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Abstract
Convolutional Neural Network (CNN) or Long Short-term
Memory (LSTM) based models with the input of spectrogram
or waveforms are commonly used for deep learning based audio
source separation. In this paper, we propose a Sliced Attention-
based neural network (Sams-Net) in the spectrogram domain
for the music source separation task. It enables spectral fea-
ture interactions with multi-head attention mechanism, achieves
easier parallel computing and has a larger receptive field com-
pared with LSTMs and CNNs respectively. Experimental re-
sults on the MUSDB18 dataset show that the proposed method,
with fewer parameters, outperforms most of the state-of-the-art
DNN-based methods.
Index Terms: Sliced Attention, Music Source Separation, Mu-
sic Information Retrieval

1. Introduction
The “cocktail party effect” was first proposed by Cherry [1]:
How does the human brain separate a conversation from the
surrounding noise. Later, Bregman [2] tried to study how the
human brain analyzed the complex auditory signal, and pro-
posed a framework for it. By the early 21st century, Roman [3]
attempted to simulate the brain’s ability of source separation by
means of algorithms, which served as the main framework of
source separation right now. When it comes to music source
separation, the first unsupervised method is [4]. Recently, the
supervised methods, especially the deep learning-based meth-
ods [5, 6], have achieved promising performance for this task.

Music is produced by assembling sound from multiple in-
dividual instruments called stems. The goal of music source
separation is to recover those individual stems from the mixed
signal [7]. In the SiSEC 2018 campaign [8], those individual
stems were grouped into four categories: vocals, drums, bass
and other. Given a song which is a mixture of these four sources,
our goal is to separate it into four parts that correspond to the
original sources. Unlike the speech separation task in which
each single source is independent to each other, there are many
similar music pieces recurring in the same source and among
different sources in a song. This characteristic brings a great
challenge for music source separation.

Most of the music source separation models can be cat-
egorized into two main categories, namely the spectrogram
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based methods [5, 6, 9], and the waveform based methods
[10, 11, 12]. DNN based music source separation models are
mainly based on three network architectures: Fully Connected
Network (FCN) [13], Convolutional Neural Networks (CNN)
[6, 11] and Long Short-Term Memory (LSTM) [5]. Recently,
CNN and LSTM have been combined to achieve state-of-the-
art performance for music source separation [12, 14]. However,
both CNN and LSTM have certain limitations. For CNN-based
model, the problem lies in the requirement of a large receptive
field for source separation task [15]. Although deeper CNNs
are able to obtain a larger receptive field, the increase of param-
eters makes training difficult. Another way to expand the recep-
tive field is to apply pooling layers and aggregate the context,
which, however, result in the loss of spectral detail. To solve
this problem, CNN with a multi-scale structure is proposed,
namely Wave-U-Net [11]. This multi-scale structure adopts
downsampling (i.e., max-pooling layer) to get low resolution
feature maps from which the upsampling layers are employed to
recover the original resolution. For LSTM-based model [9], the
time-dependent property prevents the parallel computation and
makes inference time-consuming. Furthermore, the long-term
dependency issue is not well addressed in LSTMs according to
the previous study in [16], which makes the separation perfor-
mance is not ideal on Open-Unmix [9] and MMDenseLSTM
[14].

Recently, many time-domain models have been proposed,
among which Demucs [12] and Meta-TasNet [17] are the most
representative. For Demucs [12], it used a multi-scale encoder
and decoder, which mapping the musical signals to a latent
space before using the LSTM to estimate the mask. For Meta-
TasNet [17], it leverages a multi-stage architecture, which be-
gins by predicting low-resolution audio, and iteratively upsam-
ples at each stage. Nevertheless, both of them will make the
model parameters in a large amount, resulting in a long latency
for inference.

The attention mechanism [18] is a recent advance in neu-
ral network modeling. It automatically learns feature interac-
tions from data without any human domain knowledge. Re-
cently, Vaswani et al. proposed a novel neural network struc-
ture - Transformer [19], which uses only the attention mecha-
nism structure to obtain the state-of-the-art result in the English-
French translation task. Using the attention mechanism, the
Transformer is a structure that can automatically capture se-
quence distribution. It allows the network to learn which part
of the input sequence is important, and which ones are not. Ex-
perimental results show that the Transformer is more suitable
for processing sequences than LSTM, because it can solve long-
term dependency problems better than LSTM [19]. Also, since



the attention mechanism has no time-dependent limitation for
calculating, the Transformer can be computed in parallel eas-
ily. Furthermore, the Transformer has a larger receptive field
compared with CNN with the same number of layers.

