
1

Similarity Measurement of Segment-level
Speaker Embeddings in Speaker Diarization

Weiqing Wang, Qingjian Lin, Danwei Cai, Student Member, IEEE, Ming Li, Senior Member, IEEE

Abstract—In this paper, we propose a neural-network-based
similarity measurement method to learn the similarity between
any two speaker embeddings, where both previous and future
contexts are considered. Moreover, we propose the segmental
pooling strategy and jointly train the speaker embedding network
along with the similarity measurement model. Later, this joint
training framework is further extended to the target-speaker
voice activity detection (TS-VAD), with only slight modification
in the network architecture. Experimental results of the DIHARD
II, DIHARD III and VoxConverse datasets show that our
clustering-based system with the neural similarity measurement
achieves superior performance to recent approaches on all three
datasets. In addition, the segment-level TS-VAD method further
improves the clustering-based results and achieves DER of
16.48%, 11.62% and 4.39% on the DIHARD II, DIHARD III
and VoxConverse datasets, respectively.

Index Terms—Speaker diarization, speaker verification, target-
speaker voice activity detection

I. INTRODUCTION

SPEAKER DIARIZATION is a process that addresses the
problem of “who spoke when” in multi-speaker audio data

[1, 2, 3]. A conventional speaker diarization system consists
of several independent modules, as shown in Fig. 1. First,
a voice activity detection (VAD) module removes the non-
speech region [4, 5, 6, 7]. Second, the detected speech regions
are partitioned into short segments by speaker change detection
(SCD) [8, 9], uniform segmentation [10], or agglomerative
hierarchical clustering-based (AHC) segmentation [11]. Then,
a speaker embedding like the i-vector [12] or x-vector [13] can
be extracted from these segments and the segment-wise simi-
larity can be measured by the cosine distance or probabilistic
linear discriminate analysis (PLDA). Finally, these segments
are grouped by the speaker identity using different clustering
method, e.g., K-means [14], AHC [15], spectral clustering
[16, 17] and path integral clustering [18].

As the conventional modular speaker diarization system
assumes that each segment only contains one speaker, it
cannot handle an overlapped speech where two or more
speakers appear simultaneously. Therefore, some pre- and
post-processing modules are proposed, focusing on the over-
lapped speech to improve the performance further. For pre-
processing, the speech separation has shown a promising
performance in both multi-channel [19, 20] and single-channel
[11] speaker diarization tasks. Although the single-channel

Weiqing Wang, Danwei Cai and Ming Li are with the Department of
Electrical and Computer Engineering at Duke University. Ming Li is also
with Data Science Research Center at Duke Kunshan University. Qingjian
Lin was with the Data Science Research Center at Duke Kunshan University.

Corresponding author: Ming Li, E-mail: ming.li369@duke.edu

blind source separation may produce “leakage” of speech,
this can be solved by the leakage filtering method [11]. For
post-processing, overlap detection [21] can slightly improve
the performance by assigning the overlapped region with the
closest two speakers. Recently, many researchers have focused
on multi-speaker speech processing, where the models can
detect the information of a specific speaker given the corre-
sponding acoustic footprint. This method has been applied to
many different tasks, including target speech recognition [22],
target speech extraction [23, 24], and target speech detection
[25]. Inspired by these works, Medennikov et al. [26] proposed
the target-speaker voice activity detection (TS-VAD) to extract
the frame-level posterior probability given the corresponding
target speaker’s i-vector, which afforded great success on a
highly overlapped speech signal. Recently, Wang et al. [27]
further employed this i-vector-based TS-VAD method on a
multi-domain dataset and achieved an excellent performance.
The model is separately trained for each domain, making this
a domain-dependent method.

In addition, other pre- and post-processing modules that
are not for overlap handling can also improve the diarization
performance. Pre-processing methods like speech enhance-
ment [28, 29] and dereverberation [30] have shown satisfying
performance in some situations, especially for a multi-channel
signal [31]. For post-processing, resegmentation can refine the
clustering-based diarization result [32]. Stolcke et al. [33] pro-
posed Diarization Output Voting Error Reduction (DOVER)

Speaker:

Non-speech Non-speech

A B C

VAD

Similarity
measurement

Affinity matrix

Speaker
embedding
extraction

Similarity
measurement

Diarization
results

Uniform
segmentation

Clustering

VAD

Fig. 1. An example of the conventional speaker diarization system

2

to fuse several different diarization systems. Moreover, the
modified DOVER [11] and DOVER-lap [34] have shown a
reduction of DER in many different challenges.

Although, each of the modules mentioned above is neces-
sary for a good performance of the diarization system, the
most important part is still the speaker embedding extraction.
In recent years, many clustering-based speaker diarization
systems made use of speaker embeddings extracted from
uniformly segmented utterances. Nevertheless, this method
also has potential limitations:

1) In most clustering-based methods, only local similarities
with pairs of embeddings are considered, where each
embedding is extracted only from a short segment. These
speaker embeddings are not necessarily speaker homo-
geneous, which makes it difficult to cluster the speaker
identities. In addition, the sequential context information
is completely ignored during clustering, but the contents
of conversations are usually highly structured.

2) CNN-based architectures like ResNet are currently pop-
ular for embedding extraction, but there is the problem
with the zero-padding in the case of diarization that
people usually ignore. In such case, the frame-level
speaker information near the segment boundary contains
less information than the central frame because the
padding zeros near the borders contain no information
[35]. This phenomenon is common when the segment is
very short as is the case in the speaker diarization task.

Although some post-processing methods can incorporate the
temporal continuity and smooth the transition among clusters,
the improvements are relatively moderate [18]. In addition,
Wisniewksi et al. [36] employed structured prediction for
online speaker diarization, but only the structural information
from the forward direction was considered.

In this paper, a two-stage diarization system is employed,
where the first stage is a clustering-based method and the
second stage is a TS-VAD method that refines the results
of the first stage. For the first stage, we propose a neural
network-based method in place of PLDA or cosine similarity
to measure the similarity between speaker embeddings in
the conventional clustering-based method. Unlike many AHC-
based methods that ignore the temporal information, we use
the BiLSTM or self-attention to extract the similarity between
a sequence of pairs of speaker embeddings. In addition, for
any dataset, our method only needs a fixed threshold as
a hyperparameter for the spectral clustering to produce the
final diarization results, whereas the AHC needs to carefully
tune the threshold for different datasets and different speaker
embedding extractors. We also jointly train the embedding
extractor and the model of similarity measurement to obtain
better performance. For the second stage, an x-vector-based
TS-VAD method is proposed to find the overlapped speech
while making use of the results from the first stage. We
extract an x-vector for each speaker based on the clustering
produced in the first stage, and detect the voice activities for
each speaker given the corresponding x-vector. As TS-VAD
can find the voice activities of the target speaker even for
overlapped speech regions, it can always produce a better

result than the clustering-based method if the number of
speakers is correctly estimated in the first stage. Compared
with the i-vector-based TS-VAD method [27], which needs
to separately train a model for each domain, the x-vector-
based TS-VAD model can be directly trained on multi-domain
data and produce better performance, making it more robust
for difficult data. Therefore, the proposed TS-VAD method
is a domain-independent strategy by employing a more dis-
criminatively trained x-vector, whereas the i-vectors are more
domain-dependent.

This paper extends our previous works [16, 17] on similarity
measurement using long-short term memory (LSTM) and self-
attention. The new contributions from this work are:

• Joint training of the speaker embedding network and the
network for measuring similarity between embeddings
using a speaker diarization objective.

• Successfully applying the x-vector to the TS-VAD
task, reformulating the TS-VAD as an embedding
concatenation-based method, and introducing the pooling
strategy to TS-VAD at the segment level.

• Applying a two-speaker TS-VAD method for only overlap
detection, which also shows good performance.

The rest of this paper is organized as follows. Section II
details the proposed similarity measurement with segmental
pooling. Section III introduces the segment-level TS-VAD.
Section IV provides the experimental details. Section V
provides the experimental results. Section VI provides the
conclusion of this paper.

II. SIMILARITY MEASUREMENT

In general, a conventional modular speaker diarization sys-
tem contains VAD, speaker embedding extraction, similarity
measurement, and clustering. In this section, we mainly focus
on DNN-based speaker embedding extraction and similarity
measurement under the conventional modular speaker diariza-
tion framework.

A. Speaker Embedding Extraction with Segmental Pooling

This paper follows the ResNet-style x-vector introduced in
[37, 38]. As shown in Fig. 2, the front-end extractor takes
the acoustic features as the input and produces a CNN feature
map. Later, a pooling layer aggregates the temporal informa-
tion in this CNN feature map over time and generates a fixed-
length representation. Finally, the penultimate layer produces
the utterance-level representation.This entire network is trained
for speaker classification, where the classes correspond to the
training speakers.

