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Abstract

Inter-speaker variability is pervasive in speech, and the abil-
ity to predict sources of inter-speaker variability from acoustics
can afford scientific and technological advantages. An impor-
tant source of this variability is vocal tract morphology. This
work proposes a statistical model-based approach to classify-
ing the shape of the hard palate and the pharyngeal wall from
speech audio. We used principal component analysis for the
parameterization of the morphological shape. Analysis using
K-means clustering showed that both the palate and the pharyn-
geal wall shape data group into two major categories. These in
turn are used as targets for automatic classification using acous-
tic features derived at the utterance level with OpenSmile and at
the model level using GMM based posterior probability super-
vectors. Since articulatory motions are dependent on morpho-
logical shape, the model uses estimated articulatory features on
top of speech acoustics for improving the classification perfor-
mance. Experimental results showed 70% and 63% unweighted
accuracy for binary classifications of palate and pharyngeal wall
shapes in the rtMRI database, respectively, and 63% for the
palate shape on the X-Ray Microbeam database.

Index Terms: speech production, vocal tract morphology,
acoustic-to-articulatory inversion, speaker recognition

1. Introduction

Issues in speech research often center on inter-speaker acous-
tic variability. For example, this variability presents challenges
for combining speech data from various speakers (requiring
speaker normalization [1, 2, 3]). But this inherent variabil-
ity also provides opportunities to differentiate speakers based
on their speech [4, 5]. Regardless of the specific motivation,
whether scientific or technological, the ability to understand
sources of inter-speaker variability and to predict those sources
from acoustics can afford a variety of advantages.

An important source of inter-speaker variability in speech
acoustics is the morphology (physical structure) of the vocal
apparatus. It has long been understood, for instance, that vo-
cal tract length is a key source of variability in vowel acoustics,
with longer vocal tracts resulting in lower formant frequencies
[6, 7, 8, 9]. In order to compensate for these differences, auto-
matic speech recognition (ASR) commonly makes use of vocal
tract length normalization (VTLN), which has been shown to
provide significant gains in system performance [1, 2, 3]. Suc-
cessful estimation of other morphological patterns may also be
useful for handling this inter-speaker variability.

Figure 1: Vocal tract rtMRI images from different subjects

The current study focuses on the morphology of the hard
palate and posterior pharyngeal wall. Fig.1 shows magnetic
resonance images of the vocal apparatus of four different sub-
jects illustrating this variability. These two structures deter-
mine much of the vocal tract’s morphology on account of their
large size and relatively small movements. Although the va-
riety and extent of morphological variation in these structures
is well-understood [10], their role in acoustic variability is
less understood. Several studies have attempted to reveal the
role of palatal morphology in articulatory variability. Speak-
ers with flat palates exhibit less articulatory variability dur-
ing vowel production than speakers with highly domed palates
[11, 12, 13, 14]. Articulation of coronal fricatives is also influ-
enced by palate shape, including apical vs. laminal articulation
of sibilants [15], as well as jaw height and the positioning of the
tongue body [16, 17].

Differences in hard palate and pharyngeal wall morphology
have the potential to alter the resonant properties of the vocal
tract and thereby cause acoustic variability [18]. Therefore, this
paper focuses on the possibility of automatically characteriz-
ing hard palate and pharyngeal wall morphology from speech
acoustics. To our best knowledge, there has not been a study on
this topic. However, indications are that those difference may
not be abundantly evident in the acoustics because speakers ad-
just their lingual articulation in compensation [19, 20], making
estimation of these characteristics from acoustics a very diffi-
cult task (as shown in Table 1 and 2). Thus, inverted articula-
tory features are considered, as well, especially in light of the
strong evidence showing the previously-mentioned influence of
morphology on articulation.