Motivated by the successful application of attention mech-
anism, we try to study the capability of attention mechanism
in the source separation task, and propose a neural network
for music source separation named Sams-Net, which applies
the proposed Sliced Attention mechanism to the spectrogram
domain. Besides, although many time-domain models have
achieved better signal-to-distortion ratio (SDR) [20] than those
of the spectrogram domain, modeling in the time domain does
not produce good quality speech [21]. So we are interested in
building our model in the spectrogram domain like [9], which
only feeds the magnitude spectrogram into the model. Experi-
mental results show that our model has achieved a new state-of-
the-art result.

The rest of the paper is organized as follows. Section 2
introduces the problem formulation of the music source separa-
tion task. Section 3 illustrates the core modules of the proposed
Sams-Net. Experimental setup and results are reported in Sec-
tion 4, while conclusions are drawn in Section 5.

2. Problem Formulation
Music source separation is to extract source signals from the
musical mixture. Specifically, a stereo mixture x ∈ R2×T̃ can
be expressed as a linear combination of c source signals s ∈
R2×T̃ :

x(t) =

c∑
i=1

si(t) (1)

To perform music source separation in spectrogram do-
main, the Short-time Fourier Transform (STFT) S ∈ R2×T×F

for each source signal s is calculated to get the mixed spectro-
gram X ∈ R2×T×F during training:

X(t, f) =

c∑
i=1

Si(t, f) (2)

where T and F are the dimension of the time and frequency
axis respectively.

The separation network then takes the magnitude spectro-
gram |X| as input to estimate a mask M ∈ R2×T×F for each
source. The reconstruction of time domain source ŝ is accom-
plished by calculating the inverse STFT (ISTFT) for the esti-
mated spectrogram, which is:

ŝi(t) = ISTFT(|X(t, f)| �Mi(t, f))× e∠X(t,f)j) (3)

where ∠X(t, f) is the phase of mixed musical segment, and �
is element-wise multiplication.

To this end, the learning objective is to minimize the audio
based squared l2-norm [11] between the original and estimated
sources:

L = argmin
M

c∑
i=1

‖si(t)− ŝi(t)‖22 (4)

Figure 1 shows the flowchart of a typical music source sep-
aration system on the spectrogram domain.

3. Model Description
This section describes our proposed Sams-Net for music source
separation, as shown in Figure 2. It includes two transform
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Figure 1: The flow chart of our separation system.

modules, a slice module and N attention modules. The first
transform module is a CNN layer that takes the magnitude spec-
trogram as input and expands the channel of the feature map to
C, while the second one is a transpose CNN layer that aggre-
gates the channel dimension of the feature map from C to 2 and
generates the estimated masks. The slice module (section 3.3)
is only applicable to the validation and test stage, not the train-
ing stage. The attention block consists of a multi-head scaled
dot-product attention layer (section 3.1-3.3), a depth-wise sep-
arable CNN layer (section 3.4) and several layer normalization
layers (section 3.5).

3.1. Scaled Dot-Product Attention

The common attention methods include dot-product [19], con-
catenation [22], perceptron [23], etc. In this study, we ap-
ply scaled dot-product attention to each channel of a feature
map. Specifically, for a given feature map in feature space
of RC×T×F , three CNN layers with kernel size of 1 × 1 are
employed separately to transform this feature map into queries
Q, keys K, and values V ∈ RC×T×F . Then, for each fea-
ture channel c, dot products of the tth time frame of query
Qc,t ∈ RF and all keys Kc ∈ RT×F are calculated as attention
weights. Softmax is applied to the attention weights before ag-
gregating the values Vc. In practice, we compute the attention
function on a set of queries Qc simultaneously:

Attention(Qc,Kc,Vc) = softmax

(
QcKc

T

√
C

)
Vc (5)

where 1/
√
C is a regulating term to avoid large inner product

as well as gradient vanishing. We denote the scaled dot-product
attention for the whole feature map as Attention(Q,K,V).

3.2. Multi-Head Attention

To further exploit the modeling ability of attention mechanism,
we apply multi-head attention [19] on top of the scaled dot-
product attention. In this study, the output feature map F of the
transform block is firstly fed into three convolutional layers to
produce queries Qh, keys Kh, and values Vh ∈ RC×T×F for
the hth head. Then, the scaled dot-product attention is applied
for each of the H heads, and the outputs are concatenated along
the channel axis:

MultiHead(Q,K,V) = Concat(head1, · · · , headH),

headh = Attention(ConvQ
h (F),Conv

K
h (F),ConvV

h (F))
(6)

where ConvQ
h ,Conv

K
h ,ConvV

h are CNN layers to produce
queries, keys, and values for hth head.