As the pooling layer aggregates the temporal information
into a fixed-length representation, the design of the pooling
layer can directly influence the network performance. Several
pooling layers have been explored under this ResNet-based
framework and proved to be effective, including temporal
average pooling (TAP), temporal statistical pooling (TSP),
self-attentive pooling (SAP), and learnable dictionary encoding
(LDE) layers [39, 40, 37].

3

In the speaker diarization task, the input signals are com-
monly broken into several short segments by uniform segmen-
tation with a fixed window length and window shift. Next,
the speaker embeddings are extracted from these segments to
represent the identity of the speaker, as Fig. 3a shows. Howev-
er, the receptive field of most speaker recognition networks is
longer than the length of the segments, e.g., the receptive field
of the ResNet34 used in this paper is over 2 seconds for each
frame [35]. This means that the CNN feature map produced
by the front-end extractor contains less information when the
frames are close to the borders for short segments, whereas
the central frames contain more information. This is caused
by the zero-padding and ignoring the actual context.

Therefore, we propose segmental pooling (SP) to perform
the uniform segmentation and pooling operation in a single
step, where the segmentation is directly performed on the
CNN feature map rather than the audio waveform. First, the
audio signal is split into different speech segments based on
the oracle VAD label, and we extract the CNN feature map for
each speech segment with the front-end ResNet34. Therefore,
the zero-padding is applied only at the boundaries of these
(often relatively long) segments defined by VAD. As Fig. 3b
shows, we then uniformly split the CNN feature map with
a fixed window length and window shift, and we feed these
segmented feature maps into the pooling layer to obtain a
fixed-length representation for each segment. Finally, the feed-
forward network generates the speaker embedding. Note that
the parameters of the front-end extractor and the feed-forward
network are not changed. We only perform segmentation on
the feature maps before the pooling layer rather than on the
input signals. Note that the speaker embeddings extracted this
way are not affected by any zero-padding unless they are close
to the boundary of the original VAD-based segment. As a
consequence, each such embedding effectively “sees” a larger
temporal context through the ResNet34 receptive field (3.72s
in our experiments) as compared to the embeddings extracted
from segmented speech signal (1.28s). In fact, except for the
VAD-based segment boundaries where the zero-padding mat-
ters, the segmental pooling could be simulated by switching off

Front-end
ResNet

Variable-length
Acoustic features

Pooling Layer

Fixed-length
representation

FFN

FFN

Speaker posteriors
for identification

Speaker representation
for verificationFFN

Fig. 2. The architecture of the speaker embedding network

TABLE I
THE NETWORK ARCHITECTURE FOR EMBEDDING EXTRACTION, WHERE
C(KERNAL SIZE, STRIDE) DENOTES THE CONVOLUTIONAL LAYER, [·]

DENOTES THE RESIDUAL BLOCK; L RELATES TO THE DURATION OF THE
SPEECH AND L RELATES TO THE NUMBER OF FREQUENCY BINS OF THE

MEL SPECTROGRAM.

Layer Output Size Structure

Input 1× F × L -

Conv1 32× F × L C(3× 3, 1)

Residual layer 1 32× F × L

[
C(3× 3, 1)
C(3× 3, 1)

]
× 3

Residual layer 2 64× F
2
× L

2

[
C(3× 3, 2)
C(3× 3, 1)

] [
C(3× 3, 1)
C(3× 3, 1)

]
× 3

Residual layer 3 128× F
4
× L

4

[
C(3× 3, 2)
C(3× 3, 1)

] [
C(3× 3, 1)
C(3× 3, 1)

]
× 5

Residual layer 4 256× F
8
× L

8

[
C(3× 3, 2)
C(3× 3, 1)

] [
C(3× 3, 1)
C(3× 3, 1)

]
× 2

Pooling layer 512 Statistics pooling

Embedding 128 Fully connected layer

the zero-padding over time and extracting embeddings from
3.72s speech signal segments.

We employ a segmental statistical pooling (SSP) layer
after the segmentation [39]. Consider an acoustic feature
matrix A ∈ RF×L. The front-end extractor ffe can extract
a CNN feature map M ∈ RC×H×T , where F and L are the
dimensions and length of the acoustic feature, respectively; C
is the number of channels, and H and T are the height and
width of the CNN feature map, respectively. Usually, H = F

8
and T = L

8 in our ResNet34-based front-end extractor; thus,
the CNN feature map can be considered as a downsampling
from the acoustic feature. Next, we uniformly split the CNN
feature map into short segments with a length T=16 frames
and a shift 8 frames. The dimensions of each segment feature
map Mi are C × H × T ′

, where T
′

is the segment length.
Finally, we perform statistical pooling on each channel of the
segmented CNN feature map. Let Mc

i ∈ RH×T
′

denote the
feature map of the c-th channel; the SSP layer aggregates the
two-dimensional feature map as follows:

µc
i =

1

HT ′

H∑
h=1

T
′∑

t=1

Mc
i,h,t,µi = [µ1

i , ..., µ
C
i]

ᵀ (1)

σc
i =

√√√√ 1

HT ′

H∑
h=1

T ′∑
t=1

(Mc
i,h,t − µi)2,σi = [σ1

i , ..., σ
C
i]

ᵀ,

(2)

where µi and σi are the mean and standard deviation vector
of the ith segment, respectively, and both of them are C-
dimensional vectors. Finally, the pooling result for the ith

segmented CNN feature map is the concatenation of the µi

and σi.

B. Similarity Measurement

4

Front-end
ResNet

Pooling Layer

Speaker
embedding

FFN

Multi-speaker
input

Segmented
acoustic features

Segmentation

CNN
feature map

Fixed-length
representation

(a) The uniform segmentation with speaker embedding extraction in the
conventional speaker diarization system

Front-end
ResNet

Multi-speaker
input

Acoustic features

Segmental
Pooling Layer

FFN

Segmentation

Pooling Layer

...

(b) The segmental pooling strategy, where the segmentation is performed
after the front-end feature extractor

Fig. 3. Performing segmentation in different stages of speaker embedding extraction

In the conventional modular speaker diarization system,
the similarities between different segments are computed in
a pairwise manner [21]. However, conversations between d-
ifferent speakers are usually highly structured. To take the
sequential information into consideration, we propose a simi-
larity measurement method colorredusing a recurrent neural
network, where both previous and following segments are
considered to improve the performance. In this section, we
introduce our work using BiLSTM and self-attention for the
supervised similarity measurement, which is the baseline in
our experiments.

1) BiLSTM: The LSTM network architecture was originally
developed in [41], but the early version of LSTM can only
capture the previous context. Later, Schuster et al. [42] pro-
posed BiLSTM, which utilizes the information from both the
previous and future context. BiLSTM has shown success in
automatic speech recognition (ASR) [43] and speech synthesis
[44]. We also employ the BiLSTM to measure the similarity
between two speaker embeddings with the previous and future
context included.

Considering an affinity matrix Ŝ ∈ {0, 1}T×T for an
embedding sequence E = [eᵀ1 , e

ᵀ
2 , ..., e

ᵀ
T], where Ŝi,j is 1

when ei and ej are from the same speaker and 0 otherwise,
our goal is to predict Si,j so as to generate a complete affinity
matrix. We concatenate the speaker embeddings ei and ej
as the input of the network, for example

[
eᵀi , e

ᵀ
j

]ᵀ
. As the

BiLSTM can deal with the sequential data, we can obtain each

row Si in one pass through the sequence:

Si = [Si,1,Si,2, ...,Si,T] = fl(

[
e1
ei

]
,

[
e2
ei

]
, ...,

[
eT
ei

]
), (3)

where fl is the BiLSTM network. The complete affinity
matrix S can be obtained by stacking all rows Si together.

The architecture of the BiLSTM network is the same
as the network in [16]. As shown in Fig. 4a, a two-layer
BiLSTM takes a sequence of speaker embeddings as input,
and two fully-connected layers with a sigmoid function predict
the probability that two embeddings correspond to the same
speaker, which is one row of the affinity matrix. As will be
pointed out in Section III, this process is similar to the target-
speaker voice activity (TS-VAD) method [26], where the target
speaker embedding is the average of many “target segment
embeddings” ei from the same speaker.

2) Self-attention: As an alternative to the BiLSTM-based
architecture, we also use the Transformer-based model [45] for
the similarity measurement. The inputs and training objectives
are the same as for the BiLSTM-based model. BiLSTM layers
are replaced with one fully connected layer followed by two
Transformer self-attention encoder layers. Unlike in [45], we
do not use the positional encoding as it resulted in performance
degradation. Finally, fully connected layers with a sigmoid
function predict the similarities. Fig. 4b shows the architecture
of the self-attention-based model. The encoder contains 2
layers, and each layer contains 2 heads with 1024 attention
units for each head.

5

......

FFN

BiLSTM

Sigmoid

(a) The BiLSTM network

FFN

FFN

Sigmoid

Encoder

......

