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Abstract—The popularity and application of smart home
devices have made far-field speaker verification an urgent need.
However, speaker verification performance is unsatisfactory un-
der far-field environments despite its significant improvements
enabled by deep neural networks (DNN). In this paper, we
summarize our previous work and propose multiple training
strategies and models for the multi-channel far-field speaker
verification with different in-domain data availability scenarios.
This paper takes the experiments on the FFSVC20 dataset, a far-
field multi-channel speaker verification dataset. In the FFSVC20
dataset, we proposed the cross-device and cross-domain trial
files, e.g., enrollment data is chosen from single-channel close-
talking cellphone audios and the test data comes from multi-
channel far-field microphone array audios. We focus on the
single-channel and multi-channel speaker verification training
based on the dataset. For single-channel speaker verification,
considering the size of training data and availability of labels,
we introduce three training scenarios and given our proposed
training methods, including 1) given zero out-of-domain data and
few in-domain labeled data; 2) given large-scale out-of-domain
labeled data and few in-domain labeled data; 3) given large-
scale out-of-domain labeled data and few in-domain unlabeled
data. To this end, we propose a meta-learning approach, refined
transfer learning methods, and semi-supervised learning for three
scenarios, respectively. For multi-channel speaker verification, we
first introduce two types of 3 dimension convolution (3D Conv)
residual network (ResNet) model proposed in our previous works,
including fully 3D ResNet and incorporating 3D Conv with 2D
Conv ResNet (3D2D-ResNet). In this paper, we propose channel-
wise 3D squeeze-and-excitation ResNet (C3DSE-ResNet) and
spatial-wise 3D SE ResNet (S3DSE-ResNet) to further explore the
channel dependencies and improve the 3D ConvNet performance.
The results show that the proposed strategies and models can
significantly boost the performance under the far-field scenario.

Index Terms—speaker verification, far-field, multi-channel

I. INTRODUCTION

Automatic speaker verification (ASV) is a biometric tech-
nology that verifies the speaker identity based on audio signals.
Over the past few years, deep speaker framework based on
time-delay neural network (TDNN) [1]–[4] or ResNet [5], [6]
has significantly improved the performance of ASV systems
under the settings of close-talking and clean recording environ-
ments. However, the performance of ASV systems is limited
by the scenarios of low signal-to-noise ratio (SNR) or cross-
domain mismatch conditions, such as far-field [7], [8] and
cross-lingual [9]–[11]. For the far-field scenario, the recording
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quality of the collected audio is affected by energy decay, noise
and reverberation, which causes data quality degradation and
domain mismatch between the close-talking training data and
far-field testing data.

Speaker verification under this challenging far-field setting
has attracted a lot research interests. Multiple challenges such
as VOiCES [7], [12] and FFSVC [8], [13] were launched
to foster research in this field. Different methods, including
front-end signal processing [14]–[16], domain adaptation [17]–
[20], and joint learning of speech enhancement and speaker
representation learning [21], [22], have been proposed for far-
field speaker verification. Following these research works, this
paper further investigates far-field speaker verification under
both single and multiple channel settings.

Far-field speaker verification can be formulated as a domain
adaptation task given a large-scale close-talking dataset and a
far-field dataset. For single channel data, we apply different
training strategies considering the size of the far-field data and
the availability of the label. With a relatively small size of far-
field dataset, transfer learning is used to adapt the model to
in-domain far-field data. When only few far-field data samples
is provided for training, a meta-learning method is proposed
to perform domain adaptation. With an unlabeled far-field
dataset, we propose a semi-supervised approach to generate
pseudo-labels for the unlabeled data before transfer learning.

For multi-channel data, existing methods adopt front-end
processing of beamforming [14], [15], [23], [24] or joint
learning of speech enhancement and ASV [21]. However,
front-end speech enhancement may damage the speech quality
and thus affect the verification performance of close-talking
data [15], [25], [26]. In this paper, we directly model multi-
channel signals to learn speaker embeddings. Specifically, we
propose to apply 3-dimensional (3D) convolutional network
(ConvNet) to the 3D input feature (multi-channel spectro-
gram) on our previous work [27]. The proposed multi-channel
training framework utilizes the information carried out by
multiple speech observations at different spatial locations and
simultaneously processes the time-, frequency- and channel-
information to learn a robust speaker embedding. Considering
the large computational cost and memory consumption of full
3D ConvNet model, we propose to incorporate 3D convolution
with 2D convolution to reduce the model size. To further
explore the channel dependencies, we extend the attention
module of squeeze-excitation (SE) [28] from the 2D ConvNet
layer to the 3D ConvNet layer for the proposed multi-channel
framework in this paper.
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For both single and multiple channel settings, most studies
used data simulation to obtain far-field audio due to the lack of
real data. However, the simulation can not perfectly match the
real data. The simplification of the recording environment’s
interior structure during the simulation process of the image
source method (ISM) [29] leads to the domain gap between
the simulated and genuine data. To fill this gap, we conduct
the experiments on FFSVC20 dataset1 [8]: a far-field multi-
channel dataset recorded in real world environment. The
dataset consists of multiple recording devices with a variety of
distances. The recording contents include fixed text and free
text. Also, we design the challenging cross-channel testing
trials to investigate the conditions of close-talking enrollment
and far-field testing.

