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 STCAM: Spatial-Temporal and Channel 
Attention Module for Dynamic Facial 

Expression Recognition 
Weicong Chen, Dong Zhang, Ming Li, Member, IEEE, and Dah-Jye Lee, Senior Member, IEEE 

Abstract— Capturing the dynamics of facial expression progression in video is an essential and challenging task for facial 
expression recognition (FER). In this paper, we propose an effective framework to address this challenge. We develop a C3D-
based network architecture, 3D-Inception-ResNet, to extract spatial-temporal features from the dynamic facial expression image 
sequence. A Spatial-Temporal and Channel Attention Module (STCAM) is proposed to explicitly exploit the holistic spatial-
temporal and channel-wise correlations among the extracted features. Specifically, the proposed STCAM calculates a channel-
wise and a spatial-temporal-wise attention map to enhance the features along the corresponding feature dimensions for more 
representative features. We evaluate our method on three popular dynamic facial expression recognition datasets, CK+, Oulu-
CASIA and MMI. Experimental results show that our method achieves better or comparable performance compared to the state-
of-the-art approaches. 

Index Terms— Dynamic facial expression recognition, 3D-Inception-ResNet, Channel attention, Spatial-temporal attention 

——————————      —————————— 

1 INTRODUCTION
ACIAL expression is the most powerful and straight-
forward way for human to convey their emotion. In 

recent years, facial expression recognition (FER) has at-
tracted research interests because of its prospects of ap-
plication in human-computer interaction, driver monitor-
ing and health care tasks. In the existing research on FER, 
several approachs were proposed to encode facial expres-
sion. Ekman et al. [1] defined six basic emotions based on 
cross-culture study, including anger, disgust, fear, happi-
ness, sadness and surprise. The Facial Action Coding Sys-
tem (FACS) encodes facial expression into the combina-
tion of different Action Units (AUs) that represent the 
action parts of the human face [2]. Meanwhile, research-
ers used continuous model to encode human emotions, 
e.g. the valance and arousal model [3]. Although the 
FACS model and the continuous model represent a wide 
range of expressions, the category model based on the six 
basic emotions is still the most popular way to encode 
facial expression because of its unambiguous definition of 
each one of them. 

Most early research on FER was image-based, which 
recognize facial expression from a single still image by 
extracting the spatial information of the image. However, 
the expression features extracted from a single image are 
easily intertwined with various confusion factors that do 
not correlate with the expression itself. Age, gender, and 

the identity of the subject are some of those confusion 
factors that affect the performance. Researchers have at-
tempted to explicitly incorporate the subject identity in-
formation in their algorithms to minimize the impact of 
the inter-subject variance of the expression [4], [5], [6]. 
These methods attempted to exclude part of the factors 
that are not expression related which may confuse the 
classifier. 

Some research have shown that human can recognize 
facial expression through the dynamics of facial prores-
sion from the neutral face to the expressive face [7], [8]. 
Inspired by this idea, optical flow was utilized to improve 
the accuracy in image-based FER task [9]. Methods were 
developed to model the correlation between the neutral 
face and the expression face based on deep generative 
networks [10], [11]. These networks are usually not 
trained end to end, which makes them unsuitable for 
practical applications. A better approach to capture the 
dynamics of facial progression is to recognize facial ex-
pression from video or image sequence. Some research 
focused on modeling the temporal correlation among fa-
cial expression frames in the video by modeling temporal 
correlation separately from spatial correlation [12], [13], 
[14], [15]. The biggest challenge with this approach is the 
ambiguity in the extracted spatial features. Others require 
auxiliary input, e.g. facial landmarks [13], [16], which 
may introduce the registration error. 

To address the aforementioned issues, a 3D-Inception-
ResNet-LSTM was proposed to extract the spatial-
temporal features of the facial expression sequence [17]. It 
obtains a series of weight maps from the landmarks of 
each face and incorporate them into the feature maps to 
generate enhanced features that have better discriminabil-
ity than the original features. This method has two limita-
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tions. Firstly, the weight map generated from the land-
marks suppresses the features located far from the land-
marks, regardless of their contributions to classification. 
Secondly, it employs only the weight maps along spatial 
dimension, treating the features from different times and 
channels equally. 

Recently, attention mechanism has been widely used 
for deep learning-based image classification tasks. The 
Squeeze-and-Excitation Networks (SE-Nets) applied 
squeeze and excitation attention mechanism along the 
channel dimension to exploit the inter-channel relation-
ship. It improved the recognition accuracy compared to 
using only the baseline networks [18]. Woo et al. achieved 
better result than the SE-Nets by applying additional spa-
tial attention to the feature maps [19]. Both works showed 
that exploiting the global correlation within different di-
mensions helps with classification accuracy. Similarly, as a 
type of classification, FER can also take advantage of 
modeling and exploiting the inter-dimensional relation. 