(b) The self-attentive network

Fig. 4. The architectures of the networks for similarity measurement

C. Post-processing for Predicted Affinity Matrix

1) Affinity matrix partitioning: In practice, the embedding
sequence can be long, which requires a large amount of
memory. With the LSTM model, we cannot handle long
sequences because of memory limitations. Therefore, we split
the embedding sequences into several fixed-length overlapped
short sub-sequences, and the affinity matrix is also broken
into several blocks. Specifically, if we have N sub-sequences,
there should be N2 blocks in the affinity matrix, where the ith

and jth sub-sequences can form the block in the corresponding
position. After we obtain all blocks, we merge all blocks
by placing them in the corresponding location, where the
overlapped regions are averaged to produce the complete
affinity matrix. This way, we can process each affinity block
as a mini-batch and then combine these blocks to form the
complete affinity matrix.

2) Affinity matrix refinement: As the affinity matrix is
processed row by row, it is not symmetric and contains a
lot of noise. Hence, the affinity matrix can be smoothed,
symmetrized, and enhanced as follows [14]:
• Symmetrization: Yi,j = max(Si,j ,Sj,i)
• Diffusion: Y ← YYᵀ

• Row-wise max normalization: S
′

i,j =
Yi,j

maxYi

where Yi is the ith row of matrix Y.
3) Spectral clustering: After we obtain the refined affinity

matrix S
′
, we employ spectral clustering to obtain the diariza-

tion results as mentioned in [46] as follows:
1) Construct the affinity matrix S

′ ∈ Rn×n and set all
diagonal entries to 0.

2) Generate the normalized Laplacian matrix Lnorm:

L = D− S
′
,

Lnorm = D−1L,

where L is the Laplacian matrix, D is a diagonal matrix
and and Di,i =

∑n
j=1 S

′

i,j .
3) Compute the eigenvalues λ and corresponding eigenvec-

tors u of Lnorm.

4) Compute the number of cluster k. In experiments, we
employ a threshold β and find the number of eigenvalues
lower than β as k.

5) Find the largest k eigenvalues λ1, ..., λk and correspond-
ing eigenvectors u1, ...,uk.

6) Let U ∈ Rn×k containing u1, ...,uk as columns.
7) Cluster the row vectors of U by the k-means algorithm.

D. Data Augmentation

If only given limited data, our similarity measurement mod-
el is easily overfitted to some particular region in the speaker
embedding space. One common solution for speech data
augmentation is to add background noise and reverberation to
the training data, which can increase the model robustness for
noisy data. However, this method cannot generate data for new
unseen speakers, and the model will lack generalization ability
with only hundreds of training speakers. For this purpose, we
employ an embedding-level data augmentation strategy, which
can rotate all the speaker embeddings to another region of the
embedding space without changing the inter-class and intra-
class distance. This augmentation method was first proposed
in [47].

Assume that the speaker embedding sequence E =
[eᵀ1 , e

ᵀ
2 , ..., e

ᵀ
T] ∈ RD×T is L2-normalized for each ei. The

D-dimensional speaker embeddings can be rotated by an
orthonormal transformation:

E′ = RE = [Reᵀ1 ,Reᵀ2 , ...,ReᵀT], (4)

where R ∈ RD×D are random orthonormal basis. Fig. 5 shows
an example of the random orthonormal transformation.

After performing the on-the-fly data augmentation on the
speaker embeddings, we can generate large-scale samples
that have the potential to span the whole speaker embedding
space with only limited real data. The model can focus on
learning the difference between speaker embeddings instead
of remembering the speaker information. Therefore, we can
reduce the overfitting risk by applying this augmentation
method. We only perform the data augmentation when training
the similarity measurement model on the training set instead
of fine-tuning to the development dataset as described in Sec.

Fig. 5. An example of the random orthonormal transformation on the speaker
embedding sphere.

6

IV-A2. The reason is that the model cannot adapt to some
specific region of the development dataset if we randomly
rotate the speaker embedding space when fine-tuning.

Speaker embeding network Speaker embeding network

Multi-speaker input

repeat

: Trainable

: Frozen
Similarity Measurement

: Concat

Affinity matrix

Clustering AAABCC

Fig. 6. The framework of joint training

E. Joint Training

Although the embedding-level data augmentation can im-
prove the generalization ability of the similarity measurement
model and avoid overfitting, we still like to fine-tune the model
to a specific domain by training with a lower learning rate on
a domain-specific data. In our previous work [16, 17], we only
fine-tuned the model for the similarity measurement but kept
the speaker embedding network unchanged. As Fig. 6 shows,
the entire network consists of two sub-models: the front-
end speaker embedding network and the back-end similarity
measurement model, where the speaker embedding network is
the same as that in Fig. 3b, and the similarity measurement
model is the same as that in Fig. 4a.

The joint training framework is only employed in the fine-
tuning stage. Therefore, we do not perform the data augmen-
tation for the embeddings. During the fine-tuning stage, the
networks in the yellow block in Fig. 6 are jointly trained and
updated, whereas the parameters of the green block in Fig. 6
are frozen.

Unlike the conventional modular speaker diarization system,
in which each module is optimized individually, the speaker
embedding model in our framework is optimized with the
objective of the similarity measurement, which connects two
modules and improves the system performance. Under this
joint training framework, the right speaker embedding network
is a pre-trained segment-level speaker embedding extractor,
and the left is a trainable segment-level speaker embedding
extractor. If we employ the right network to extract an embed-

ding of a known speaker, this model becomes a target-speaker
voice activity detector (TS-VAD), as Fig. 7 shows.

III. SEGMENT-LEVEL TS-VAD

In the original TS-VAD [26], the model outputs a sequence
of probabilities of the target speaker presence for each time
frame, which is a frame-level method. Although the frame-
level TS-VAD system has shown good performance on many
different datasets [26], sometimes we do not need such a high
resolution in time. The information about a single speaker can
be aggregated at the segment level and thereby reduce the
computational complexity. It is difficult for a back-end network
to learn from a long sequence, and frame-level prediction also
contains a lot of noise.

A. Segment-level TS-VAD

In Eq. 3, ei can also be considered as a segment-level target
speaker embedding, where the speaker identity is unknown.
Therefore, we need to perform clustering on the affinity matrix
in the first stage to obtain the initial diarization results. In the
second stage, we extract “target speaker embedding et” for
each speaker identified in the first stage. Similarly to Eq. 3,
we evaluate the similarity between each speech segment and
each target speaker, which can be interpreted as target-speaker
voice activity detection (TS-VAD):

Qt = [Qt,1,Qt,2, ...,Qt,T] = fl(

[
e1
et

]
,

[
e2
et

]
, ...,

[
eT
et

]
), (5)

where e1, e2, ..., eT are the segment embeddings extracted
from the pre-trained speaker embedding model. The output Qt

can represent the features that contain the information of the
specific speaker t. Later, these decision states from different

Speaker embeding network Speaker embeding network

: Trainable

: Frozen

TS-VAD

: Concat

Multi-speaker input Target speech

A: 111000
B:000100
C:000011

Post-Processing

repeat repeat repeat

BiLSTM

BiLSTM

Linear

Sigmoid

Fig. 7. The framework of TS-VAD

7

speakers are combined for the subsequent layers to further
extract the binary decisions for all speaker.

Although Eq. 5 defines the general formulation of TS-
VAD, we cannot directly perform TS-VAD with the segment
embeddings from a pre-trained model e1, ..., eT for several
reasons:

1) The speaker embedding model is trained using single
speaker utterances (i.e. without any overlapped speech)
and therefore, the TS-VAD model may not perform well
if the target speaker is in an overlapped speech region.

2) While the pre-trained speaker embedding model can
extract good quality embeddings from the whole utter-
ances, it may not be able to perform well for short-
duration segments.

To improve the multi-speaker information extraction, we
keep the target speaker embedding et and replace the segment
embedding ei with e

′

i, where e
′

i comes from the jointly
optimized speaker embedding network, as Fig. 7 shows. The
networks for embedding extraction are the same as that of
the joint training framework and the only difference is the
architecture of the similarity measurement model.

Fig. 7 shows the architecture of our SP-based TS-VAD
system, which is similar to the joint training framework in
Section II-E. First, a pre-trained ResNet extracts the target
speaker embedding et and another trainable ResNet extract the
segment embeddings by SP. For training, the target speaker
embedding is extracted from all non-overlapping speech of
the target speaker. Next, the target speaker embedding and the
segment embeddings are concatenated as Eq. 5 shows. We
follow the method introduced in [26], where N target speaker
embeddings are extracted simultaneously and concatenated
with the segment embeddings separately, as Fig. 7 shows.
Finally, two BiLSTM block followed by a fully connected
layer predict the N speaker presence probabilities. The first
block containing 2 BiLSTM layers separately processes the
concatenated embeddings for each target speaker and the
second combines the output from the first BiLSTM block.
The hidden size is 128 for all BiLSTM layers. The fully-
connected layer with sigmoid function maps the output of the
second BiLSTM layer to the presence probability for each
of the N speakers. We obtain the final diarization results by
thresholding on the outputs of the TSVAD model, which is
the post-processing shown in Fig 7.