This paper extends our previous works on far-field speaker
verification. In our previous works, we released a large-scale
far-field speaker verification dataset (FFSVC20) [8], adopted
the transfer learning on far-field ASV field (only discuss
the fine-tuning with in-domain data scenario) [25], [30] and
proposed multi-channel training frameworks with 3D ConvNet
for far-field speaker model [27]. Compared to those studies,
we propose multiple training strategies for far-field speaker
verification with different in-domain data availability scenarios
and improve modeling using new proposed modules with
multi-channel far-field data in this paper. To sum up, the main
contributions in this paper are:
• Systematically discuss the performance of fine-tuning

strategy on the far-field field, including fine-tuning only
with in-domain data (FT-domain) and fine-tuning using
both in-domain and out-of-domain data (FT-mix).

• Investigate two new training scenarios for far-field data:
when few far-field data is provided, meta-learning is ap-
plied to far-field speaker verification; when an unlabeled
far-field dataset is given, semi-supervised is used.

• Further explore the channel dependencies for far-field
multi-channel training framework, squeeze-excitation
(SE) attention module is extended to 3D ConvNet.
The channel-wise 3D squeeze-and-excitation module and
spatial-wise 3D squeeze-and-excitation module are pro-
posed.

The remaining paper is organized as follows. We briefly
discuss related works in Section II. Section III details the
FFSVC20 dataset. Section IV describes different training
strategies for different data size and labeling scenarios. Section
V introduces the details of the proposed multi-channel training
framework. The experimental setting and results are presented
in Section VI and VII. Section VIII gives the conclusion.

II. RELATED WORKS

As mentioned before, the speech intelligibility and quality
of far-field audio is affected by long-range fading, room
reverberation, and environmental noises. To compensate the
adverse impacts, signal processing methods aim at improving
the speech quality or extracting robust acoustic features for far-
field audio. Speaker modeling methods aim at learning a robust

1http://2020.ffsvc.org/DataDownload

speaker embedding from far-field data via domain adaptation
or advanced DNN architecture.

A. Front-end processing for far-field speaker verification

At the feature level, sub-band Hilbert envelopes based
features [31]–[33], warped Minimum Variance Distortionless
Response (MVDR) cepstral coefficients [34], Blind Spec-
tral Weighting (BSW) based features [35], Power-Normalized
Cepstral Coefficients (PNCC) [36], [37] and DNN bottleneck
features [38] have been applied to ASV system to suppress
the adverse impacts of reverberation and noise. Also, Liu et
al. [39] proposed to jointly optimize the parameters of per-
channel energy normalization or parameterized cepstral mean
normalization with DNN speaker embedding extractor.

At the signal processing level, DNN based denoising
method of single-channel speech enhancement [40]–[43] has
been applied for noise robust speaker recognition. Also, Shi
et al. [21] proposed to jointly optimize speech enhancement
with speaker modeling to improve speaker verification perfor-
mance in various acoustic conditions. For multi-channel signal
enhancement, beamforming has been successfully applied in
far-field speaker verification [14], [15], [23], [44]. Yang and
Chang [45] proposed to jointly optimize the DNN acoustic
beamforming and dereverberation with speaker embedding ex-
tractor for far-field audio. To reduce the reverberation level in
far-field audio, dereverberation method of weighted prediction
error (WPE) [46], [47] is also applied for far-field speaker
verification [37], [48].

The usage of front-end signal processing modules may
potentially increase the model complexity and distort the
speaker information. Therefore, we focus on the training strat-
egy and end-to-end modeling in this paper. The conventional
operations of beamforming and dereverberation methods will
be considered as a comparison in experimental results.