In this paper, we propose a novel framework to tackle 
the challenges of sequence-based FER. As shown in Fig. 1, 
we develop an effective 3D-Inception-ResNet as our base-
line model to extract the spatial and temporal features 
simultaneously. The 3D-Inception-ResNet architecture has 
shown to achieve good performance [17]. We modify the 
original architecture to better extract the spatial-temporal 
features. We then utilize attention mechanism to generate 
enhanced spatial-temporal features in order to take the 
advantage of the global correlations among features and 
obtain a better representation of facial expression in im-
age sequence. More specifically, we propose a learnable 
structure named Spatial-Temporal and Channel Attention 
Module (STCAM) to learn saliency maps along different 
dimensions of the spatial-temporal features. These atten-
tion maps are then multiplied with the original features to 
generate enhanced features. We integrate the STCAM into 
the baseline model as the feature extractor. Experimental 
results on popular dynamic facial expression datasets, 
including the Extended Cohn-Kanade Dataset (CK+) [20], 
Oulu-CASIA [21], and MMI [22], show that our method 
achieves better or comparable performance compared to 
the state-of-the-art approaches. 

2 RELATED WORK 
2.1 Facial expression recognition based on 

dynamic image sequence 
As a dynamic event, sequence-based FER is more reliable 
than image-based because temporal correlation among 
frames can be used to minimize ambiguity. Traditional 
FER methods extract spatial-temporal features by hand-
crafted feature descriptors, such as LBP-TOP [23], HOG-
TOP [24]. Liu et al. proposed a more powerful spatial-
temporal descriptor STM-ExpLet based on a mid-level 
representation called expressionlet. It achieved better per-
formance than traditional hand-crafted descriptors [25].  

In recent years, deep learning has been used to tackle a 
wide range of computer vision tasks including sequence-
based FER. A 3D CNN with deformable action parts con-
straints (3D CNN-DAP) was proposed to apply specific 
part filters to obtain partial dynamic features [26]. A 3D 
CNN without weight sharing along the time axis was 
proposed to capture the temporal appearance relation 
and incorporate the facial landmarks as the auxiliary data 
to model the geometrical motion information [16]. Alt-
hough 3D CNN was employed in these two methods to 
capture the spatial-temporal relation, only one or two 
layers of 3D filters were used, which failed to fully de-
scribe the complicated spatial-temporal correlation 
among the frames in the whole facial expression sequence. 
A lightweight network called LBVCNN (Local Binary 
Volumn CNN) was proposed to extract spatial-temporal 
features from facial expression image sequences [27]. 
However, the representation power of the features ex-
tracted by LBVCNN was not as good as traditional CNNs.  

Another way to process the facial expression sequence 
is to model the spatial and temporal correlation separately. 
A CNN-RNN framework was proposed to capture the 
spatial information with a multi-signal convolutional 
neural network (MSCNN) and to handle the facial geo-
metrical evolution as the temporal information with a 
part-based hierarchical bidirectional recurrent neural 
network (PHRNN) [13]. 2D CNNs were used to extract 
spatial information and were followed by RNN (LSTM, 
GRU, BRNN) to model temporal correlation [12], [14], 
[15]. A spatial-temporal recurrent neural network 
(STRNN) was used to capture the spatial and temporal 
dependency from the features extracted by a pretrained 
CNN [28]. A frame attention module was proposed to 
aggregate the features extracted from each frame [29]. A 
framework consisting a spatial network and a temporal 
network was used to extracte spatial and temporal fea-
tures saperately, and then aggregate the features by a 
BiLSTM [30]. Yu et al. proposed  a global-local framework 
to capture global and local spatial features, and modeled 
the temporal information with LSTM [31]. These methods 
improved classification performance by using the tem-
poral information of image sequence in addition to the 
spatial information of individual frames. They tend to 
intertwining factors such as age, gender, and subject iden-
tity in the spatial features, which may confuse the classifi-
er.  

A C3D network was proposed to extract spatial-

 
Fig. 1. The proposed framework for sequence-based facial expres-
sion recognition, including the baseline network called 3D-Inception-
Resnet and the spatial-temporal attention module named STCAM. 
This figure presents only the key part of the whole network. 
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temporal features directly [17]. Specifically, a 3D-
Inception-ResNet was used to extract spatial-temporal 
features, followed by a LSTM to further model the tem-
poral relation. Weight masks obtained from facial land-
marks were employed to enhance the extracted features. 
One downside of this approach is that useful information 
may be filtered out by the weight masks obtained from 
the facial landmarks. 

2.2 Attention mechanism 
Attention mechanism was first introduced in machine 
translation [31], [32]. The alignment between the target 
word and parts of the source sentence was learned to 
predict the most relevant target word [31]. Luong et al. 
proposed a global/local attention to respectively attend to 
all/parts of the source sentence [32]. More recently, Vas-
wani et al. introduced a transformer model with self-
attention and achieved great success in machine transla-
tion [33]. 

Attention mechanism was also applied to many com-
puter vision tasks. Similar to [32], Xu et al. proposed 
soft/hard attention for image captioning [34]. Hu et al.  
proposed to apply channel-wise attention in squeeze-and-
excitation operation for image classification [18]. Woo et 
al. went further by additionally integrating spatial atten-
tion  [19]. An attention map for each video frame based 
on soft attention was learned for video action analysis 
[35]. Saliency mask was generated for spatial attention 
and temporal attention, respectively, to enhance the dis-
criminability of the features extracted by CNN and LSTM 
[36]. A three-stream network was developed for low reso-
lution video analysis [37], which integrated multi-head 
self-attention to capture the temporal saliency among 
features extracted from different video clips. Non-local 
block was proposed as an extension of self-attention to 
capture the spatial-temporal dependency among the fea-
tures extracted by CNN [38]. 