During the training stage, the target speaker embedding is
obtained from all the non-overlapping speech according to
the ground-truth label. During the inference stage, we can
only extract the target speaker embedding from clustering-
based results, and the overlapped speech is also included
as the clustering-based method cannot find the overlap. In
addition, as the target speech is long for some recordings, we
have to break up the speech signal into several small chunks,
separately extract the speaker embedding for each chunk, and
finally average these speaker embeddings.

For training, we extract the speaker embedding for each
chunk, so that we have several different speaker embeddings
for one speaker. Next, for each speaker in every batch, we ran-
domly select no more than 10 speaker embeddings and average

these embeddings as the target-speaker embedding for TS-
VAD training. This can provide a more diverse target-speaker
embedding in each batch and can improve the robustness of
the model. And we imitate this process in the inference stage.
We also tried only extracting one embedding for each speaker
for inference, and the results are slightly worse.

B. Segment-level TS-VAD as Overlap Detection

Although TS-VAD can detect the overlapped speech and
reduce the missed speaker error, false alarms may increase.
Therefore, DER improvement from the overlap detection
is moderate. To tackle this problem, we can update the
clustering-based results only in the overlapped speech regions.
First, we extract the target speaker embedding for each speaker
according to the clustering-based results. Next, we select two
target speaker embeddings and use a TS-VAD model to find
the speech regions for each of these two speakers. Finally,
we only update the overlapped speech region between these
two speakers. We iteratively select all combinations of two
speakers and update the overlapped regions in the clustering-
based results. The architecture of this TS-VAD model is the
same as that shown in Fig 7, except that the output dimension
is 2, in that it only predicts the binary decisions for two
speakers. During the inference stage, we only select several
of the most talkative speakers and discard other speakers for
two reasons: (1) Speakers with a long speech time are more
likely to have overlapped speech; (2) We reduce the time of
inference, as we only run the inference

(
#selected spk

2

)
times for

each recording.
Unlike previous overlap detection methods that first find the

overlapped regions and then assign the closest two speakers
to these regions [21], the TS-VAD-based overlap detection
can get the overlapped regions between any two speakers,
which is more accurate. In addition, we do not need to preset
the number of speakers based on the maximum number of
the speakers in the dataset as the original TS-VAD does.
Therefore, this TS-VAD overlap detector is more flexible.
However, a limitation also exists. This method is not so
efficient, as it needs to iteratively evaluate the TS-VAD many
times depending on the number of speaker pairs. That is why
we only select several of the most talkative speakers for the
inference.

IV. EXPERIMENTAL SETUP

We perform all experiments with oracle VAD. All non-
speech regions are removed in the training, development and
evaluation data.

A. Dataset and Evaluation Metric

1) Data Simulation: Most of the current datasets for di-
arization tasks are not difficult enough for multi-speaker
learning with no more than 10% overlapped speech. Although
the DIHARD dataset is difficult, it is not enough to train
a neural network with only tens of hours of data. Hence,
data simulation is important to train a model with good
generalization ability.

8

Remove silence

RTTMs

Label of in-domain data

Fill active regions with
non-overlapped continuous speech

Sum

Simulated signal

Fig. 8. The data simulation process

We generate the training data using the ground truth labels
of the DIHARD development dataset. We first extract the
label matrix L ∈ {0, 1}N×T for each recording in the
DIHARD development dataset, where N is the number of
speakers and T is the length of an utterance with the non-
speech regions removed. Next, according to the labels of
each speaker, we fill the active regions with a speech of a
single speaker from the LibriSpeech or DIHARD development
dataset. Finally, we sum all the speech segments to produce
one simulated recording. This simulation strategy can generate
a huge amount of data similar to the DIHARD development
dataset, but the speakers are different. Fig. 8 shows the process
of data simulation.

For a single-domain dataset like LibriSpeech, we can di-
rectly generate the data with the above simulation strategy.
However, if we use the DIHARD development dataset as an
audio resource for simulation, the speakers in each simulated
recording should come from the same domain. Otherwise, the
model may learn to classify the domain information instead
of the speaker identity. Finally, all of the simulated data from
different domains are used for training the TS-VAD model.

2) Dataset for Training:
• Voxceleb 1 & 2 [48]: For speaker embedding model pre-

training.
• AMI [49], ICSI [50], ISL (LDC2004S05), NIST (LD-

C2004S09), SPINE1&2 (LDC2000S87, LDC2000S96,
LDC2001S04, LDC2001S06, LDC2001S08): For simi-
larity measurement pre-training in Section II-B and II-E.

• LibriSpeech [51]: For 16kHz data simulation and TS-
VAD pre-training.

• Switchboard [52] & NIST SRE 2004, 2005, 2006, 2008:
For 8kHz telephone data simulation and TS-VAD pre-
training.

• MUSAN & RIRs [53]: For waveform data augmentation.
3) Dataset for Finetuning / Evaluation: We employ the

VoxConverse [54], DIHARD II [55], and DIHARD III dataset
[56] for evaluation. Both the DIHARD II and DIHARD III
datasets contain 11 domains , and VoxConverse is a single-
domain dataset. Almost all domains contain 16kHz data,
except the conversational telephone speech (CTS) data in
DIHARD III is originally in 8 kHz. For each dataset, the
corresponding development dataset is used as the fine-tuning
dataset, and the details will be discussed in subsequent sections
for each task.

4) Evaluation Metric: We use the Diarization Error Rate
(DER) and Jaccard Error Rate (JER) as the evaluation metric.
For the DIHARD dataset, we follow the evaluation protocol in

the DIHARD challenge, where no forgiveness collar is applied
to the reference segments prior to scoring, and overlapping
speech is evaluated. For DIHARD III, only full set is consid-
ered for evaluation. For VoxConverse, we follow the evaluation
protocol in the VoxSRC challenge, where a forgiveness collar
of 0.25 is employed. We do NOT use any evaluation dataset
for training or fine-tuning.

B. Speaker Embedding Extraction

The front-end extractor is ResNet34, where the widths
(number of channels) of the residual blocks are {32, 64, 128,
256}. The temporal statistic pooling (TSP) layer computes the
mean and standard deviation of the output feature maps and
projects the variable length input to a fixed-length vector. Next,
a fully connected layer predicts the 128-dimensional speaker
embedding, with a dropout of 0.5. Finally, we use the ArcFace
[57] (s=32,m=0.2) as the objective for the training.

We perform data augmentation with MUSAN and RIRs.
For the MUSAN corpus, ambient noise, music, television,
and babble noise are used for the background additive noise.
For the RIRs corpus, only impulse responses from small and
medium rooms are employed to perform convolution with
training data.

The acoustic features are 80-dimensional log Mel-filterbank
energies with a frame length of 25 ms and a frameshift of 10
ms. The acoustic features are mean-normalized before being
fed into the network. We train two speaker embedding models.
One is trained with the 16-kHz Voxceleb 1&2 dataset, which
is for VoxConverse data and non-CTS data in DIHARD II and
DIHARD III. Another is trained with the 8kHz downsampled
Voxceleb 1&2 dataset, which is used in the TS-VAD model
traing for CTS data. The Equal Error Rate (EER) on the
Voxceleb 1 original test set is reported in Table II.

C. Similarity Measurement

1) Baseline: For the baseline, we extract the speaker
embedding from the uniform segmented signal, where the
window length is 1.28 s, and the window shift is 0.64 s.

TABLE II
THE EER OF THE SPEAKER EMBEDDING MODEL ON VOXCELEB-1

ORIGINAL TEST SET

Training data EER (%)

Voxceleb 16k 1.23
Voxceleb 8k 1.79

9

The training input is an embedding sequence containing 64
continuous speaker embeddings. The overlapping segments are
also involved for training, where the labels of these segments
are the most talkative speaker. Therefore, for an overlapping
segment, if a speaker talks more than other speakers, we
label the segment with that speaker. If they talk for the same
duration, we label the segment with a random speaker. For the
same pair of speakers, we always label their segments with the
same speaker.

The training process for the baseline contains two steps.
First, we train the BiLSTM/self-attention-based network on
the pre-training dataset introduced in Section IV-A2 for 100
epochs, where the development set is used for validation. Next,
we fine-tune the model on the development set for 100 epochs.
We use the Adam [58] optimizer with the binary cross-entropy
(BCE) function and a learning rate of 0.001 for training and
0.0001 for finetuning. The average DER of the last ten epochs
is reported as the final result.

