalized heartbeat shapes are more
consistent or similar within the whole processing window, but
if the user is walking or running, then the normalized ECG
shape can vary dramatically and become noisy. Thus the sum
of standard deviations for all the normalized bins (D bins) in
the window is also employed as a feature. To our knowledge,
this feature has not been previously used for PA classification.

Thus, for the temporal ECG features, not only are the
PCA error vector and HPE coefficients included but also
are the conventional mean and variance of instant heart rate
and standard deviation of multiple normalized beats (noise
measure). By using multiple measurements, this temporal
ECG feature vector covers both conventionally used heart rate
information and novel morphological shape information.
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5) Temporal Accelerometer Features: For the tri-axial ac-
celerometer, a set of conventional temporal features (in Table
I) is extracted from the signals of each axis in every processing
window. These features have been previously studied in [1]-
[4], [9], employing various subsets of the features listed.

Both ECG and accelerometer temporal feature vectors are
denoted as y and modeled by a support vector machine as
explained in Section III-A.

B. Cepstral feature extraction

In this work, it is assumed that both ECG and accelerometer
signals have quasi-periodic characteristics resulting from the
convolution between an excitation (heart rate or moving pace)
and a corresponding system response (ECG waveform shapes
[20] or accelerometer moving patterns). Furthermore, in the
acquisition of both ECG and accelerometer signals, there are
many other “channel” artifacts, such as skin muscle activity,
mental states variability, electrodes displacements, and so on.
Cepstral analysis [32]-[34] is a homomorphic signal transform
technique that transforms a convolution into an additive rela-
tionship which makes it especially conducive for mitigating
convolutional effects. It has been successfully and widely used
with processing many real life signals, such as speech and
seismic signals [32]—[34]. Thus, in order to filter out the effects
of the different paths from the source signals to the sensors,
using cepstral features to model the frequency information of
the native signal allows us to separate inherent convolutive
effects by simple linear filtering. In the following, we explain
the usage of a real cepstrum and describe the proposed linear
frequency band based cepstral features in detail.

The sensor signal has some frequencies at which motion
artifacts or sensor noise dominate. For example, the ECG
baseline wanders and high frequency noises can result in dras-
tic frame-to-frame phase changes. Furthermore, the properties
of the “excitation” source of the sensor signal (e.g. ECG
heart rate and accelerometer speed) also vary from frame to
frame, which makes the phase not very meaningful. Because
of this, the complex cepstrum is rarely adopted for real life
signals such as speech [34]. Thus, in this activity recognition
application, we use only the real cepstrum which is based
on spectral magnitude information from the sensor signals.
The real cepstrum of a signal x[n] with spectral magnitude
| X (e?")] is defined as [34]:

Cln] = x /Tr In| X (e7")]e?"" dw. (11)

2w

—T

In many applications, instead of operating directly on the
signal spectrum, filter banks are employed to emphasize differ-
ent portions of the spectrum separately. For example, in speech
and audio processing, mel frequency cepstral coefficients
are popular [33] and are derived based on nonlinear filter
bank processing of the spectral energies to approximate the
frequency analysis in the human ear.

Given the FFT of the input signal z[n]

N—-1
X[k] = a[n]e™??™ /N 0 < k <N,

n=0

(12)

where N is the size of FFT, a filter bank with M filters (m =
1,2,--- /M) is adopted to map the powers of the spectrum
obtained above into the mel scale using triangular overlapping
windows H,,[k] [34]. Thus, the log-energy at the output of
each filter is computed as:

N—1
Sim) = in[ Y |X[K]PHn[k],0 <m <M. (13)

Finally, discrete cosine transform (DCT) of the M filter log-
energy outputs is calculated to generate the cepstral features:

M-1
Cln] =Y Sm]cos(mn(m + 1/2)/M),0 < n < M. (14)
m=0

The filter energies are more robust to noise and spectral
estimation errors and thus have been extensively used as the
golden feature set for speech and music recognition applica-
tions [34]. The perceptually motivated logarithmic mel-scale
filter bands are designed for the human auditory system, which
might not match the ECG and accelerometer signals. For this
reason and for simplicity, in this work, we use linear frequency
bands rather than the mel-scale frequency bands. Cepstral
mean subtraction (CMS) and cepstral variance normalization
(CVN) are adopted to mitigate convolutional filtering effects
for ensuring robustness.