Finally, an additional CNN layer with the kernel size 3× 3
is employed to recover the channel dimension of the multi-head
attentive output from H × C to C.
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Figure 2: Model architecture of Sams-Net.

3.3. Sliced Attention

Due to the typically long duration of a song in the practical ap-
plication, we apply slice operation to the magnitude spectro-
gram before attention operation.

Specifically, the magnitude spectrogram is sliced into I
chunks without overlap, yielding T/I frames per chunks.
Multi-head attention is applied to these I chunks separately.
The resulting of I attention values are concatenated along the
time axis as the final output SA:

SA = Concat(slice1, slice2, · · · , sliceI)
slicei = MultiHead(Qi,Ki,Vi)

(7)

where Qi,Ki and Vi are queries, keys and values for chunk i.
With the sliced operation, the scope of attention is narrowed

down to the intra-chunk features. We define the slice operation
with the multi-head scaled dot-product attention as sliced atten-
tion. Figure 3 shows a flowchart of the sliced attention. The
feature dimension of the output remains unchanged after sliced
attention. Note that the slice operation is applied to a whole
song at validation and test stages. During training, a short chunk
is randomly sliced within a song at each training step.

The reason we apply a slice operation lies in the inherent
data pattern of songs. There are recurring elements [24], such
as notes, pitch, timbre, and chords within a song. Also, musi-
cal style or pattern always changes. For example, the principal
musical instrument can suddenly change from drums to bass,
followed by a pure human voice. In this case, the sliced at-
tention provides a mechanism for the network to focus a small
piece of the song with the same musical style, without taking
other parts which are irrelevant to the current one.

3.4. Depthwise Separable CNN

Considering the large size of our model, we choose lightweight
depthwise separable CNN [25] rather than conventional CNN.
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Figure 3: Model architecture of our Sliced Attention module.

Specifically, it has two operations: depth-wise convolution and
point-wise convolution.

For depth-wise convolution, each channel of the feature
map is applied to a convolutional layer with the kernel size of
3 × 3 independently. Different from the conventional CNN,
one convolutional kernel of the depth-wise convolutional layer
is responsible for one channel.

For point-wise convolution, the output of the depth-wise
convolution operation is fed to a convolutional layer with the
kernel size of 1 × 1, which aims to further aggregate the infor-
mation among different channels of the feature map.
3.5. Layer Norm

In the proposed Sams-Net, layer normalization [26] is per-
formed after the sublayers, i.e., the sliced attention layers, and
the depthwise separable CNN layers.

As shown in Figure 2, residual connections are also applied
between two normalization layers, i.e., shortcut connection is
inserted between the inputs of the previous and current normal-
ization layer. The computing formular is as follows:

x+ Sublayer(LayerNorm(x)) (8)

where Sublayer(x) is a function implemented by the sublayer
itself.

4. Experimental Results
4.1. Experimental setup

We evaluated Sams-Net on MUSDB18 dataset [30], which is
prepared for the SiSEC 2018 campaign [8]. MUSDB18 has
100 and 50 songs in the training and test set, respectively. In
this dataset, each song is a mixture with four sources, i.e., vo-
cals, bass, drums, and other, all of which are recorded in stereo
format with the sampling rate of 44.1 kHz. During the training
stage, we randomly select 6 seconds from each training track
as the training data. In the validation stage, we use the recom-
mended tracklist provided by [30] as the validation data.

The STFT used in our system is computed based on a 93
ms Hamming window with 75% overlap between frames, and
a 4096-point discrete Fourier transform. Also, data augmenta-
tion [31] is used during training. We apply random gains be-
tween 0.25 and 1.25 to all sources before mixing. Besides, the
channels of the stereo mixtures are randomly swapped. For the
evaluation on MUSDB18, we used the museval package [8] and
BSSEval v4 toolbox [20] for a fair comparison with previously
reported results. The average of the median signal-to-distortion-



Table 1: A comparison SDR metric of our proposed method with other models on the test set of MUSDB18 dataset.