Since we can not acquire real articulation data for gen-
eral ASR or speaker recognition applications, we applied an
exemplar-based acoustic-to-articulatory inversion method [21]
to generate the estimated articulatory signal for this work. Inter-
speaker variations could be projected into the intra-speaker



variabilities of the exemplar speaker when he/she is asked to
mimic different speakers’ pronunciations. Furthermore, the
same MFCC features could be employed for both ASR and
speaker recognition, therefore the inter-speaker variations may
also leak into the inverted articulatory signals through MFCCs.
In [22], we showed that the exemplar-based articulatory inver-
sion results, especially mean and variances, still carry inter-
speaker variations.

Although the inverted articulatory features are also gener-
ated from speech signals, we can show that adding this new
information (articulation-acoustics mapping learned from the
exemplar’s data) on top of MFCCs can still enhance the per-
formance. Theoretical supports from machine learning fields
are provided in [23, 24]. Practically, this concatenation based
speech-articulatory feature level fusion has been reported to in-
crease the performance of ASR [25, 26] and speaker recognition
[22] significantly. In this work, we show that by utilizing infor-
mation from both speech and inverted articulation, the morphol-
ogy recognition results is also enhanced.

2. Data

As our evaluation databases, we utilized real-time Magnetic
Resonance Imaging (rtMRI) database [27] with synchronized,
denoised audio [28] collected in-house, as well as data from the
X-Ray Microbeam (XRMB) Speech Production Database [29].
These databases both provide data regarding measures of vocal
tract morphology in addition to speech recordings from multiple
speakers.

2.1. Real-Time MRI Data

The rtMRI database utilized in this study consisted of data from
36 healthy adult with no reported history of speech, language, or
hearing pathology. Ages of subjects in this database range be-
tween 19 and 37 (mean 27.0, st. dev. 4.3 years). The database
also comprised individuals from a variety of language back-
grounds: 22 American English speakers, 8 German speakers,
5 Mandarin speakers, and 1 Hindi speaker. All subjects were
recorded speaking their native language. This database has pre-
viously been used for analysis of morphological variation in
the speech production apparatus [20]. Utterances consisted of
mostly continuous speech, with an assortment of read passages
and spontaneous speech, along with a small number of isolated
tokens. The combined total duration of all recorded speech was
58 minutes 4.2 seconds (mean 1 minute 37 seconds per subject).

Data were acquired at Los Angeles County Hospital on a
Signa Excite HD 1.5T scanner (GE Healthcare, Waukesha, WI)
and a custom 4-channel upper airway receiver coil array was
used. A 13-interleaf spiral gradient echo pulse sequence was
used. Video sequences were reconstructed using a sliding win-
dow technique to produce a video rate of 23.18 frames per sec-
ond with a spatial resolution of 68 pixels x 68 pixels. Further
details can be found in [27, 20].

From Fig.1, we can observe that significant vocal tract mor-
phology variations exist cross different speakers, for instance in
the size of the tongue and lips, the orientation of the mandible
with respect to the maxilla, and the shape of the hard palate.
Based on the previous statistical analysis of hard palate shape
variations in rtMRI data [10], we have shown that (as in Fig.2)
concavity, anteriority and sharpness cover most of the palatal
shape variations. These correspond to the height of the palatal
dome, the position of the dome’s apex in the oral cavity and
the angularity of the dome around the apex, respectively. Simi-
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Figure 2: Statistical analysis of hard palate shape variations
in rtMRI data. Black lines show the mean palate shape, with
blue/red lines showing the shape at +/- 1.5 st. dev. from the
mean. Concavity differences (a) have been studied, but other
important modes include anteriority of the palatal dome (b) and
sharpness of the dome(c). (Figure reproduced from [20])
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Figure 3: Statistical analysis of rear pharyngeal wall shape
variations in rtMRI data. (Figure reproduced from [20])

larly,concavity and inclination play the most important roles for
rear pharyngeal wall shape variations [10] in Fig.3.