Specifically, due to potential inter-session variability, such
as a change in electrode position or a variation in a user’s
emotion state, there is always a fluctuation on the “relative
transfer function” as characterized by the transformation of
the ground truth measurements of the PAs to the sensors’
signals. Therefore, CMS is performed to mitigate this effect.
The multiplication of the signal’s spectrum, X [n, k|, and the
relative transfer function’s spectrum, H[k], in the frequency
domain is equivalent to a superposition in the cepstral domain:

Cyln, k] = Czn, k] + Cylk]. (15)

And the second component C'y [k] can be removed by applying
long term averaging for each dimension k:

Cyln, k] — (Cy[n, k])avg = Cxz[n, k] — (Cy[n, k) qvg. (16)

Thus, cepstral features with CMS and CVN normalization are
more robust against the session variability.

IITI. ACTIVITY MODELING

As shown in Fig. 2, the features in both temporal and
cepstral domains are modeled using the SVM and GMM
classifiers, respectively. The multimodal and multi-domain
subsystems are fused together at the score level to improve
the overall PA recognition performance.

A. SVM Classification for temporal features

An SVM is a binary classifier constructed from sums of
a kernel function K(-,-) over A/ support vectors, where y;
denotes the i" support vector and ¢; is the ideal output:
N
) =) aitiK(y,y:) + d.

i=1

a7)
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The ideal outputs are either 1 or —1, depending upon
whether the corresponding support vector belongs to class 1
or —1. By using kernel functions, an SVM can be generalized
to non-linear classifiers by mapping the input features into a
high dimensional feature space.

The original form of the generalized linear discriminative
sequence (GLDS) kernel [24] involves a polynomial expan-
sion, b(y), with monomials (between each combination of
vector components) up to a given degree p. The GLDS kernel
between two sequences of vectors Y = {y}};—1..v, and
Y? = {y?}i=1..n, is denoted as a rescaled dot product
between average expansions:

1 Ny 1 1 N2
K(Y'Y? — ) b(yHt-RUY N b(y?
( ) ng () N2;1 (¥?)
= (b, 'RCTY2)) . (RCVPb 2) (18)

where R is the second moment matrix of the polynomial
expansions and its diagonal approximation is usually used
for efficiency. In this work, only the first order of b(y) is
used for simplicity: b(y) = y. In addition, if we arbitrarily
add one dummy dimension with value 1 at the head of each
feature vector b(y) = [1 b(y)], R becomes R and the
scoring function of the GLDS kernel can be simplified by
the following compact technique [24]:
N

O aitiR'b +d)" - b,
=1

f{Y}) = =W'.b,, (19
where (b, i) are the support vectors and d is defined as
[d 0---0]'. Therefore, the scoring function of a target model
on a sequence of observations can be calculated using the av-
eraged observation. Furthermore, by collapsing all the support
vectors down into a single model vector W, each target score
can be calculated by a simple inner product which makes
this framework computationally efficient. In this study, the
LIBSVM tool [35] and 1vsRest [24] strategy were used for
the SVM model training. For each activity, a binary SVM
classifier was trained against the rest M —1 activities using the
GLDS kernel in (18). Moreover, for each binary SVM model,
all the support vectors were collapsed into a single vector W
by (19) to make the scoring function computationally efficient.

B. GMM modeling for cepstral features

A Gaussian Mixture model (GMM) is used to model the
cepstral features of the ECG and accelerometer signals. A
Gaussian mixture density is a weighted sum of N component
densities and is given by

p(C|A) = (20)

Z wyp;(C
where C is a D—dlmensmnal random vector, p;(C),j =
1,---, N are the component densities and w;,j = 1,--- , N
are the mixture weights. Each component density is a D-variate
Gaussian function of the following form:

1

p;i(C) = W%p{ C m;)" S5

NC—py)}
21

with mean vector p; and covariance matrix 3);. The mix-
ture weights satisfy the constraint that Z _,w; = 1. The
complete Gaussian mixture density is parameterlzed by the
mean vectors, covariance matrices, and mixture weights from
all component densities. These parameters are collectively

represented by the notation A; for activity ¢, = 1,--- , M,
and are explicitly written as
)‘lz{pjvﬁj72]}7 ]:177N (22)