In the inference stage, the embedding sequence is first
broken into several sub-sequences with a length of 64 and
a shift of 32. Next, we process each pair of sub-sequences
and generate a 64×64 sub-matrix and merge all sub-matrices
to form the complete affinity matrix, as mentioned in Section
II-C1. Finally, spectral clustering is employed to get the final
diarization results.

2) Data Augmentation: The data augmentation introduced
in Section II-D is only employed in the training stage, where
the dataset mentioned in Section IV-A2 is the training set.
During the fine-tuning stage, we do not employ this data aug-
mentation. The probability of performing data augmentation
for each data sample is set to 0.4.

3) Segmental Pooling: With the speaker embedding net-
work parameters unchanged, we replace the TSP with the
SSP to extract the speaker embeddings from the uniformly
segmented CNN feature map. The temporal resolution of the
CNN feature map before the pooling is eight times less than
for the input features, as shown in Table I. Therefore, the
frame rate of the feature map is 80 ms. At the CNN feature
map level, we set the segment length to 16 and the segment
shift to 8 so that the window length is 1.28 s and the window
shift is 0.64 s, which is the same as the configuration of the
baseline system. The training and the inference processes are
the same as those of the baseline, except that the embedding
with SP can see more context than the baseline system does.
“More context” means that the segments with SP have seen
the information in 3.72s as compared to 1.28s for the baseline.
That is why the system with SP can show better performance
than the baseline system.

4) Joint Training: The purpose of the joint training is not
only to adapt the back-end classifier to the dev set but also
to transfer the front-end extractor to the dev set. Therefore,
we only perform joint training on the development set of
DIHARD II, DIHARD III and VoxConverse dataset. The front-
end extractor is the pre-trained speaker embedding model
mentioned in Section IV-B, with the pooling layer replaced
by SSP. The back-end classifier is the pre-trained model
mentioned in Section IV-C1. Then, we jointly fine-tune these
models using three steps:

• Step 1: Keep the front-end network frozen, and only train
the back-end BiLSTM for the similarity measurement
until the convergence.

• Step 2: Jointly train the two networks for five epochs with
a low learning rate.

• Step 3: Keep the front-end network frozen again and train
the back-end network for 100 epochs.

The learning rate of the back-end BiLSTM is set to 0.001
for each training step, and the learning rate of the front-end
extractor is set to 0.00001 in step 2. The optimizer is Adam,
and the loss function is BCE loss. In step 3, the training
process is the same as that in Section IV-C1, where we extract
the speaker embedding with the adapted front-end ResNet and
fine-tune the back-end network for 100 epochs.

D. Target-speaker Voice Activity Detection

1) Training process: In Section II, we can only slightly
change the speaker embedding model with a low learning rate,
as a large learning rate will destroy the generalization ability of
this well-trained network. However, for TS-VAD, the speaker
embedding model needs to be able to learn about overlapped
speech. Therefore, we train the model in four stages. The
optimizer is Adam, and the loss function is BCE loss in all
stages; the only difference is the training dataset and learning
rate.
• Stage 1: First, we copy the parameters of the pre-trained

speaker embedding model to the front-end extractor and
keep the front-end extractor frozen. Next, we train the TS-
VAD model for ten epochs, with a learning rate of 0.0001.
For non-CTS data, we use the simulated Librispeech
dataset. For CTS data, we use the simulated telephone
speech data.

• Stage 2: The configuration is the same as stage 1, except
the front-end extractor is unfrozen.

• Stage 3: We continue to train the model for ten epochs,
with a learning rate of 0.0001 on the simulated DIHARD
dataset.

• Stage 4: We train the model with a learning rate of
0.00001 on the real development set for 100 epochs. We
take two recordings from each domain for validation.

The number of target speakers (N) is set to 8 for the original
TS-VAD model. During the inference stage, we only select
the eight most talkative speakers to extract the target speaker
embedding and discard other speakers, but the clustering-based
results from the discarded speakers are kept. If the number of
speakers in the clustering-based results is less than N, we use
zero-vectors as the invalid speaker embeddings.

For the two-speaker TS-VAD as overlap detection, we only
select the five most talkative speakers, which results in

(
5
2

)
=

10 times the inference for each recording. Finally, speaker pair
prediction labels of the overlapped speech regions are assigned
to the clustering-based results.

2) Ablation Study of the Segmental Pooling for TS-VAD: To
determine how segmental pooling can influence the TS-VAD
performance, we explore several different pooling sizes. We
test different pooling sizes at the CNN feature map level from
1 frame to 8 frames (80 ms ∼ 640ms) to determine which

10

TABLE III
DER AND JER (%, ±STD) OF DIFFERENT SIMILARITY MEASUREMENT MODELS ON DIHARD II DATASET. EMBD-AUG IS THE DATA AUGMENTATION

PERFORMED ON THE SPEAKER EMBEDDING, SP IS SEGMENTAL POOLING, AND JT DENOTES JOINT TRAINING.

Model
DIHARD II

Dev Eval Eval (+dev adapt)

DER JER DER JER DER JER

BiLSTM 24.15±0.41 47.89±0.15 25.59±0.34 49.43±0.16 19.92±0.01 46.70±0.01
+ embd aug 17.63±0.09 43.72±0.32 18.26±0.18 43.36±0.30 18.12±0.01 43.43±0.03

+ SP 17.54±0.13 42.60±0.76 17.81±0.17 42.17±0.30 17.80±0.00 42.77±0.01
+ JT - - - - 17.76±0.03 42.83±0.01

+ embd aug (3.72s) - - - - 18.99±0.03 44.99±0.05

Self-att 20.97±0.67 46.69±0.23 22.48±0.59 47.47±0.20 19.99±0.04 46.13±0.08
+ embd aug 18.17±0.10 44.03±0.57 18.71±0.23 43.89±0.39 18.42±0.01 43.12±0.01

+ SP 18.28±0.26 43.29±0.46 18.76±0.22 43.28±0.40 18.00±0.01 42.12±0.02
+ embd aug (3.72s) - - - - 20.25±0.08 46.30±0.17

Official baseline [55] - - - - 25.99 59.51
winning system (Clustering) [21] - - - - 18.21 -

TABLE IV
DER AND JER (%, ±STD) OF DIFFERENT SIMILARITY MEASUREMENT MODELS ON DIHARD III DATASET. EMBD-AUG IS THE DATA AUGMENTATION

PERFORMED ON THE SPEAKER EMBEDDING, SP IS SEGMENTAL POOLING, AND JT DENOTES JOINT TRAINING. THE WINNING SYSTEM SHOWN IN GRAY IS
OBTAINED AS A FUSION OF MULTIPLE SYSTEMS.

Model
DIHARD III

Dev Eval Eval (+dev adapt)

DER JER DER JER DER JER

BiLSTM 21.03±0.26 40.92±0.14 20.11±0.26 39.62±0.17 17.03±0.01 37.45±0.03
+ embd aug 16.30±0.08 36.17±0.22 15.85±0.13 34.63±0.32 15.62±0.01 34.45±0.01

+ SP 16.29±0.15 35.50±0.50 15.61±0.09 33.98±0.34 15.45±0.02 33.91±0.03
+ JT - - - - 15.18±0.02 34.04±0.03

+ embd aug (3.72s) - - - - 17.48±0.01 36.67±0.06

Self-att 19.99±0.52 40.35±0.20 19.20±0.40 38.26±0.14 16.84±0.07 36.81±0.06
+ embd aug 16.86±0.11 37.42±0.48 16.04±0.16 35.34±0.45 15.82±0.01 34.74±0.06

+ SP 16.69±0.19 36.45±0.35 16.00±0.18 34.57±0.27 15.65±0.01 34.06±0.04
+ embd aug (3.72s) - - - - 17.76±0.03 37.96±0.19

Official baseline [56] - - - - 19.25 42.45
winning system (Clustering) [59] - - - - 15.77 -
winning system (Fusion) [59] - - - - 11.30 -

TABLE V
DER AND JER (%, ±STD) OF DIFFERENT SIMILARITY MEASUREMENT MODELS ON VOXCONVERSE DATASET. EMBD-AUG IS THE DATA AUGMENTATION

PERFORMED ON THE SPEAKER EMBEDDING, SP IS SEGMENTAL POOLING, AND JT DENOTES JOINT TRAINING.