As a video analysis task, sequence-based FER can also 
benefit from attention mechanism. Inspired by [18], [19], 
we propose a structure named Spatial-Temporal and 
Channel Attention Module (STCAM) for dynamic FER. 
Different from the aforementioned attention methods in 
video analysis, which are mostly designed for 2D CNN + 
RNN network and operate spatial and temporal attention 
separately, our STCAM is designed for C3D network to 
handle spatial-temporal attention jointly. In addition, we 
integrate channel-wise attention to fully exploit the inter-
channel dependencies. 

2.3 Facial expression recognition with attention 
mechanism 

The Facial Action Coding System (FACS) [2] has indicated 
the strong relationship between facial expression and 
specific parts of human face. In other words, distinct parts 
of the face contribute differently to facial expression. 
Therefore, adapting attention mechanism to FER has po-
tential to enhance the salient part of feature and suppress 
redundant information. An AU-aware Deep Networks 
(AUDN) was proposed to automatically select the recep-
tive fields corresponding to the facial expression [39]. Sa-

lient patches of facial image were selected based on facial 
landmarks and extracted features from these patches 
were used to classify facial expression [40]. A visual atten-
tion map was generated by aggregating CNN features of 
different channels and used to enhance the salient part of 
features [41]. A Facial-Motion Mask Generator (FMG) was 
proposed to highlight the facial motion parts while pre-
senting expression [42]. A salient mask obtained from 
facial landmarks was used to enhance the features close to 
the landmarks [17]. The aforementioned methods 
adapted attention mechanism to successfully improve the 
FER performance. However, these works either concen-
trated on image-based FER [39], [40], [41], [42], or only 
applied attention along spatial dimension [17]. 

In order to take full advantage of the features extracted 
by deep spatial-temporal networks, we propose a learna-
ble structure named Spatial-Temporal and Channel Atten-
tion Module (STCAM) for FER. The proposed network is 
able to automatically learn attention maps from the global 
correlation among channel and spatial-temporal dimen-
sions of features and enhance the features along the cor-
responding dimensions. 

3 PROPOSED METHOD 

3.1 Baseline model 
C3D has achieved great success in video-based vision 
tasks, e.g. action recognition [43], [44], [45]. By additional-
ly integrating the temporal dimension into traditional 2D 
convolution, C3D is capable of capturing spatial-temporal 
features from image sequences. As opposed to 2D CNNs 
methods which extract spatial features of individual 
frames and then fuse them to model their temporal rela-

 
Fig. 2. The architecture of the baseline model (3D-Inception-ResNet)  
The network includes a stem structures, three 3D-Inception-ResNet 
structures, and two 3D-Reduction structures. Two fully connected 
layers serve as a classifier at the end of the network. 
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tion, C3D handles spatial-temporal relation directly. In 
other words, C3D is able to describe the dynamic facial 
expression progression in the video with low-level and 
high-level features. This unique characteristic makes it 
more efficient than 2D CNNs methods for sequence-
based facial expression recognition. 

Similar to [17], we choose the 3D-Inception-ResNet as 
our baseline model to extract spatial-temporal features 
because of its efficient structure. Considering the small 
size of currently available sequence-based FER datasets, 
we design a relatively shallow network that includes 
three 3D-Inception-ResNet structures and two 3D-
reduction structures, as shown in Fig. 2. Since the dimen-
sions of the spatial and temporal domains of the input 
sequence are different (e.g. the spatial dimension of the 
network input is 224 × 224 while the temporal dimension 
is 7), the kernel size and stride in the baseline network are 
set differently in the spatial and temporal dimensions. For 
example, in the first convolution layer of the stem module, 
the kernel size (denoted as time × height × width) is 3 × 7 × 7 
and the stride (denoted as (stridetemporal, stridespatial)) is (1,2). 
After the average pooling layer, two fully connected lay-
ers and a softmax layer serve as a classifier which projects 
the 1072-dimension features into n classes probability 
values. 

3.2 Spatial-Temporal and Channel Attention 
Module (STCAM) 

Although the baseline model can effectively extract spa-
tial-temporal features, the extracted features are simply 
the combination of information along the spatial-
temporal and channel dimensions within local receptive 
fields. In fact, features extracted from different locations 
of the face contribute differently to the classification result, 
and features from specific channels may be more im-
portant than features from other channels with respect to 
a specific expression class. In other words, the importance 
of different channels and different spatial-temporal loca-
tions are variant in the extracted feature maps. Works 
have shown that the attention mechanism helps the net-
work to focus on the important features by assigning 
higher weight to the corresponding locations in the fea-
ture maps [18], [19].   

Inspired by this idea, we propose a Spatial-Temporal 
and Channel Attention Module (STCAM) to generate 
more powerful representation of dynamic facial expres-

sion. The attention weight maps are computed by model-
ling the interdependencies inside the features and as-
signed to the original feature maps to highlight the differ-
ent importance among features during feature extraction. 
STCAM includes two sub-modules, called 3D Channel 
Attention Module (3D-CAM) and Spatial-Temporal At-
tention Module (STAM). Details of our design are illus-
trated in Sections 3.2.1 and 3.2.2. 