For subject-dependent PA identification using the cepstral
features of sensor signals, each activity performed by every
subject is represented by a GMM and is referred to by its
model );. In the proposed work, since the training data for
each activity of each subject is too limited to train a good
GMM, a Universal Background Model (UBM) in conjunction
with a Maximum A Posteriori (MAP) model adaptation ap-
proach [33] is used to model different PAs in a supervised
manner. The UBM model is trained using all the training data
including all the activities and all the subjects; then the subject-
dependent activity model is derived using MAP adaptation
from the UBM model with subject specific activity training
data. The expectation maximization (EM) algorithm is adopted
for the UBM training.

Under the framework of GMM, during testing, each sig-
nal segment with 7' frames is scored on all the activities’
models from the same subject. By using logarithms and the
independence between observations, the GMM system outputs
the recognized activity by maximizing log likelihood criterion:

S = arg max Zlog{p (C M)} (23)

IV. SYSTEM FUSION

In a multimodal activity recognition system, fusion can
be accomplished by utilizing the complementary information
available in each of the modalities. In the proposed work, both
feature level fusion and score level fusion are studied.

A. Feature level fusion

Feature level fusion requires the feature sets of multiple
modalities to be compatible [26]. Let q = {q1,¢2, " ,Gm}
and s = {s1, 82, -, 8, } denote two feature vectors (g € R™
and s € R™) representing the information extracted from two
different modalities. The goal of the feature level fusion is
to fuse these two feature sets in order to yield a new feature
vector z with better capability to represent the PA. The I-
dimensional vector z, I < (m + n), can be generated by
first augmenting vectors g and s and then performing feature
selection or feature transformation on the resultant feature
vector in order to reduce the feature dimensionality.

In the proposed work, we only studied the feature level
fusion with different axis features of accelerometer in the
cepstral domain. It is because the cepstral feature may not
be compatible with temporal features and the window length
for the temporal feature calculation is significantly larger than
for the cepstral features. Furthermore, ECG and accelerometer
cepstral features are not concatenated and fused at the feature
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level due to the compatibility issues arising from different time
shift and window length configurations and different sampling
frequencies. However, the cepstral features from each axis
of the accelerometer are concatenated to construct a long
cepstral feature vector in each frame. Heteroscedastic linear
discriminant analysis (HLDA) [27] is used to perform feature
dimension reduction.

B. Score level fusion

Multimodal information can also be fused at the score
level rather than the feature level. The match score is a
measure of similarity between the input sensor signals and
the hypothesized activity. When these match scores generated
by subsystems based on different modalities are consolidated
in order to generate a final recognition decision, fusion is done
at the score level. Since some multimodal feature sets are not
compatible and it is relatively easy to access and combine the
scores generated by different subsystems, information fusion
at the score level is the most commonly used approach in
multimodal recognition systems [26].

Let there be K input PA recognition subsystems (as shown
in Fig. 2, K = 4 in this work), each acting on a specific sensor
modality and feature set, where the k' subsystem outputs its
own normalized log-likelihood vector Ij(x:) for every trial.
Then the fused log-likelihood vector is given by:

K
@) = Brle(e) (24)
k=1
The weight, 8y, is determined by logistic regression based on
the training data [26].

V. EXPERIMENTAL SETUP AND RESULTS
A. Data acquisition and evaluation

Data collection was conducted using an ALIVE heart rate
monitor [21] and a Nokia N95 cell phone. The single lead ECG
signal is collected by the heart rate monitor with electrodes
on the chest, and at the same time the heart rate monitor
with built in accelerometer is placed on the left hip to record
the accelerometer signal. The placement of electrodes and
accelerometer is shown in Fig. 4. Both signals are synchro-
nized and packaged together to transmit to the cell phone
through a Bluetooth wireless connection [14], [15], [21]. The
sampling frequencies of the ECG and the accelerometer are
300 Hz and 75 Hz, respectively. In this work, only one tri-
axial (heart rate monitor built-in) accelerometer signal and
one single lead ECG signal are used for analysis. For each
session, the subject was required to wear the sensors and
perform 9 categories of PA following a predetermined protocol
[17], [36] of lying, sitting, sitting fidgeting, standing, standing
fidgeting, playing Nintendo Wii tennis, slow walking, brisk
walking, and running. The last 3 activities were performed on
a treadmill with subjects’ own choices of speed (around 1.5
mph for slow walking and around 3 mph for brisk walking).
The activities selected here are based on a version of the
System for Observing Fitness Instruction Time (SOFIT), con-
sidered a gold standard for physical activity measurement [36].