2.2. X-Ray Microbeam Data

We also used the X-Ray Microbeam Speech Production
Database [29] for evaluation. Compared to the rtMRI database,
XRMB data has more speech utterances and cleaner speech
(e.g., no interference from MRI scanner noise). For each
speaker in the database, the shapes of the hard palate and real
pharyngeal wall are approximated by 15 and 2 hand-labeled co-
ordinates, respectively [29]. Due to there are only two discrete
measure points for rear pharyngeal wall and the head orienta-
tion of subjects were not controlled, we limit our experiments
on this database to the palatal shape only. Furthermore, since
there are only limited amount of short duration training data
and the system performance is not good enough to accurately
regress the concavity value, we perform binary classification on
the clustered categorical labels instead. The statistical analy-
sis of palatal shape data and the k-mean clustering result are
demonstrated in Fig.5 and Fig.4, respectively, showing this in-
herent grouping. It is worth noting that the morphology shape
analysis illustrated in Fig.2 and 3 was proposed and reported
for MRI data in [10, 20]. In this work, we applied the same
method on the XRMB database and achieved very similar re-
sults as shown in Fig.5, lending further support to the findings
in [10]. We selected read speech data (citation words and sen-
tences) from sessions 1 to 101 for each speaker from JW11 to
JW63 which amounted to a total of 4034 utterances from 46
speakers with an average duration of 5.72 seconds. Note that
we excluded speech sessions that involved speaking in differ-
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Figure 4: K-mean clustering of morphology shapes cross all the
speakers in each database.
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Figure 5: Statistical analysis of palate shape variations in
XRMB data explaining 56%, 35% and 4% of the total variance.

ent styles (such as fast or slow speech, emphasized speech, or
stimuli that involved diadokinesis). We also omitted speaker
sessions that had to be repeated, as well as those which were
found to contain severe tracking errors, as detailed in the XRMB
Manual [29]. We removed the speakers with concavity values
between -0.15 and +0.15 which gave us 1893 utterances from
22 speakers for the binary classification.

The advantage of XRMB data is that the speech is rela-
tively clean compared to the rtMRI data which enable us to
perform articulatory inversion using models trained on clean
speech database. Moreover, the morphology inversion map-
ping that we studied here could potentially be directly applied to
general ASR or speaker recognition applications due to smaller
channel mismatch. It is worth noting that the vocal tract mor-
phology variations are not correlated with the gender informa-
tion [20, 29].

3. Method

We clustered the continuous PCA coefficients of morphology
shapes into two broad shape classes and performed a binary
classification task. The reason to skip regression is because it
requires higher accuracy and more data for training which is
not satisfied in this study. From the K-mean clustering results
demonstrated in Fig.4, we can see that this binary classification
is actually mostly for concavity discrimination which might be
because concavity covers more than 50% of the variance. In
this work, we just focus on the concavity patterns since it cov-

ers the largest covariance in Fig.2 and Fig.5. We performed
leave one speaker out cross validation (testing on one speaker’s
data and training on all other speakers’ data with rotation for
each speaker) on the palate and pharyngeal wall concavity bi-
nary classification using support vector machine (SVM). The
two kinds of speech data input vectors are Open Smile super-
vector (Sec3.1) and UWPP supervector (Sec3.2). In addition
to direct speech acoustic features, we also consider articulatory
features, obtained by inversion (Sec 3.3), for classification. Lib-
SVM toolkit [30] with RBF kernel was adopted for classifica-
tion.

3.1. Utterance level features: Open Smile supervector

For generating the speech features for the morphology char-
acterization problem, we use global utterance-level features.
Specifically, we use the Open Smile toolkit [31, 32] with the
config parameter provided by the 2010 Paralinguistic Challenge
for generating the utterance level feature vector which covers
various speech features and their functionals, such as MFCC,
line spectral pairs frequency, voicing probability, FO, FO en-
velop, jitter, and shimmer, etc.

3.2. Model-based features: UWPP supervector

Inspired by recent advances in speaker age/gender modeling,
we also propose the use of UBM weight posterior probability
(UWPP) supervector to capture the distinct short term speech
spectral characteristics of different speakers that can be at-
tributable to the shape variability of interest. After voice activity
detection (VAD), non-speech frames were eliminated and cep-
stral features were extracted. A 25ms Hamming window with
10ms shifts was adopted. Each utterance was converted into
a sequence of 36-dimensional feature vectors, each consisting
of 18 MFCC coefficients and their first derivatives. Cepstral
mean subtraction and variance normalization were performed
to normalize the MFCC features to zero mean and unit variance
on a per utterance basis. Wiener filtering [33] was adopted for
XRMB data before VAD to reduce stationary artifact noises.