3.2.1 3D Channel Attention Module 
To explore the channel dependency among spatial-
temporal features, a 3D Channel Attention Module (3D-
CAM) is constructed to aggregate information across spa-
tial-temporal dimensions and generate a channel-wise 
attention map. 

As shown in Fig. 3, given a spatial-temporal feature 
map C T H W× × ×∈F  , two 3D pooling operations are used 
to aggregate spatial-temporal information and generate 
two feature vectors, denoted as C

avg
C∈F 

and C
max

C∈F 

: 

 
C
avg

1 1 1
C
max , ,

1F ( )= ( , , , )

          F ( ) max ( , , , )

T H W

t h w

t h w

c c t h w
T H W

c c t h w
= = =× ×

=

∑∑∑F

 F

  (1) 

where ( ) T H Wc × ×∈F 
 refers to the thc  channel of F . We 

use both 3D average pooling and 3D max pooling because 
they can gather complementary information for each oth-
er [19].  

After the pooling operations, the two feature vectors 
simultaneously pass through a Multi-Layer Perceptron 
(MLP) with one hidden layer and one output layer to 
generate two weight vectors: avgM  and maxM . The 
weights of the hidden layer and output layer are denoted 
as ( / )

1
C r C×∈W 

 and ( / )
2

C C r×∈W 

 , where r  is the re-
duction ratio used to avoid overfitting. The hidden layer 
is followed by a ReLU activation function for non-
linearity. Then the information contained in two weight 
vectors are united by element-wise addition and activated 
by a sigmoid function. In summary, the channel-wise at-
tention map is generated by: 
 C C C

2 1 avg 2 1 maxM ( ( F ) ( F ))σ δ δ= +W W W W   (2) 

where σ  and δ  indicate the sigmoid and ReLU function. 
Finally, the weighted feature map is obtained by mul-

tiplying the spatial-temporal feature map with the chan-
nel-wise attention map: 
 C( ) M ( ) ( )c c c='F F   (3) 

 
Fig. 3. The proposed 3D Channel Attention Module (3D-CAM). Two pooling operations are firstly applied to the spatial-temporal features. Two 
weight vectors Mavg  and Mmax are calculated by a multi-layer perceptron (MLP) and then they are added together and passed through a sig-
moid function to generate the final attention map MC. 
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3.2.2 Spatial-Temporal Attention Module 
Except for channel dependency, there are also global spa-
tial-temporal correlations among the extracted features at 
different positions, indicating “where” and “when” the 
features are salient. A Spatial-Temporal Attention Module 
(STAM) is employed to capture these global spatial-
temporal correlations. 

Similarly, given a spatial-temporal feature map, 
C T H W× × ×∈F  , the information from different channels 

are first gathered by average pooling and max pooling. 
Different from channel attention, the pooling operations 
are applied along the channel dimension to generate two 
spatial-temporal descriptors, denoted as ST

avg
T H W× ×∈F 

and ST
max

T H W× ×∈F 

 (see Eq. (4)). 

 
ST
avg

1
ST
max

1( , , ) ( , , , )

( , , ) max ( , , , )

C

c

c

t h w c t h w
C

t h w c t h w
=

=

=

∑F F

F F

  (4) 

After the pooling operations, the spatial-temporal de-
scriptors are concatenated along the channel axis, and a 
3D convolution layer followed by a sigmoid function is 
used to compute the spatial-temporal attention map. The 
3D convolution layer has two input channels (average 
pooling and max pooling) and one output channel, ag-
gregating information into the final attention map, 

ST T H W× ×∈M  :  
  ST ST ST

avg max( ([ , ]))fσ=M F F  (5) 

where f  denotes the 3D convolution. Note that every 
element in STM  is the weight of the corresponding spa-
tial-temporal position of F . 

Finally, the feature map F  is multiplied by the spatial-
temporal attention map STM  to generate the weighted 

feature: 
 ST( , , , ) M ( , , ) ( , , , )c t h w t h w c t h w='F F   (6) 

3.3 Attention modules integration 
In this section, we explain the placements of 3D-CAM and 
STAM, and the integration of STCAM with the baseline 
model. 

3.3.1 Combination of attention modules 
For a spatial-temporal feature map F, neither 3D-CAM 
nor STAM changes the shape of the original feature map. 
Therefore, the proposed attention modules can be easily 
combined in a sequential or a parallel manner. In this 
work, we put the two attention modules in sequence, as 
shown in Fig. 5, because the output of 3D-CAM helps the 
performance of STAM. In other words, the feature map 
modified by the first attention module (3D-CAM) pro-
vides useful information for computing the next attention 
map. An experiment that explores the order of the two 
attention modules is reported in Section 4.3. 

3.3.2 Integration with baseline 
As mentioned before, the shape retaining property of 
STCAM makes it easy to integrate the STCAM with any 
C3D-based architectures, including our baseline model. 
As discussed in Section 3.1, our baseline model contains 
two kinds of sub-structures, the 3D-Inception-ResNet 
structure and the 3D-reduction structure. By integrating 
these structures with the STCAM, we are able to improve 

 
Fig. 4. The proposed Spatial-Temporal Attention Module (STAM). Two channel-wise pooling operations are firstly applied to the spatial-
temporal features to aggregate information from different channels. Then, a 3D convolution kernel and a sigmoid function are used to gener-
ate the final spatial-temporal attention map MST. 