Wl
'@SE-‘L!-

€5

Fig. 4. Placement of electrodes (Black filled circles) and accelerometer (Red
open triangle) and data collection environment.

These basic activities are believed to make up or represent
a majority of real life physical activities. Furthermore, since
measurements are based on a laboratory protocol, the modeling
and recognition of these categories can be considered as a
foundational baseline. Subjects wore the sensors for 7 minutes
in each of the 9 PAs with inter-activity rest as needed. Data
from 5 subjects (2 male, 3 female, ages ranging from 13 to 30)
who participated in the experiment are reported in this paper.
Each subject performed 4 sessions on different days and at
different times. Thus the data reflect variability of electrodes
positions and a variety of environmental and physiological
factors. In the following, the proposed approach is evaluated
in both closed set and open set classification tasks.

First, the proposed PA recognition is formulated as a
subject-dependent closed set activity identification problem,
so the performance is measured by classification accuracy.
For each subject, there are data from 4 sessions. Thus we
established 3 different settings to evaluate our methods: Set-
ting 1: For each subject and session, training was based on
data from the first half and testing from the second half.
Setting 2: For each subject, training was on one session’s
data and testing was on another session. Setting 3: For each
subject, training was on 3 sessions’ data and testing was
on the remaining session. In the following, evaluations of
our feature extraction and supervised modeling as shown in
Table ILIII, and V are performed by using setting 3 in which
training and testing data are from different days/times and
training/testing data are rotated 4 times (for cross validation).
The performance reported is based on the average of all the
subjects and all the rotation tests. In addition, score level
fusion and session variability regarding all 3 settings are
studied and demonstrated in Table IV.

Second, in real life free living conditions, there might be
situations that do not quite fit in our 9-category PA protocol.
Thus, 3 different open set task experiments were conducted
to evaluate the generalizability of the results to everyday,
ambulatory monitoring by testing the ability to correctly reject
activities that do not fall within the set categories. All 3 open
set tasks are based on subject dependent modeling of the
previously described Setting 3. First, task 1 is formulated as an
activity verification task (e.g. walking or not) by testing each
in-set hypothesis activity’s likelihood against a global thresh-
old. Task 1: For each time, 8 activities are considered as in-set
target activities while the remaining one activity is assigned as
out-of-set activity for rejection purpose. This out of set activity
is excluded from any training process. The setup was rotated 9
times to calculate the average performance. Equal Error Rate
(EER) is used to evaluate the performance. Second, rather than
identifying/rejecting activities based on thresholds, Tasks 2
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TABLE II
PERFORMANCE (% CORRECT) OF SVM SYSTEM BASED ON TEMPORAL
ECG FEATURES (HR:HEART RATE, NM:NOISE MEASUREMENT)

ECG 1 PCA | 2HPE | 3 HR+NM 243 14243
10 beats 46.9 51.7 433 56.7 60.8
20 seconds 49.4 54.4 44.0 60.0 64.2

and 3 employed closed set classification with the usage of an
“others” activity model to classify all other activities that do
not belong in the desired closed set. As shown in Table V,
task 2 is focused on distinguishing sedentary activities while
rejecting unknown vigorous activities by using the “others”
model trained using data from the “standing fidgeting” activity,
and vice versa for Task 3.

The testing duration of all the evaluation experiments is
fixed at 20 seconds. HPE order, PCA eigenvector dimension,
and the normalized heartbeat sample length D were empiri-
cally chosen to be 60, 40 and 201, respectively.

B. Results

1) SVM system based on temporal features: Table II shows
the results of the ECG temporal feature based SVM system.
Compared to the conventional PCA method [23], the proposed
HPE coefficients together with heart rate (HR) and noise mea-
surement (NM) features achieved nearly 10% improvement
in accuracy. Furthermore, fusing PCA, HPE, HR, and NM
features together achieves an additional 4% improvement.