For each utterance in the datasets, UWPP feature extrac-
tion is performed on the Universal Background Model (UBM),
trained on a population of speakers. Given a frame-based
MFCC feature z; and the GMM-UBM A with M Gaussian com-
ponents (A = {wj, ps, i },¢ = 1, -+, M), the posterior prob-
ability is calculated as follows:

wips (T4 |, Xi)

S wip (e|ps, B5)
This posterior probability can also be considered as the frac-
tion of this feature z:; coming from the i** Gaussian component

which is also denoted as partial counts. The UWPP supervector
is defined as follows:

P(Ailze) = (1)

UWPP = [b17b27"' abM]abi = %EtT:IP(AZ‘xt) (2)

The reason to adopt UWPP supervector in this study is also due
to its relatively small dimension (M) and good generalization
capabilities for short duration utterances [32, 34].

3.3. Subject-independent inversion

This section provides a brief description of a subject-
independent acoustic-to-articulatory inversion method used
in this study. We used generalized smoothness crite-
rion for acoustic-to-articulatory inversion [35] under speaker-
indepedent inversion setting [21]. In this setting, a probability



Table 1: Classification result for rtMRI data

methods Hard palate
decision level Utterance Speaker
Accuracy type UA | WA | UA | WA
Open Smile 61 61 69 69
UWPP MFCC 60 61 64 65
Open Smile and UWPP Fusion 70 71
methods Pharyngeal wall
decision level Utterance Speaker
Accuracy type UA | WA | UA | WA
Open Smile 58 59 59 60
UWPP MFCC 58 59 61 62
Open Smile and UWPP Fusion 63 65

feature vector (PFV) is considered instead of the MFCC fea-
ture vector for representing the acoustic information; PFV is
computed from each MFCC feature vector by computing the
probability corresponding to each of the 40 clusters of a general
acoustic model as was done in [21]. The generalized smooth-
ness criterion represents variabilities in acoustic space and is
built using TIMIT training data [36]. In the subject-independent
inversion, the acoustic-articulatory training data is used from
only one exemplar speaker and the acoustics of a given (arbi-
trary) test subject is matched to that of the exemplar using the
Euclidean distance measure of the corresponding PFVs. gener-
alized smoothness criterion based optimization ensures the es-
timated articulatory trajectories to be smooth to a required de-
gree while ensuring PFV-based acoustic similarity between the
exemplar and the test speakers. Thus the cost function in gener-
alized smoothness criterion is a weighted sum of two terms rep-
resenting these two criteria. In our experiments, the acoustic-
articulatory data of the exemplar speaker is divided into 5-fold.
The hyperparameters of the optimization including the weigh-
ing factor, degree of smoothness are optimized on one fold and
the rest 4-folds are used for training in inversion.

We use tract variables for representing articulatory space
of the exemplar similar to the ones computed in [21]. A fe-
male exemplar is chosen from the Electromagnetic Articulog-
raphy (EMA) database collected at the University of Southern
California [37]. This database includes speech audio (at 22050-
Hz sampling rate) and its parallel recording of six flesh-point
sensor positions (at 100-Hz sampling rate) of 460 MOCHA-
TIMIT [38] English sentences (about 69 minutes) read by a
native speaker of American English. We computed nine vo-
cal tract variables, including lip aperture, lip protrusion, jaw
opening, the constriction degrees and constriction locations of
tongue tip, tongue blade and tongue dorsum. Constriction lo-
cation of the each tongue sensor is computed first by projecting
the tongue sensor position on the corresponding palate region
represented by a straight line, which is chosen by visual inspec-
tion of the tongue sensors movements of the exemplar’s entire
tongue sensor data. After projection, the distance from a fixed
point on the straight line is used as the tongue sensor constric-
tion location. More details about the inter-speaker variations of
the inverted articulatory signals are provided in [22].