Model
VoxConverse

Dev Eval Eval (+dev adapt)

DER JER DER JER DER JER

BiLSTM 12.75±0.31 41.79±0.55 17.25±0.33 53.31±0.61 12.52±0.08 39.78±0.05
+ embd aug 4.53±0.07 24.27±0.55 7.04±0.14 39.85±1.10 6.67±0.02 33.81±0.08

+ SP 4.41±0.10 24.28±0.60 5.82±0.22 39.56±1.04 4.63±0.03 31.46±0.15
+ JT - - - - 4.74±0.00 32.12±0.01

Self-att 10.56±0.30 41.11±1.19 13.43±0.34 55.28±1.18 10.21±0.06 41.48±0.07
+ embd aug 6.91±0.22 35.62±0.93 9.64±0.22 51.43±0.97 7.28±0.02 36.03±0.05

+ SP 6.08±0.21 32.80±1.12 7.81±0.31 48.81±1.26 5.69±0.03 33.43±0.08

11

audiobooks broadcast
interview

clinical court maptask meeting restaurant socio
field

socio
lab

webvideo cts

Domain

0

10

20

30

40
DE

R
BiLSTM
BiLSTM+SP
BiLSTM+SP+JT
TS-VAD-as-OD
TS-VAD

Fig. 9. DER (%) on different domains in the DIHARD III dataset. SP and JT denote segmental pooling and joint training, respectively. The random rotation
augmentation on the speaker embedding is performed.

pooling size produces the best performance. A small pooling
size may not contain enough information, while a large pooling
size may include multiple speakers in a single embedding and
result in performance degradation.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Similarity Measurement

Table III, IV, V shows the DERs of the similarity measure-
ment models on the DIHARD II, DIHARD III, and VoxCon-
verse datasets, respectively. For the evaluation set, both the
results before and after adaptation are reported. The columns
of Dev and Eval show the results before fine-tuning, and the
columns of Eval (+dev adapt) show the results after fine-
tuning on the development set. The first row is the result of
the baseline without embedding rotation augmentation (Embd-
Aug) and SP. The DER is calculated from the average results
of the models from the last ten epochs to reduce the variance.
Results of BiLSTM model show that the joint training (JT)
with segmental pooling achieves the lowest DER, 17.76%
on DIHARD II, 15.18% on DIHARD III. Generally, the
embedding augmentation can always improve the performance
for both BiLSTM and self-attention-based model, and SP can
further improve the performance. Compared with BiLSTM, the
self-attention-based network shows better performance if we
directly train the model without augmentation, which is similar
to the findings in our previous work [17]. However, when the
augmentation is employed, BiLSTM shows better performance
than the self-attention-based network. In addition, we also
show the adapted DERs of the system with embedding aug-
mentation for the 3.72-second segment with a shift of 0.64
second in Table III and IV, as the embedding with SP can
see more context (3.72s) than its length (1.28s) through the
ResNet34 receptive field. When using a long segment with
embedding augmentation, it shows degraded performance as
the resolution of the long segments is lower than that of the
short segments.

From the results, we find that the segmental pooling shows
good improvement on all datasets, which proves that the
embedding with segmental pooling contains more speaker
information than the embedding of the segmented acoustic
features. Joint training further improves the performance on
the DIHARD dataset, but it is only slightly better on DIHARD
II. This may be because the DIHARD III contains 8kHz CTS

data, and joint fine-tuning can help the speaker embedding
network to slightly adapt to the 8kHz data. In addition,
the performance worsens on the VoxConverse dataset. The
reason is that the speaker embedding model is well trained on
the Voxceleb dataset, which already has good generalization
ability on the VoxConverse data. It is not easy to use the joint
training framework to fine-tune the speaker embedding model
from one domain to another similar domain.

Compared with the official baseline and the previous win-
ning systems, our method shows better performance. As we
do not perform any post-processing and the output is directly
generated by spectral clustering, we only compare our results
with the clustering-based results in the DIHARD III challenge.
Both winning systems empoly AHC-based clustering methods,
and VB or VBx resegmentation is performed [21, 27, 32]. We
do not show the winning system of the VoxConverse dataset,
as we use the oracle VAD in our experiments, but the winning
system used the system VAD in the challenge.

B. TS-VAD

Table VI shows the DERs of our TS-VAD system on the
DIHARD II, DIHARD III, and VoxConverse datasets, and
Table VII shows the DERs of TS-VAD as overlap detection.
For DIHARD II and VoxConverse, as all recordings are 16kHz,
we only train one TS-VAD model with the speaker embedding
model trained on the 16kHz Voxceleb dataset. For DIHARD
III, we use the same speaker embedding model and the TS-
VAD model for 16kHz data. But for 8kHz CTS data, we use
another speaker embedding model and TS-VAD model trained
on the 8kHz data for inference, and the results are finally
merged together.

During the inference stage, we directly use the clustering-
based results from the joint training BiLSTM model as the
initialization of the TS-VAD system. As some speakers talk for
a long time, and the speech signal is too long for the model to
extract the target speaker embedding, the regions that contain
a single speaker are first selected and uniformly broken into
16-second segments. Then, we extract the speaker embedding
for all segments and take the mean of all embeddings as the
target speaker embedding. The outputs of the TS-VAD model
are the segment-level probabilities for each speaker. Next, we
apply a threshold of 0.8 on the probabilities to get the binary
decision. Since we use the oracle VAD, if the probability of

12

TABLE VI
DER (%) OF THE SEGMENT-LEVEL TS-VAD MODELS ON EVALUATION DATASET (N=8, FULLY ASSIGNED)

Pooling Size DIHARD II DIHARD III VoxConverse

MISS(%) FA(%) SpkErr(%) DER(%) MISS(%) FA(%) SpkErr(%) DER(%) MISS(%) FA(%) SpkErr(%) DER(%)

s=1 (80ms) 8.2 0.7 7.6 16.48 6.6 0.7 4.4 11.62 1.0 0.2 3.7 4.95
s=2 (160ms) 8.1 1.4 7.7 17.20 6.1 1.6 4.4 12.09 1.0 0.2 3.8 5.04
s=4 (320ms) 8.1 1.4 8.3 17.83 6.3 1.8 4.9 12.97 1.0 0.3 3.5 4.72
s=8 (640ms) 8.2 1.7 9.2 19.06 6.7 2.1 5.9 14.67 1.0 0.3 3.6 4.78

Clustering 9.7 0.0 8.1 17.76 9.5 0.0 5.7 15.18 1.6 0.0 3.0 4.57

winning system (TS-VAD) - - - - - - - 12.30 [27] - - - -

TABLE VII
DER (%) OF THE SEGMENT-LEVEL TS-VAD AS OVERLAP DETECTION ON THE EVALUATION DATASET (N=2, PARTIALLY ASSIGNED OVERLAPPED

REGION)

Pooling Size DIHARD II DIHARD III VoxConverse

MISS(%) FA(%) SpkErr(%) DER(%) MISS(%) FA(%) SpkErr(%) DER(%) MISS(%) FA(%) SpkErr(%) DER(%)

s=1 (80ms) 8.0 1.0 8.1 17.19 5.7 1.5 5.7 12.89 1.1 0.3 3.1 4.39
s=2 (160ms) 7.9 2.1 7.9 17.94 5.4 2.8 5.4 13.57 1.0 0.5 3.0 4.49
s=4 (320ms) 8.2 1.9 7.9 17.98 5.7 2.8 5.3 13.77 1.1 0.3 3.0 4.40
s=8 (640ms) 8.3 1.7 8.0 18.00 6.2 3.1 5.3 14.49 1.0 0.5 3.0 4.52

Clustering 9.7 0.0 8.1 17.76 9.5 0.0 5.7 15.18 1.6 0.0 3.0 4.57

a speech frame is lower than the threshold for all speakers,
we will assign the speaker with the largest probability to this
frame.

Results in Table VI show that our domain-independent TS-
VAD method achieves a DER of 16.48% on DIHARD II and
11.62% on DIHARD III when we directly use the output from
the original TS-VAD model as the results. For the DIHARD
datasets, both results are better than the clustering-based
results. However, for VoxConverse dataset, the result becomes
worse. The reason is that the Voxconverse contains fewer
overlapped speech regions than the DIHARD dataset, and the
clustering-based method already has a good performance on
the VoxConverse dataset. As Table VI shows, the reduction in
MISS cannot compensate for the increase in FA and SpkErr.

Table VII shows the results of two-speaker TS-VAD as
overlap detection. As we only assign the detected overlapped
speech region to the clustering-based results, it shows better
performance than the original TS-VAD method on the Vox-
Converse dataset. However, it becomes worse on the DIHARD
dataset.