 
Fig. 6. (a) The integration of STCAM with 3D-Inception-ResNet 
structure. (b) The integration of STCAM with 3D-Reduction structure.  

 
Fig. 5. The arrangement of STCAM. Specifically, we place 3D-CAM 
(3D Channel Attention Aodule) and STAM (Spatial-Temporal Atten-
tion Module) of the STCAM in a sequential manner.  
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their ability to extract spatial-temporal features. 
The integration of the two network sub-structures with 

STCAM is shown in Fig. 6. For the 3D-Inception-ResNet 
structure, the STCAM is placed after the 3D-Inception in a 
separate branch. After the STCAM, the modified features 
are added to the features from the previous layer 
(shortcut connection). For the 3D-reduction structure, the 
STCAM is inserted directly into the path of the 3D-
reduction structure. 

4 EXPERIMENTS 
4.1 Datasets 
Experiments in this paper were conducted on three popu-
lar dynamic facial expression datasets, including the Ex-
tended Cohn-Kanade Dataset (CK+) [20], Oulu-CASIA [21] 
and MMI [22].  

CK+: The CK+ dataset is the most popular sequence-
based facial expression dataset to assess the performance 
of FER. It includs 593 facial expression sequences from 
123 subjects. Among these sequences, 327 facial expres-
sion sequences from 118 subjects are labeled with seven 
basic expressions (Anger, Contempt, Disgust, Fear, Hap-
piness, Sadness, Surprise). Each sequence begins with the 
neutral face and ends with the peak expression. Since 
CK+ does not provide official splits of training, validation 
and test sets, a 10-fold cross-validation protocol was 
adopted to assess the performance. More specific, we 
sampled the subjects in an ID ascending order with a step 
size of 10 to construct 10 subject-independent subsets, as 
in the previous works [13], [14], [16], [25].  

Oulu-CASIA: The Oulu-CASIA dataset consists of 80 
subjects, presenting 6 basic expressions (Anger, Disgust, 
Fear, Happiness, Sadness, Surprise) under 3 illumination 
conditions of 2 types of imaging system, i.e., near-infrared 
(NIR) and visible light (VIS). Only the 480 sequences tak-
en under the strong illumination condition of the VIS 
were used in our experiment. Similar to CK+, the se-
quences in Oulu-CASIA begin with the neutral face and 
end with the peak expression. And the same 10-fold 
cross-validation protocol as CK+ was employed in our 
experiment on Oulu-CASIA. 

MMI: The MMI is a small dataset, containing 236 se-
quences from 32 subjects. 208 sequences of the front view 
of 30 subjects are labeled as one of six basic expressions. 
Unlike CK+ and Oulu-CASIA, each sequence in MMI be-
gins with the neutral face, reaches the peak expression in 
the middle, and finally ends with the neutral face. Similar 
to the previous 2 datasets, a subject-independent 10-fold 
cross-validation protocol was employed in MMI dataset 
evaluation. 

The number of subjects, available number of sequences, 
and the expression manner of the three datasets are 
summarized in Table 1. 

4.2 Implementation details 
Data preprocessing: Instead of using the original frames 
directly, data preprocessing is necessary to improve the 
FER performance. In our experiments, facial landmarks 
were used to determine the bounding box of the face area. 
For CK+, we utilized the provided landmarks label direct-
ly. Since the Oulu-CASIA and MMI datasets do not pro-
vide facial landmarks, the famous Dlib library [46] was 
used to detect the frontal faces and facial landmarks. Af-
ter that, all faces were cropped by the bounding box and 
resized to 240 × 240.  

Data augmentation: In order to avoid overfitting, we 
applied on-the-fly data augmentation during training. 
Specifically, random horizontal flip and random crop of 
four corners and center were utilized during training. The 
random cropping operation crops the images from the 
size of 240 × 240 to 224 × 224 as the input to our model. 
During the testing state, only the center crop of the size 
224 × 224 was applied. 

Model pretraining: Before training on our target da-
tasets, i.e. CK+, Oulu-CASIA and MMI, we pretrained our 

TABLE 2 
EVALUATION OF STCAM ON CK+ 

 

TABLE 1 
CONCLUSION OF DATASETS 

 

TABLE 3 
EVALUATION OF STCAM ON OULU-CASIA 

 

TABLE 4 
EVALUATION OF STCAM ON MMI 

 

Model Accuracy
Baseline 98.47%
Baseline + 3D-CAM 98.78%
Baseline + STAM 98.47%
Baseline + STAM + 3D-CAM 98.47%
Baseline + 3D-CAM + STAM 99.08%

Dataset Subjects Sequences Manner a
CK+ 118 327 N→P
Oulu-

CASIA 80 480 N→P

MMI 30 208 N→P→N
aN: Neutral, P: Peak

Model Accuracy
Baseline 89.16%
Baseline + 3D-CAM 90.21%
Baseline + STAM 89.79%
Baseline + STAM + 3D-CAM 90.62%
Baseline + 3D-CAM + STAM 91.25%

Model Accuracy
Baseline 77.40%
Baseline + 3D-CAM 78.84%
Baseline + STAM 78.37%
Baseline + STAM + 3D-CAM 77.89%
Baseline + 3D-CAM + STAM 82.21%
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model on a large-scale action recognition dataset, Kinetics 
[44], for a better initialization of the model weights, aimed 
to accelerate training and avoid overfitting. We pretrained 
the model using stochastic gradient descent (SGD) with 
Nesterov momentum of 0.9. The pretraining learning rate 
was 0.001, and the weight decay was 5e-4. The model was 
pretrained for 8 epochs and the batch size was 32. While 
training on target datasets, the convolution layers were 
initialized by the pretrained model weights, and the fully 
connected layers were initialized by Xavier [47]. 