Model Domain # Param Test SDR (dB)
Vocals Drums Bass Other Average

IRM oracle N/A N/A 9.43 8.45 7.12 7.85 8.21

DeepConvSep [27] Spectrogram 0.32M 2.37 3.14 0.17 -2.13 0.89
WaveNet [28] Waveform 3.30M 3.35 4.13 2.49 2.60 2.60
Wave-U-Net [11] Waveform 10.20M 3.25 4.22 3.21 2.25 3.23
Spect U-Net [29] Spectrogram 9.84M 5.74 4.66 3.67 3.40 4.37
Open-Unmix [9] Spectrogram 8.90M 6.32 5.73 5.23 4.02 5.36
Demucs [12] Waveform 648.00M 6.29 6.08 5.83 4.12 5.58
Meta-TasNet [17] Waveform 45.50M 6.40 5.91 5.58 4.19 5.52
MMDenseLSTM [14] Spectrogram 4.88M 6.60 6.41 5.16 4.15 5.58

Sams-Net (w/o Attention) Spectrogram 3.64M 4.80 4.71 3.89 3.22 4.16

Sams-Net Spectrogram 3.70M 6.61 6.63 5.25 4.09 5.65

Table 2: A comparison SDR metric of Sams-Net among several
slice numbers (in dB), .

Slices Vocals Drums Bass Other Average

1 6.42 6.55 5.21 3.97 5.53
2 6.44 6.59 5.32 4.04 5.60
4 6.42 6.57 5.29 4.08 5.59
8 6.61 6.56 5.23 4.06 5.62
12 6.61 6.63 5.25 4.09 5.65
16 6.51 6.45 5.19 4.01 5.54
18 6.57 6.37 4.94 3.88 5.44
24 6.26 5.98 4.55 3.68 5.12

ratio (SDR) of each song in the test set is used as the evaluation
metric.

We train the model based on PyTorch framework [32] with
2 NVIDIA TITAN RTX GPU. The parameters of the network
are updated using the Adam optimizer [33] with an initial learn-
ing rate of 0.0001. We terminate the training process when the
validation loss no longer descends after 140 epochs. Unfortu-
nately, due to the limitation of the GPU memory, we can only
train 3 Sliced Attention modules with 2 heads and 64 channels
of the CNN feature maps.

4.2. Results and Discussions

Table 2 shows the SDR metrics with different numbers of slices
used in Sams-Net. The observation is that models with the pro-
posed slice operation (I = 2,4,8,12) outperform the model with-
out slice operation (I =1). As the number of slices increases
from 1 to 12, the four sources’ SDR metrics also increase. How-
ever, performance degrades when the slice number increases
above 12. The reason may be that each chunk’s duration is too
short to contain sufficient key features for attentive value learn-
ing with a large number of slices. For the MUSDB18 dataset,
the optimal slice number is around 12, but this does not apply
to other datasets, especially for those with unknown sources.

As shown in Table 1, the performance of Sams-Net without
the attention module decreases significantly, which means the
effectiveness of the attention mechanism used here. Also, we
compare our model against previously published and state-of-

the-art models for the MUSDB18 dataset (models trained with
extra data are not listed here). The SDR results are either taken
from the SiSEC 2018 [8] evaluation scores [11, 14, 29] or from
the related papers [9, 12, 27, 28, 17]. The Ideal Ratio Mask
oracle (IRM oracle) [9] at the top line computes the best possi-
ble mask using the ground truth sources. The proposed Sams-
Net outperforms both waveform-based and spectrogram-based
models on vocals and drums categories, and achieve the state-
of-the-art result on the averaged score. Besides, compared with
the best models of Demucs [12] and Meta-TasNet [17] on bass
and other categories, the proposed network contains 99.4% and
91.8% fewer parameters with only 9.9% and 2.4% relative per-
formance degradation respectively. We also provide some sam-
ples inferred by Sams-Net and other models [9, 12] online1.

The number of parameters in Sams-Net is about 3.7M,
which is smaller than that of most other methods. Compared
with the baseline Open-Unmix model [9] containing about
8.9M parameters, our model achieves 5.4% improvement in
terms of average SDR. We believe that the increase of parame-
ters of Sams-Net can further enhance the performance.

5. Conclusions
In this paper, we propose a sliced attention-based neural net-
work for music source separation, named Sams-Net. It im-
proves the performance of music source separation by discrim-
inating the importance of different feature interactions. We also
propose a sliced attention mechanism to learn the importance
of each feature interaction from every segment of the magni-
tude spectrogram. As shown by the experimental results, the
proposed Sams-Net, with lesser parameters, achieves better per-
formance than other methods in terms of SDR.

For future works, we intend to model the data in the time-
domain to incorporate the phase information. Moreover, as the
points of music style change are not uniformly distributed, we
can’t just simply slice each song equally. We hope to automati-
cally identify the change point of musical style within a song, so
that the sliced attention can be performed within a chunk with
the same style. Classifier at frame-level may be a possible solu-
tion to find the pattern of musical styles for each frame, so that
a change point can be determined.

1https://tinglok.netlify.com/files/samsnet/

https://tinglok.netlify.com/files/samsnet/
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