We also present the DERs with different pooling sizes in
each table. The frame rate of the feature map from the front-
end extractor is 80 ms, as the time resolution of the feature
map is eight times less than for the input features. Next,
we employ segmental pooling on the feature maps with the
different number of frames. The number of original frames
aggregated into each segment is 1, 2, 4, and 8, and the
corresponding segment-level frame rate is 80 ms, 160 ms,
320 ms, and 640 ms, respectively. The results show that the
DER becomes worse as the pooling size becomes larger on
the DIHARD dataset. However, for the VoxConverse dataset,
the pooling size does not show many differences in the final
results. The reason is that the collar used for VoxConverse
scoring is 0.25, and we do not need a high resolution to obtain
the same good performance. Therefore, for the dataset that gets
scored without a collar, a smaller pooling size shows good

performance; otherwise a large pooling size may be better.
We also show DERs on different domains of the DIHARD

III dataset in Fig. 9. It can be found that the significant
improvement in DIHARD III mainly comes from the CTS
dataset, as it only contains two speakers, and almost half
of the errors are overlapped speech. We finally reduce the
DER on CTS data in the DIHARD III eval set from 14.67%
to 6.47%. As the DIHARD challenge is a multi-domain
task, our domain-independent method cannot be optimized on
each domain without using in-domain data, especially on the
extremely noisy and overlapped domain, e.g., restaurant, as
shown in Fig. 9. Note that we train our model on the multi-
domain data, and we do not use any evaluation dataset for fine-
tuning. Still, we achieve better performance than the previous
domain-dependent i-vector-based TS-VAD model, in which
the evaluation data is used for fine-tuning [27].

VI. CONCLUSION

In this paper, we introduced our neural similarity mea-
surement method, which showed superior performance com-
pared to previous systems on the DIHARD and VoxConverse
datasets. We have proposed the segmental pooling strategy
for similarity measurement enabling the embeddings to see
more context, which leads to an improve the performance.
Later, we unfroze the parameters of the speaker embedding
network and train it jointly with the similarity measurement
objective, which further improved performance. This joint
training strategy was a general framework for both similarity
measurement and TS-VAD at the segment level, which could
be easily employed in both tasks with the help of segmental
pooling. Therefore, we extended this framework to TS-VAD
and explored the influence of different pooling sizes. Results
showed that the TS-VAD method significantly reduced the
MISS in DER.

In the future, we will explore different pooling strategies,
including weighted pooling, attentive pooling, and learnable

13

dictionary encoding. In addition, we will extend this frame-
work to more tasks like end-to-end speaker diarization.

REFERENCES

[1] S. E. Tranter and D. A. Reynolds, “An Overview of Automatic Speaker
Diarization Systems,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 14, no. 5, pp. 1557–1565, 2006.

[2] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and
O. Vinyals, “Speaker Diarization: A Review of Recent Research,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 20, no. 2,
pp. 356–370, 2012.

[3] T. J. Park, N. Kanda, D. Dimitriadis, K. J. Han, S. Watanabe, and
S. Narayanan, “A Review of Speaker Diarization: Recent Advances with
Deep Learning,” arXiv preprint arXiv:2101.09624, 2021.

[4] C. Wooters, J. Fung, B. Peskin, and X. Anguera, “Towards Robust
Speaker Segmentation: The ICSI-SRI Fall 2004 Diarization System,” in
Proceedings of Fall 2004 Rich Transcription Workshop (RT-04F), 2004,
p. 23.

[5] R. Zazo, T. N. Sainath, G. Simko, and C. Parada, “Feature Learning
with Raw-Waveform CLDNNs for Voice Activity Detection,” in Proc.
Interspeech 2016, pp. 3668–3672.

[6] F. Eyben, F. Weninger, S. Squartini, and B. Schuller, “Real-life Voice
Activity Detection with LSTM Recurrent Neural Networks and an Ap-
plication to Hollywood Movies,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 483–487.

[7] S.-Y. Chang, B. Li, G. Simko, T. N. Sainath, A. Tripathi, A. van den
Oord, and O. Vinyals, “Temporal Modeling Using Dilated Convolution
and Gating for Voice-activity-detection,” in 2018 IEEE international
conference on acoustics, speech and signal processing (ICASSP), pp.
5549–5553.

[8] M. Hrúz and Z. Zajı́c, “Convolutional Neural Network for Speaker
Change Detection in Telephone Speaker Diarization System,” in 2017
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 4945–4949.

[9] R. Yin, H. Bredin, and C. Barras, “Speaker Change Detection in
Broadcast TV Using Bidirectional Long Short-Term Memory Networks,”
in Proc. Interspeech 2017, pp. 3827–3831.

[10] G. Sell and D. Garcia-Romero, “Speaker Diarization with PLDA i-vector
Scoring and Unsupervised Calibration,” in 2014 IEEE Spoken Language
Technology Workshop (SLT), pp. 413–417.

[11] X. Xiao, N. Kanda, Z. Chen, T. Zhou, T. Yoshioka, S. Chen, Y. Zhao,
G. Liu, Y. Wu, J. Wu et al., “Microsoft Speaker Diarization System
for the VoxCeleb Speaker Recognition Challenge 2020,” in 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5824–5828.

[12] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end Factor Analysis for Speaker Verification,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 788–798,
2010.

[13] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
“X-vectors: Robust DNN Embeddings for Speaker Recognition,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5329–5333.

[14] Q. Wang, C. Downey, L. Wan, P. A. Mansfield, and I. L. Moreno, “S-
peaker Diarization with LSTM,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5239–5243.

[15] G. Sell, D. Snyder, A. McCree, D. Garcia-Romero, J. Villalba, M. Ma-
ciejewski, V. Manohar, N. Dehak, D. Povey, S. Watanabe et al.,
“Diarization is Hard: Some Experiences and Lessons Learned for the
JHU Team in the Inaugural DIHARD Challenge,” in Proc. Interspeech
2018, pp. 2808–2812.

[16] Q. Lin, R. Yin, M. Li, H. Bredin, and C. Barras, “LSTM Based Sim-
ilarity Measurement with Spectral Clustering for Speaker Diarization,”
in Proc. Interspeech 2019, pp. 366–370.

[17] Q. Lin, Y. Hou, and M. Li, “Self-Attentive Similarity Measurement
Strategies in Speaker Diarization,” in Proc. Interspeech 2020, pp. 284–
288.

[18] P. Singh and S. Ganapathy, “Self-Supervised Representation Learning
With Path Integral Clustering for Speaker Diarization,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 29, pp.
1639–1649, 2021.

[19] C. Boeddecker, J. Heitkaemper, J. Schmalenstroeer, L. Drude, J. Hey-
mann, and R. Haeb-Umbach, “Front-end Processing for the CHiME-5
Dinner Party Scenario,” in Proc. CHiME 2018 Workshop on Speech
Processing in Everyday Environments, pp. 35–40.

[20] T. Yoshioka, H. Erdogan, Z. Chen, X. Xiao, and F. Alleva, “Recognizing
Overlapped Speech in Meetings: A Multichannel Separation Approach
Using Neural Networks,” in Proc. Interspeech 2018, pp. 3038–3042.

[21] F. Landini, S. Wang, M. Diez, L. Burget, P. Matějka, K. Žmolı́ková,
L. Mošner, A. Silnova, O. Plchot, O. Novotnỳ et al., “But System
for the Second Dihard Speech Diarization Challenge,” in 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6529–6533.

[22] N. Kanda, S. Horiguchi, R. Takashima, Y. Fujita, K. Nagamatsu, and
S. Watanabe, “Auxiliary Interference Speaker Loss for Target-Speaker
Speech Recognition,” in Proc. Interspeech 2019, 2019, pp. 236–240.

[23] K. molkov, M. Delcroix, K. Kinoshita, T. Higuchi, A. Ogawa, and
T. Nakatani, “Speaker-Aware Neural Network Based Beamformer for
Speaker Extraction in Speech Mixtures,” in Proc. Interspeech 2017,
2017, pp. 2655–2659.

[24] M. Delcroix, K. Zmolikova, K. Kinoshita, A. Ogawa, and T. Nakatani,
“Single channel target speaker extraction and recognition with speaker
beam,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5554–5558.

[25] S. Ding, Q. Wang, S.-y. Chang, L. Wan, and I. L. Moreno, “Personal
vad: Speaker-conditioned voice activity detection,” arXiv preprint arX-
iv:1908.04284, 2019.

[26] I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Ko-
renevskaya, I. Sorokin, T. Timofeeva, A. Mitrofanov, A. Andrusenko,
I. Podluzhny, A. Laptev, and A. Romanenko, “Target-Speaker Voice
Activity Detection: A Novel Approach for Multi-Speaker Diarization
in a Dinner Party Scenario,” in Proc. Interspeech 2020, pp. 274–278.

[27] Y. Wang, M. He, S. Niu, L. Sun, T. Gao, X. Fang, J. Pan, J. Du, and C.-H.
Lee, “USTC-NELSLIP system description for DIHARD-III challenge,”
arXiv preprint arXiv:2103.10661, 2021.

[28] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech Enhancement Based
on Deep Denoising Autoencoder,” in Proc. Interspeech 2013, pp. 436–
440.

[29] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A Regression Approach to
Speech Enhancement Based on Deep Neural Networks,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 23, no. 1,
pp. 7–19, 2014.

[30] L. Drude, J. Heymann, C. Boeddeker, and R. Haeb-Umbach, “NARA-
WPE: A Python Package for Weighted Prediction Error Dereverberation
in Numpy and Tensorflow for Online and Offline Processing,” in ITG
Symposium on Speech Communication, 2018, pp. 1–5.