4. Results

Table 1 presents the binary classification results for both hard
palate and pharyngeal wall concavity from speech using rtMRI
data (Sec2.1). The labels ’Utterance’ and ’Speaker’ in Table 1

Table 2: Classification result for palate in XRMB data

methods Hard palate
decision level Speaker
Accuracy type UA | WA
UWPP MFCC 60 66
UWPP MFCC+Inverted Articulation | 63 69

and 2 denote the results of utterance- or speaker-level classifi-
cation (i.e., one speaker’s utterances share a single decision by
majority voting). Classification accuracies are reported both as
traditional accuracy (weighted accuracy, WA) and unweighted
average recall (unweighted accuracy, UA) of these two classes
to better compensate for imbalance between classes [32]. The
results on XRMB database are shown in Table 2.

5. Discussion

Experiments on rtMRI data show that the Open Smile and
UWPP systems were able to classify palatal concavity at 19%
and 14% above the 50% chance baseline (Sign and binomial
test one-tail p < 0.0001), respectively, on a per-speaker basis
and these systems were also able to classify pharyngeal wall
concavity at 9% and 11% above the baseline (Sign and bino-
mial test one-tail p < 0.0039). Score level fusion of these two
systems can further enhance the performance.

Notable differences occur in the ability to accurately esti-
mate hard palate shape and pharyngeal wall shape (10%). In
general, it is expected that different aspects of morphology may
be differentially difficult to estimate, either because they have
different potential to impact the acoustics or because speak-
ers compensate for certain morphological variations by adapt-
ing their articulation in pursuit of some acoustic speech target.
However, there is evidence to suggest that morphological dif-
ferences in the posterior pharyngeal wall have just as much po-
tential to impact vowel acoustics as hard palate shape [18]. This
difference is even more puzzling because articulatory compen-
sation in the pharynx is likely more difficult than in the oral cav-
ity because, without the dexterous tongue tip to employ, there
are effectively fewer degrees of freedom in the pharynx. This
reasoning may only apply to vowels, however. Morphological
differences probably also have the potential to impact the acous-
tics of stops and fricatives which, in the languages considered
here, occur near the palate in overwhelming proportions.

The results on the XRMB database are similar to those on
rtMRI data, especially in terms of WA, but with a slightly lower
UA. This lower accuracy is very surprising, given the relatively
clean audio associated with the XRMB data — as opposed to the
denoised rtMRI audio. However, in XRMB data, the morphol-
ogy shapes may not be as accurate as the rtMRI data (relative
positions of palate markers are not identical) which could result
in the lower accuracy. The idea that inverted articulatory in-
formation has the potential to improve the performance of mor-
phological inversion is supported by the XRMB experiments.
By concatenating the inverted articulatory features with MFCCs
together, classification accuracies were increased by 3% which
matches with the results in [22]. In the future work, we would
train the inversion model with multiple subjects’ data as well as
study more accurate inversion methods.

Future works include the continued collection of large scale
morphological databases using rtMRI with denoised audio, but



also with clean speech data from the same speakers. Phoneme-
specific modeling will also be important for establishing which
vocal tract postures provide the best information about morpho-
logical characteristics. We plan to apply the estimated mor-
phology information as labels for the supervised I-vector based
speaker recognition [S]. We also plan to study vocal tract nor-
malization methods to improve ASR using more detailed mor-
phology information than just vocal tract length.

6. Conclusion

We demonstrate a feasible approach to automatically classify
the palatal and pharyngeal wall shape categories from speech
acoustics and inverted articulatory signals. First, we use PCA to
infer a low-dimensional parametrization of inter-speaker varia-
tions in hard palate shape. Second, we use K-mean cluster-
ing on the PCA coefficients to generate two classes for SVM
based binary classification. Both Open Smile and UWPP super-
vectors are generated as SVM inputs. Third, by concatenating
the inverted articulatory features with the traditional MFCCs to-
gether, the overall morphology recognition system performance
is improved.
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