2) GMM system based on cepstral features: In Table 111, the
results of the GMM system based on different configurations
of cepstral features are shown. Before feature extraction, the
DC baseline is removed by a high pass filter. ECG IDs
(1,2, 8) show that smaller shifts and window sizes have better
performances while ECG IDs (2, 3,4) show that the number
of cepstral coefficients used for recognition does not have to
be the number of spectral bands because DCT calculation in
cepstral feature extraction can be seen as a hidden dimension
reduction method. Moreover, ECG IDs (3,5,6) demonstrate
that 50% overlap and first order delta in cepstral extraction
is necessary. Finally, ECG IDs (7,8,9) illustrate the perfor-
mance against different numbers of Gaussian components. In
this case, GMM with 64 components together with a 120
milliseconds window, 24 cepstral coefficients, 48 frequency
bands, 50% overlap, and first order delta derivatives give us
the best performance of 63.45%.

Evaluation of the accelerometer (ACC) cepstral features
in Table III yields similar results: smaller window sizes
yield higher accuracy. Since the sampling frequency of the
accelerometer is only 75 Hz, we set the minimum window
length to be 480 milliseconds which is exactly 1/4'" of
the ECG feature window size. However, in ACC IDs (1,6),
the best setup for the number of cepstral coefficients is 20
rather than 7. So the final feature dimension is 120 because
of the addition of a first order delta and tri-axial feature
vector combination. ACC IDs (1,7,8,9) show the results of
the HLDA dimension reduction method in the accelerometer
cepstral domain. Results show that the system is not sensitive

to the final reduced dimension, and the accuracy is improved
from 74.76% to 77.56% when the dimension is reduced to 72.

3) Score level fusion: Performance of the score level fusion
at different settings is shown in Table IV. In setting 3, firstly,
fusion of ECG temporal and cepstral systems improves the ac-
curacy from 64.17% to 68.49% while fusion of accelerometer
temporal and cepstral systems achieves accuracy improvement
from 84.85% to 90.00%. Secondly, using the same kind
of features, fusing both ECG and accelerometer information
together can also improve the results. We can see that, in the
temporal domain, fusion of the ECG SVM system and the
accelerometer SVM system increases the accuracy only by
1% while, in the cepstral domain, fusion of both modalities
improves the accuracy from 77.56% to 82.30%. Finally, we
fuse all 4 individual systems together to further improve the
PA recognition performance which results in 91.40% accuracy
for setting 3. It is shown that our fusion method has 6.55%
absolute improvement (from 84.85% to 91.40% ) compared to
the conventional accelerometer temporal-features based SVM
system. Similar results are also shown in settings 1 and 2.

4) Session variability study: In Table IV, the performances
in setting 2 are noticeably lower than in setting 1 because
of the mismatch between training and testing data due to
the session variability. The ECG systems can drop their
performance by up to 30% while the accelerometer systems are
relatively more robust with only a 15% decrease. This might
be because the ECG signal varies due to a range of factors,
such as electrode placement, mental stress, emotion, and so on,
while the accelerometer only measures the physical movement
and thus only varies by different movement types or patterns.
However, by adding more training data from different sessions,
this variability can be mitigated and the system can be made
more robust. This is demonstrated by observing the 10%-21%
improvement from setting 3 to setting 2. The accuracy standard
deviations of different subjects are also shown in Table IV. The
individual standard deviation is also improved along with the
average accuracy in score level fusion. Furthermore, in terms
of accuracy for fusion system (ID 9), the p-values [37] of null
hypothesis that setting 1 is equal to setting 2 and setting 3 is
equal to setting 2 are 0.00003 and 0.0009, respectively. Thus,
with the influence of individual variability, session variability
is verified with 0.0009 significance level.

5) Open set tasks study: Table V clearly shows that, in
the open set tasks, score level fusion of the multi-modal and
multi-domain subsystems significantly improves performance.
Based on the similar accuracy results between closed set
classification and open set tasks 2 and 3, it can be observed
that with the usage of the “others” activity model, the proposed
approach can effectively identify the activities of interest as
well as reject out of set activities.