B. Speaker Embedding Extraction for far-field speaker verifi-
cation

For single channel far-field audio data, Jati et al. [49]
propose to apply a discriminative model that hybridizes DNN
and total variability model for speaker verification. Zhao
et al. [50] propose a novel DNN architecture of channel-
interdependence enhanced Res2Net for single channel far-field
speaker verification. To reduce the mismatch between the far-
field audio and the close-talking audio, adversarial learning
[15], [17], [51] and transfer learning [18], [25], [52] are also
applied for single channel far-field speaker verification.

The performance of far-field speaker verification systems
is also investigated under the setting of ad-hoc microphone
arrays whose spatial arrangement are unknown. DNN attention
mechanism has been applied to aggregate speaker embeddings
of different recordings captured by different channels of the
distributed microphone arrays [53], [54]. Also, Liang et al.
propose the spatio-temporal processing block at the frame-
level to capture the contextual relationship in both channel
and time axis.

Compared with related work that pays attention to the
single-channel and ad-hoc data modeling, we focus on the
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Fig. 1. Room setting of the FFSVC20 dataset. The red arrow points to channel
0 of each microphone array.

multi-channel data modeling and propose new multi-channel
attention modules based on the previous work [27].

III. THE FFSVC20 DATASET

The development of smart home devices gives rise to open
research questions for speaker verification in the far-field
environments. Most research use data simulation to generate
far-field data due to the lack of a far-field dataset collected
in real. However, far-field simulation does not perfectly match
the real data. To this end, we provided the FFSVC20 dataset
to the speaker verification community [8]. FFSVC20 dataset
is the part of DMASH dataset2. Compared with the HIMIA
dataset [30], FFSVC20 dataset provides more recording device
and richer text. The HI-MIA dataset provides 340 speaker data
consists of one HIFI microphone and multiple microphone
arrays. However, the content are “hi,mia” and “ni hao,mi
ya” only. The FFSVC 20 dataset, which is recorded with
multiple devices in two different room settings, exhibits far-
field characteristics in real scenarios. Fig.1 shows the recording
setup of the FFSVC20 dataset. The recording devices include
one close-talking microphone, one smartphone at a distance
of 25 centimeters, and six four-channel microphone arrays
at different locations as shown in Fig.1. The shape of the
microphone array is circular with a 5 centimeters radius.

The dataset is recorded in Mandarin. The text content
includes the fixed text of ‘ni hao, mi ya’ and other text-
independent utterances. During recording, each speaker visited
three times with a time gap of 7 to 15 days to ensure
recording diversity. For a single visit of one speaker, the first
30 recordings are text-dependent utterances and the remaining
recordings are with free texts. Different recording environ-
ments are set for different recording visits: for the first visit,
the noise sources include television and electric fan noises; for
the second visit, audio data is recorded in a clean environment
without noise; for the third visit, a working electric fan is used
as the noise source.

The dataset includes 395 speakers: the training set contains
120 speakers, the development set contains 35 speakers and the

2https://www.aishelltech.com/DMASH Dataset

evaluation set contains 240 speakers. To measure the speaker
verification performance in different scenarios, we define three
evaluation tasks as follows:
• Task 1: far-field text-dependent speaker verification with

single microphone array.
• Task 2: far-field text-independent speaker verification

with single microphone array.
• Task 3: far-field text-dependent speaker verification with

distributed microphone arrays.
The evaluation set is equally divided into three non-overlapped
subsets with 80 speakers. Different subsets are used to con-
struct verification trials for different evaluation tasks.

To match the application in real scenario, the recording from
the close-talking cellphone is used for enrollment; and the
recording from far-field microphone array is used for testing.
For any target trial, the enrollment and the testing utterances
are from different visits of the speaker. Under this evaluation
protocol, a challenging cross-domain trial list is constructed.
In this paper, we focus on task 1 and task 2.

IV. SINGLE-CHANNEL FAR-FIELD SPEAKER
VERIFICATION

In real applications, far-field speaker verification sometimes
can be regarded as a domain adaptation task given a large-
scale close-talking speech dataset and a far-field dataset.
This section introduces various training strategies for far-field
speaker verification systems according to different in-domain
data availability scenarios.

A. Transfer Learning

Transfer learning, also known as domain adaptation [55],
is the strategy we used to train a far-field speaker verification
model. Under this strategy, the far-field model is fine-tuned
from a pre-trained one trained on a large-scale general speaker
recognition dataset. Thus we can transfer the discriminative
speaker knowledge from the pre-trained model and reduce
domain mismatch problems.