[31] R. Haeb-Umbach, S. Watanabe, T. Nakatani, M. Bacchiani, B. Hoffmeis-
ter, M. L. Seltzer, H. Zen, and M. Souden, “Speech Processing for
Digital Home Assistants: Combining Signal Processing with Deep-
learning Techniques,” IEEE Signal Processing Magazine, vol. 36, no. 6,
pp. 111–124, 2019.

[32] F. Landini, J. Profant, M. Diez, and L. Burget, “Bayesian HMM
Clustering of x-vector Sequences (VBx) in Speaker Diarization: Theory,
Implementation and Analysis on Standard Tasks,” Computer Speech &
Language, p. 101254, 2021.

[33] A. Stolcke and T. Yoshioka, “DOVER: A Method for Combining
Diarization Outputs,” in 2019 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), pp. 757–763.

[34] D. Raj, L. P. Garcia-Perera, Z. Huang, S. Watanabe, D. Povey, A. Stolck-
e, and S. Khudanpur, “DOVER-Lap: A Method for Combining Overlap-
aware Diarization Outputs,” in 2021 IEEE Spoken Language Technology
Workshop (SLT), pp. 881–888.

[35] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the Ef-
fective Receptive Field in Deep Convolutional Neural Networks,” in
Proceedings of the 30th International Conference on Neural Information
Processing Systems, 2016, pp. 4905–4913.

[36] G. Wisniewksi, H. Bredin, G. Gelly, and C. Barras, “Combining Speaker
Turn Embedding and Incremental Structure Prediction for Low-Latency
Speaker Diarization,” in Proc. Interspeech 2017, pp. 3582–3586.

[37] W. Cai, J. Chen, and M. Li, “Exploring the Encoding Layer and Loss
Function in End-to-End Speaker and Language Recognition System,”
in Proc. The Speaker and Language Recognition Workshop (Odyssey
2018), pp. 74–81.

[38] W. Cai, J. Chen, J. Zhang, and M. Li, “On-the-fly Data Loader and
Utterance-level Aggregation for Speaker and Language Recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 28, pp. 1038–1051, 2020.

[39] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y. Carmiel,
and S. Khudanpur, “Deep Neural Network-based Speaker Embeddings
for End-to-end Speaker Verification,” in 2016 IEEE Spoken Language
Technology Workshop (SLT). IEEE, pp. 165–170.

[40] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kannan,

14

and Z. Zhu, “Deep Speaker: an End-to-end Neural Speaker Embedding
System,” arXiv preprint arXiv:1705.02304, 2017.

[41] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] M. Schuster and K. K. Paliwal, “Bidirectional Recurrent Neural Net-
works,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[43] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid Speech Recognition
with Deep Bidirectional LSTM,” in 2013 IEEE workshop on automatic
speech recognition and understanding, pp. 273–278.

[44] Y. Fan, Y. Qian, F.-L. Xie, and F. K. Soong, “TTS Synthesis with Bidi-
rectional LSTM Based Recurrent Neural Networks,” in Fifteenth annual
conference of the international speech communication association, 2014.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[46] U. Von Luxburg, “A Tutorial on Spectral Clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[47] Q. Li, F. L. Kreyssig, C. Zhang, and P. C. Woodland, “Discriminative
Neural Clustering for Speaker Diarisation,” in 2021 IEEE Spoken
Language Technology Workshop (SLT), pp. 574–581.

[48] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb: Large-
scale Speaker Verification in the Wild,” Computer Speech & Language,
vol. 60, p. 101027, 2020.

[49] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot, T. Hain,
J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal et al., “The AMI
Meeting Corpus: A Pre-announcement,” in International workshop on
machine learning for multimodal interaction. Springer, 2005, pp. 28–
39.

[50] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan,
B. Peskin, T. Pfau, E. Shriberg, A. Stolcke et al., “The ICSI Meeting
Corpus,” in 2003 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. I–I.

[51] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
ASR Corpus Based on Public Domain Audio Books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5206–5210.

[52] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD:
Telephone Speech Corpus for Research and Development,” in Acoustics,
Speech, and Signal Processing, IEEE International Conference on,
vol. 1. IEEE Computer Society, 1992, pp. 517–520.

[53] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and
Noise Corpus,” arXiv:1510.08484, 2015.

[54] J. S. Chung, J. Huh, A. Nagrani, T. Afouras, and A. Zisserman, “Spot
the Conversation: Speaker Diarisation in the Wild,” in Proc. Interspeech
2020, 2020, pp. 299–303.

[55] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy, and
M. Liberman, “The Second DIHARD Diarization Challenge: Dataset,
Task, and Baselines,” in Proc. Interspeech 2019, pp. 978–982.

[56] N. Ryant, P. Singh, V. Krishnamohan, R. Varma, K. Church, C. Cieri,
J. Du, S. Ganapathy, and M. Liberman, “The Third DIHARD Diarization
Challenge,” in Proc. Interspeech 2021, pp. 3570–3574.

[57] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive Angu-
lar Margin Loss for Deep Face Recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4690–4699.

[58] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in 3rd International Conference on Learning Representations, ICLR,
2015.

[59] Y.-X. Wang, J. Du, M. He, S.-T. Niu, L. Sun, and C.-H. Lee, “Scenario-
Dependent Speaker Diarization for DIHARD-III Challenge,” in Proc.
Interspeech 2021, pp. 3106–3110.

Weiqing Wang received the B.S. (2018) in Comput-
er Science from Sun Yat-sen University, and he is
currently a Ph.D. student in Department of Electrical
and Computer Engineering at Duke University. His
research interests focus on speaker diarization. Be-
fore joining Duke ECE, he was a research assistant
at Duke Kunshan University (2018-2019), working
on music signal processing.

Qingjian Lin received the M.S. (2020) in Elec-
tronics and Communications Engineering from Sun
Yat-sen University, advised by Prof. Ming Li. From
2019-2020, he was a research intern at Duke Kun-
shan University. After leaving university, he joined
Lenovo and worked as a speech signal processing
researcher in AI Lab. His research interests include
speaker diarization, speaker verification and target
speaker separation.

Danwei Cai is pursuing his Ph.D. degree in electri-
cal and computer engineering at Duke University. He
received his bachelor degree in software engineering
and master degree in electronics and communication
engineering from Sun Yet-Sen University in Chi-
na. His primary research interests are in the area
of speech processing, including speech recognition,
speaker recognition, speaker diarization, and com-
putational linguistics.

Ming Li received his Ph.D. in Electrical Engineering
from University of Southern California in 2013. He
is currently an Associate Professor of Electrical and
Computer Engineering at Duke Kunshan Univer-
sity. He is also a research scholar at Department
of Electrical and Computer Engineering at Duke
University. His research interests are in the areas of
audio, speech and language processing as well as
multimodal behavior signal analysis and interpreta-
tion. He has published more than 140 papers and
served as the member of IEEE speech and language

technical committee, CCF speech dialogue and auditory processing technical
committee, CAAI affective intelligence technical committee, APSIPA speech
and language processing technical committee. He was the area chair of speaker
and language recognition at Interspeech 2016, 2018 and 2020. Works co-
authored with his colleagues have won first prize awards at Body Computing
Slam Contest 2009, Interspeech Computational Paralinguistic Challenge 2011,
2012 and 2019, ASRU 2019 MGB-5 Challenge, Interspeech 2020 and 2021
Fearless Steps Challenge, VoxSRC 2021 Challenge, ICASSP 2022 M2MeT
Challenge. He received the IBM faculty award in 2016, the ISCA Computer
Speech and Language 5-years best journal paper award in 2018 and the youth
achievement award of outstanding scientific research achievements of Chinese
higher education in 2020. He is a senior member of IEEE.

	Introduction
	blackSimilarity Measurement
	Speaker Embedding Extraction with Segmental Pooling
	Similarity Measurement
	BiLSTM
	Self-attention

	Post-processing for Predicted Affinity Matrix
	blackAffinity matrix partitioning
	Affinity matrix refinement
	Spectral clustering

	Data Augmentation
	blackJoint Training

	blackSegment-Level TS-VAD
	Segment-level TS-VAD
	Segment-level TS-VAD as Overlap Detection

	Experimental Setup
	blackDataset and Evaluation Metric
	Data Simulation
	Dataset for Training
	Dataset for Finetuning / Evaluation
	Evaluation Metric

	Speaker Embedding Extraction
	Similarity Measurement
	Baseline
	Data Augmentation
	Segmental Pooling
	blackJoint Training

	Target-speaker Voice Activity Detection
	Training process
	Ablation Study of the Segmental Pooling for TS-VAD

	Experimental Results and Discussion
	Similarity Measurement
	TS-VAD

	Conclusion
	Biographies
	Weiqing Wang
	Qingjian Lin
	Danwei Cai
	Ming Li