Frames selection: Our goal is to capture the progres-
sion from the neutral face to expressive face. However, 
using all frames from neutral face to expressive face will 
include redundant information or very subtle differences 
between two successive frames and require more compu-
tation resources. We down sampled every sequence into 7 
frames as the input to the model. More specific, we select-
ed the neutral face (the first frame of the sequence) as the 
first frame and the peak expression (the last frame of CK+ 
and Oulu-CASIA sequences, and the middle frame of 
MMI) as the last frame, and then sampled evenly between 
the neutral frame and the peak frame to obtain another 5 
frames. It should be noted that sample jittering was ap-
plied to augment the training data during the training 
state. 

Parameters settings: We optimized our network on 
CK+, Oulu-CASIA and MMI using stochastic gradient 
descent (SGD) with Nesterov momentum of 0.9. The net-
work was trained for 100 epochs. The learning rate was 
initially set to 0.001 and then divided by a factor of 10 on 
40th and 90th epoch. The batch size was 16 and the 
weight decay was 0.01. The reduction ratio in 3D-CAM 

was set to 16 according to [18] and [19], and the kernel 
size of the 3D convolution in STAM was set to 3 × 7 × 7 for 
3D-Inception-ResNet-A module and 3 × 5 × 5 for other 
C3D modules. 

4.3 Evaluation of STCAM 
We evaluated our proposed method on three dynamic 
facial expression datasets, CK+, Oulu-CASIA and MMI. 
All experiments were conducted on a subject-
independent 10-fold cross-validation protocol. 

We evaluated the two sub-modules of STCAM, i.e., 3D-
CAM and STAM separately. The results on the three da-
tasets are shown in Tables 2, 3 and 4. Compared to the 
baseline model, utilizing 3D-CAM or STAM individually 
obtained a slight recognition accuracy improvement on 
the three datasets. The performance of 3D-CAM is slight-
ly better than STAM, indicating that the global channel-
wise correlation can provide more information than the 
holistic spatial-temporal correlation. 

We then put the 3D-CAM and STAM in sequence in 
different orders to compare their performances. Tables 2, 
3 and 4 show the comparison results on the three datasets. 
Utilizing STAM and 3D-CAM together in sequence im-
proved the recognition accuracy, comparing to the base-
line model. However, different orders led to different re-
sults. As shown in our experiments, placing 3D-CAM 
before STAM performed significantly better than placing 
STAM first. On all three datasets, 3D-CAM + STAM 
achieved the best results in our experiments.  

Our analysis on the difference in performance is that 
the 3D-CAM enhances some important channels of the 
feature map by channel attention, and the STAM aggre-
gates information across the channel dimension by the 
channel pooling operations to generate the spatial-
temporal descriptors. In other words, the channel pooling 
operations can focus more on the important channels en-
hanced by the 3D-CAM. Therefore, the spatial-temporal 
descriptors generated from the feature maps enhanced by 
3D-CAM preserve more useful information than that gen-
erated from the original feature maps, leading to the bet-
ter result when placing 3D-CAM first. Also notice that the 
STAM + 3D-CAM placement led to more significant im-
provement on Oulu-CASIA than on CK+ and MMI. This 
was because part of the subjects in the Oulu-CASIA da-
taset wear glasses that reflect the computer screen. The 
reflection on the glasses occluded the face. The placement 
of STAM + 3D-CAM coped with the occlusion on Oulu-
CASIA better than the other two datasets. 

TABLE 5 
COMPARISON WITH STATE-OF-THE-ART ON CK+ 

 
TABLE 6 

COMPARISON WITH STATE-OF-THE-ART ON OULU-CASIA 

 

TABLE 7 
COMPARISON WITH STATE-OF-THE-ART ON MMI 

 

Method Accuracy
STM-ExpLet [25] 94.19%
3DCNN-DAP [26] 92.40%
DTAGN [16] 97.25%
PHRNN-MSCNN [13] 98.50%
CNN-GRU [14] 98.47%
STRNN [28] 95.40%
LBVCNN [27] 97.38%
FAN [29] 99.69%
MGLN-GRU [31] 99.08%
Baseline 98.47%
Baseline + STCAM 99.08%

Method Accuracy
STM-ExpLet [25] 74.59%
DTAGN [16] 81.46%
PHRNN-MSCNN [13] 86.25%
CNN-GRU [14] 91.67%
LBVCNN [27] 82.41%
DSN + DTN + BiLSTM [30] 91.07%
MGLN-GRU [31] 90.40%
Baseline 89.16%
Baseline + STCAM 91.25%

Method Accuracy
STM-ExpLet [25] 75.12%
3DCNN-DAP [26] 63.40%
DTAGN [16] 70.24%
PHRNN-MSCNN [13] 81.18%
DSN + DTN + BiLSTM [30] 80.71%
Baseline 77.40%
Baseline + STCAM 82.21%
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4.4 Comparison with state-of-the-art methods 
We also compared our method with the existing se-
quence-based FER methods on CK+, Oulu-CASIA and 
MMI. Specifically, we denote our 3D-CAM + STAM model 
as STCAM.  