VI. DISCUSSION

This work addresses the PA recognition problem with
multimodal wearable sensors (ECG and accelerometer). The
contributions are as follows:

(1) The cardiac activity mean (CAM) component of the
ECG signal is described by HPE in the temporal feature
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TABLE III
EVALUATION OF GMM SYSTEMS BASED ON DIFFERENT CONFIGURATIONS OF CEPSTRAL FEATURE EXTRACTION. (ACC=ACCELEROMETER)

ECG

extraction. It can be observed in Table II that HPE features
perform better than conventional PCA features and adding
PCA, HPE, HR, and NM features together achieves significant
improvement. This is because the pre-trained activity mean
in the PCA approach might be different from the testing
condition due to session variability which can decrease system
performance. Moreover, PCA and HPE model the MAN and
CAM part of the normalized ECG waveform, respectively,
while HR and NM measure the heart rate and inter-beats noise
level, and this information is complementary.

(2) In the SVM framework for both ECG and accelerometer
temporal features, the GLDS kernel makes the classification
computationally efficient with a small model size. We can
see that the single lead ECG signal has more activity dis-
crimination information than provided by just the heart rate,
but as shown in Table IV, the performance is still relatively
low compared with accelerometer based methods. Therefore,
fusing the information from both modalities is necessary.

(3) A GMM system based on cepstral features is proposed
to capture the frequency domain information, and HLDA is
used to reduce the feature dimension of tri-axial accelerometer
based measurements. In Table IV, compared to the ECG
temporal feature based SVM system, the GMM approach with
ECG cepstral features achieved almost the same performance
in setting 3 and, in fact, 10% better in setting 2 because
cepstral features together with CMS are more robust to session
variability. Furthermore, because there is no need for pre-
processing steps, such as peak detection and segmentation
which are inherently noisy and computationally expansive,
cepstral feature calculation is faster and more efficient than
temporal feature extraction. Compared to the result of the
accelerometer temporal feature based SVM system (84.85%),
this GMM-cepstral approach achieved a lower performance
(77.56%). This is due to the characteristics of the cepstral
feature and CMS normalization, in which the mean of the
accelerometer signal is removed. The mean of the tri-axial
accelerometer signal corresponds to the gravity along different
directions; thus different static positions of activity might

number of number of window length | window shift | first order cepstral feature | GMM Gaussian | accuracy

ID cepstra spectral bands in second in second delta HLDA dimension components P (%)
1 36 64 0.5 0.25 yes no 64 32 55.49
2 36 64 0.25 0.125 yes no 64 32 61.83
3 24 64 0.25 0.125 yes no 48 32 61.45
4 64 64 0.25 0.125 yes no 128 32 57.64
5 24 64 0.25 0.25 yes no 48 32 59.23
6 24 64 0.25 0.125 no no 24 32 59.17
7 24 48 0.12 0.06 yes no 48 16 61.26
8 24 48 0.12 0.06 yes no 48 32 63.20
9 24 48 0.12 0.06 yes no 48 64 63.45

ACC | number of number of window length | window shift | first order cepstral feature | GMM Gaussian | accuracy
1D cepstra spectral bands in second in second delta HLDA dimension components P (%)
1 20 20 0.48 0.24 yes no 120 32 74.76
2 20 20 0.96 0.48 yes no 120 32 67.48
3 20 20 0.24 0.24 yes no 120 32 70.73
4 20 20 0.48 0.24 yes no 120 16 75.01
5 20 20 0.48 0.24 yes no 120 64 72.45
6 7 20 0.48 0.24 yes no 42 32 72.00
7 20 20 0.48 0.24 yes yes 96 32 77.52
8 20 20 0.48 0.24 yes yes 84 32 77.34
9 20 20 0.48 0.24 yes yes 72 32 77.56