Comparison result on CK+: Table 5 shows the compar-
ison result on the CK+ dataset. The hand-crafted feature, 
STM-ExpLet [25] achieved an accuracy of 94.19%, and 
outperformed the deep learning-based 3DCNN-DAP [26]. 
STRNN [28] captured the spatial and temporal depend-
ency from the features and achieved an accuracy of 
95.40%. DTAGN [16] and PHRNN-MSCNN [13] reported 
performance improvement by jointly utilizing the ap-
pearance information extracted from the image and the 
geometrical information extracted from facial landmarks, 
reaching 97.25% and 98.50% on CK+. Kuo et al. extracted 
spatial features with CNN and temporal features with 
GRU [14], which reached an accuracy comparable to [13]. 
MGLN-GRU [31] achieved 99.08% accuracy by utilizing a 
complex multitask model and GRU. FAN [29] reported an 
accuracy of 99.69% by using frame attention in addition 
to a deep network. As shown in Table 5, our baseline 
model achieved a competitive result comparing to most 
state-of-the-art methods. The proposed STCAM applies 
attention mechanism on various dimensions of the spa-
tial-temporal features to achieve an accuracy of 99.08% on 
CK+, which is better than most state-of-the-art methods 
and competitive with FAN [29] and MGLN-GRU [31]. 

Comparison result on Oulu-CASIA: For the Oulu-
CASIA dataset, the comparison result is shown in Table 6. 
Our baseline model achieved an accuracy of 89.16%, 
which exceeded other methods by a large gap except the 
CNN-GRU [14], MGLN-GRU [31] and DSN + DTN + 
BiLSTM [30]. We checked our misclassified samples in the 

Oulu-CASIA dataset and found that some subjects pre-
sent different expression in a very similar way, e.g. anger 
and disgust, which is nearly impossible for human to 
classify them all correctly. The local dynamic facial ex-
pression progression in this situation may confuse our 
baseline model, which extracts spatial-temporal features 
simultaneously and hierarchically from local to holist. 
The proposed STCAM computes a weight map for dis-
tinct channels of features, which suppresses irrelevant 
features and therefore promote the classification accuracy. 
Finally, the accuracy of our method was just 0.42% lower 
than the accuracy reported by [14], and it was better than 
all other state-of-the-art methods. 

Comparison result on MMI: The MMI dataset is more 
challenging than the other two datasets because some 
subjects in this dataset present an expression with and 
without facial accessories such as glasses or present an 
expression with very different intensity. Also, the size of 
MMI is much smaller than CK+ and Oulu-CASIA, which 
makes it harder for deep learning-based method to rec-
ognize facial expression. The comparison result of MMI is 
shown in Table 7. PHRNN-MSCNN [13] achieved 81.18% 
on MMI which is the highest accuracy among the existing 
sequence-based methods. Our proposed STCAM outper-
formed PHRNN-MSCNN [13] and other methods by uti-
lizing spatial-temporal and channel attention mechanism, 
which eliminates the confusing factors and generate more 
representative features.  

4.5 Comparison with Non-local attention method 
We compared the proposed STCAM with the Non-local 
attention method [38] using the CK+, Oulu-CASIA and 
MMI datasets. Similar to STCAM, the Non-local block 
doesn’t change the shape of feature maps. Therefore, we 
simply replaced STCAM with the Non-local block in our 
network and compared them under the same experi-
mental settings. We followed the same subject-
independent 10-fold cross-validation for accuracy evalu-
tion.  

TABLE 8 
COMPARISON WITH NON-LOCAL ATTENTION METHOD 

 

TABLE 9 
CONFUSION MATRIX OF BASELINE + STCAM ON CK+ 

 

TABLE 10 
CONFUSION MATRIX OF BASELINE + STCAM ON OULU-CASIA 

 

TABLE 11 
CONFUSION MATRIX OF BASELINE + STCAM ON MMI 

 

CK+ Oulu-
CASIA MMI

Baseline 98.47% 89.16% 77.40%

NL-Gaussian 98.78% 90.21% 78.37%

NL-Embedded 
Gaussian 98.78% 90.00% 78.84%

STCAM 99.08% 91.25% 82.21%

An Co Di Fe Ha Sa Su
An 0.978 0 0.022 0 0 0 0
Co 0 1 0 0 0 0 0
Di 0 0 1 0 0 0 0
Fe 0 0 0 0.960 0.040 0 0
Ha 0 0 0 0 1 0 0
Sa 0 0.036 0 0 0 0.964 0
Su 0 0 0 0 0 0 1

An Di Fe Ha Sa Su
An 0.875 0.05 0.0125 0.0125 0.05 0
Di 0.0875 0.8625 0 0 0.05 0
Fe 0 0 0.9375 0.025 0.0125 0.025
Ha 0 0 0.0125 0.975 0.0125 0
Sa 0.075 0.0375 0.0125 0.0125 0.8625 0
Su 0 0 0.0375 0 0 0.9625

An Di Fe Ha Sa Su
An 0.76 0.03 0.03 0.03 0.15 0
Di 0.0625 0.8125 0 0.0625 0.0625 0
Fe 0 0.036 0.643 0.036 0.036 0.25
Ha 0 0.024 0 0.976 0 0
Sa 0.125 0.0625 0.0625 0 0.75 0
Su 0 0.049 0 0.024 0.024 0.902
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We compared STCAM with two different kernels of 
Non-local block, including the Gaussian kernel (denoted 
as NL-Gaussian) and the Embedded Gaussian kernel (de-
noted as NL-Embedded Gaussian). The comparison result 
is shown in Table 8. Both NL-Gaussian and NL-
Embedded Gaussian achieved better performance than 
the baseline network without the attention module be-
cause the Non-local operation models the holistic spatial-
temporal dependency and rebuilds the spatial-temporal 
features. STCAM outperformed both NL-Gaussian and 
NL-Embedded Gaussian by applying spatial-temporal 
attention and channel attention together.  

4.6 Confusion matrix analysis 
The confusion matrixes of the proposed baseline + 
STCAM method on CK+, Oulu-CASIA and MMI datasets 
are shown in Tables 9, 10, and 11. 

Confusion matrix on CK+: The confusion matrix of 
our method on the CK+ dataset is shown in Table 9. Our 
method made no mistake on contempt, disgust, happy 
and surprise, while only misclassified one sample for 
each class on anger, fear and sadness. This impressive 
result demonstrated the effectiveness of our method. 

Confusion matrix on Oulu-CASIA: Table 10 presents 
the confusion matrix on the Oulu-CASIA dataset. Our 
method performed well on fear, happy and surprise. No-
tice that anger is easily mixed with disgust and sadness 
because some subjects present these expressions indistinc-
tively. 

Confusion matrix on MMI: The confusion matrix on 
MMI is shown in Table 11. Our method achieved the best 
performance on happy and surprise. It is interesting that 
one fourth of the samples from fear were misclassified as 
surprise. This was because the training samples of fear 
were relatively fewer than other classes, and some of its 
samples were with different intensity, making them very 
similar to surprise. 

4.7 Visualization 
A visualization of the learnt attention maps that are used 
to explore the relation between the attention maps and 
the input video is shown in this section. Including the 
visualization of spatial-temporal attention maps is helpful 
because the spatial and temporal dimensions are straight-
forward for human to understand. 

Fig. 7(a) presents the selected frames of an expression 
video from the CK+ dataset. These frames were input into 
our network to extract the spatial-temporal features. Fig. 
7(b) shows the spatial-temporal attention maps corre-
sponding to the extracted features generated by the pro-
posed STCAM. For visualization, the spatial-temporal 
attention maps were split along the time axis and interpo-
lated to the same spatial size as the input frame. The 
warm tone of the attention maps corresponds to the high 
weight, while the cold tone corresponds to the low weight. 
As shown in Fig. 7(c), we overlapped the input frames 
with the attention maps to explore the correlation be-
tween them. In the aspect of spatial dimensions, the atten-
tion maps assigned higher weight to the important parts 
of the face that are correlated to the expression, e.g. the 
eyes and the mouth. From the perspective of temporal 
dimension, the attention maps concentrated more on the 
frames in which the expression changes rapidly. Fig. 7 
shows that STCAM is able to enhance the important parts 
of the features and supress the less relevant ones. 

5 CONCLUSIONS 
In this paper, we propose a novel framework to address 
the dynamic facial expression recognition task. In order to 
capture the dynamic progression of facial expression, we 
develop a C3D-based architecture called 3D-Inception-
ResNet as our baseline network to extract the spatial-
temporal features.  

We proposed a spatial-temporal and channel attention 

 
Fig. 7. Visualization of the learnt attention maps (a) The selected frames of an example video. (b) The learnt spatial-temporal attention maps. 
(c) The overlap of (a) and (b).  
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module (STCAM) to explore and utilize the global corre-
lations among channel and spatial-temporal dimensions. 
STCAM includes two sub-modules, 3D Channel Attention 
Module (3D-CAM) and Spatial-Temporal Attention Mod-
ule (STAM). 3D-CAM aggregates information across spa-
tial-temporal dimensions of the extracted features to ex-
plore the channel dependency. It also generates a channel-
wise attention map to enhance the class-specific features 
according to the channel dependency. STAM explores the 
spatial-temporal correlations among features by aggregat-
ing information across channel dimension and generates 
a spatial-temporal attention map to highlight “where” 
and “when” the features are important. These two sub-
modules are placed in sequence to form the STCAM, 
which is integrated into the baseline model as the feature 
extractor.  

We evaluated our method on three widely used se-
quences-based FER datasets, CK+, Oulu-CASIA, and 
MMI. The experimental results demonstrated that our 
method achieved better or comparable performance com-
pared with the state-of-the-art approaches. 
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