TABLE IV

SCORE LEVEL FUSION: THE MEAN = STANDARD DEVIATION OF
ACCURACIES P.(%) FOR DIFFERENT SUBJECTS

System ID and name Setting 1 Setting 2 Setting 3
1 | ECG-Temporal-SVM | 88.05+5.0 | 43.39+8.9 | 64.174+6.3
2 | ACC-Temporal-SVM | 95.13+4.1 | 72.76+£7.9 | 84.85+7.8
3 | ECG-Cepstral-GMM | 85.43+9.1 | 53.81+15.1 | 63.45+9.8
4 | ACC-Cepstral-GMM | 78.93£7.4 | 63.69+£5.7 | 77.56+5.4
5 Fusion (1+3) 92.52+3.0 | 54.05+13.9 | 68.49+7.4
6 Fusion (2+4) 96.17+£3.9 | 79.04£5.4 | 90.00+4.1
7 Fusion (1+2) 97.02+£2.8 | 71.81£7.6 | 85.49+£5.8
8 Fusion (3+4) 90.78+8.8 | 66.12+5.8 | 82.30+6.2
9 Fusion (1+2+3+4) 97.29+2.4 | 79.30+4.8 | 91.40+3.4

TABLE V

THE CONFIGURATION AND PERFORMANCE OF OPENSET TASKS.

Experiment Setup Performance EER(%) Accuracy(%)
Activities T2 | T3 System ID Tl T2 T3
Lying A [ 1: ECG-Tem 14.7 66.8 | 68.8
Sitting A [ 2: ACC-Tem 6.6 84.6 | 80.6

Sit Fidgeting A [ 3: ECG-Cep 23.2 70.0 | 49.1
Standing A [m] 4: ACC-Cep 12.7 64.3 76.4
Stand Fidgeting A [m] 5: Fusel,3 14.5 72.5 | 68.8
Playing Wii OJ A 6: Fuse2,4 53 88.2 83.4
Slow Walking [m] A 7: Fusel,2 6.5 87.0 | 835
Brisk Walking [m] A 8: Fuse3,4 9.8 75.8 82.3
Running [} A 9: Fusel,2,3,4 5.0 914 86.5

A is in set target activity, A is “others” model activity, [J is out of set activity.
T1,T2 and T3 denote Task 1,2 and 3, respectively.

have different mean values because of the sensor rotation.
By analysis of this mean value, the performance of the
accelerometer temporal SVM system is enhanced. However,
comparing the results from both setting 1 and setting 2 in
Table 1V, it is clear that the cepstral features based system is
less sensitive to session variability than the temporal features
based system.

(4) Score level fusion of the multi-modal and multi-domain
subsystems is performed to improve the overall recognition
performance. We demonstrated in Section V-B3 that fus-
ing both temporal and cepstral information in each single
modality can improve the overall system performance. This
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result substantiates our assumption that temporal information
and cepstral information are complementary. Additionally,
fusing both ECG and accelerometer information together can
also increase the accuracy. Therefore, fusing both modalities
is also useful. Compared to the conventional accelerometer
temporal feature based approach (System ID 2), the proposed
multimodal temporal and cepstral information fusion method
(System ID 9) achieved 44%, 24%, and 43% relative error
reduction for setting 1,2, and 3, respectively.

(5) The effects of session variability of ECG and accelerom-
eter measurements on PA recognition were studied. Session
variability compensation in the PA recognition application
might become an important and challenging research question
where many algorithms need to be designed and applied to
increase the system robustness. For example, the nuisance
attribute projection (NAP) [38] method in the SVM modeling
has already been successfully and widely used in speaker
recognition to reduce the influence of different channels. In
this study with hypotheses testing, we just showed that results
in setting 1 (within session recognition) can not reflect the
performance in real PA recognition applications such as in the
across session condition of setting 2. But adding more training
data from multiple sessions can mitigate this variability and
improve the real system performance. This also underscores
the need for dynamic adaptation to changing data conditions.

VII. CONCLUSION

In this work, a multimodal physical activity recognition
system was developed by fusing both ECG and accelerom-
eter information together. Each modality is modeled in both
temporal and cepstral domains. The main novelty is that by
fusing both modalities together, and fusing both temporal
and cepstral domain information within each modality, the
overall system performance is shown to improve significantly
in both accuracy and robustness. We also show that the ECG
signals are more sensitive to session-to-session variability than
the accelerometer signals, and by adding more multi-session
training data, the session variability can be mitigated and the
system can become more robust in real life usage conditions.
Future work includes validating the results with data collected
under free living conditions.
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