Generally, collecting a large-scale labeled far-field dataset
is time-consuming and expensive. Thus datasets for far-field
speaker verification are usually in small-scale, while models
training on a small dataset can be easily overfitted. In this
case, transfer learning is widely used to improve the speaker
verification performance in data sparse scenarios [25], [56].
Typically, the large-scale general dataset is regarded as the
out-of-domain data, while the small far-field dataset is con-
sidered as the in-domain data. The adaptation process of the
transfer learning strategy is shown in Fig.2, which contains
the following steps [25]:
• Pre-train a deep speaker embedding model using the

large-scale dataset with sufficient speakers;
• Retain all parameters of the model except for the output

speaker classification layer; replace the speaker classifier
with respect to the number of speakers in the in-domain
far-field training data;

• Finetune and adapt the the new model with the in-domain
data until it converges. All parameters, including those
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Fig. 2. Adaptation pipeline of the transfer learning strategies.

from the pre-trained model and the new speaker classifier,
are jointly optimized.

Normally, only in-domain data is used to adapt the pre-
trained model from the source domain to our target domain
(named FT-domain, we proposed in [25]). Since the number
of speakers from the in-domain dataset is much smaller, the
pre-trained model can be easily over-fitted to such limited data.
Thus the discrimination and generalizability of the adapted
model may be degraded. To perform domain adaptation with
in-domain data while maintaining the discrimination and gen-
eralizability of the pre-train model, we propose to use both in-
domain and out-of-domain data together (mixed-domain data)
to fine-tune the pre-trained model (named FT-mix). Compared
to the seen data (i.e., out-of-domain data), unseen data (i.e., in-
domain data) result in larger losses and gradients in forward
and backward propagation. Therefore, we aim to achieve a
consistent adaptation of the model regarding of the cross-
domain mismatch and reduce the over-fitting by using the
mixed-domain data. In addition, the method proposed in [18]
adopts two classification heads to fine-tune the model, one for
the in-domain data and the other for the out-of-domain data.
For FT-mix, the out-of-domain and in-domain speakers share
the same classification head. Compared with the [18], the FT-
mix is easy to implement.

B. Meta-learning

In some commercial scenarios, where the existed large-scale
datasets, e.g., VoxCeleb, are unauthorized, it is difficult to
apply the transfer learning strategy. Therefore, we adopt meta-
learning to address the performance degradation for the far-
field speaker verification with a few in-domain data available.
Meta-learning is another domain adaptation strategy when
the model lacks data for training. Different from transfer
learning where the pre-trained model possesses a wealth of
prior knowledge, meta-learning aims to help the model learn
new concepts and skills fast with only a few training samples.

Recently, meta learning based metric learning is employed
in speaker recognition task [57]–[59] that uses the prototype
network [60] to make query set close to the support set. In
meta learning scenario, the training set is usually divided into
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Fig. 3. Pipeline of our proposed meta learning method. Data and features of
the same speaker are represented by the same color.

two set, namely the support set and the query set. During the
training process, the cost function assesses the performance on
the query set for each batch given the corresponding support
set. Cai et al. [61] also propose within-sample variability-
invariant loss to learn the same embedding among the clean
utterance and its noisy copies. Inspired by those works, we
introduce a metric learning based meta-learning approach that
combines the advantages of prototype network and angular
margin softmax [62] to obtain the discriminative embeddings
well from a few examples (see Fig. 3).

1) Meta learning with domain gap pairs: Since the enroll-
ment data is close-talking and test data is recorded from any
distance, we tackle the problem with mini-batch meta-learning
that each mini-batch consists of the support and query sets of
speaker classes. For each class, the mean of its support set
is taken as the prototype and enforce the query examples to
become closer to its own prototype. To simulate the practical
scenario, the support sets and the query sets consist of the
utterances randomly sampled from close-talking and far-field
data.

Specifically, for each mini-batch, we first randomly sample
N classes from the given dataset and then sample S and
Q examples from each class as the support set and query
set, respectively. As a result, we have a support set S =
{(xi, yi)}N×Si=1 and a query set Q = {(x̂j , ŷj)}N×Qj=1 , where
x and x̂ are input features, y and ŷ = {1, · · · , N} are the
class labels. The loss calculation for the prototypical network
is described as follows.

As with [57], [60], we calculate prototypes of classes by
averaging over support sets and forcing examples of queries to
become closer to their own prototypes. First, the Sc is defined
as the set of support examples in class c and then the prototype
of each class c = 1, · · · , N is computed in a mini-batch:

Pc =
1

|Sc|
∑
x∈Sc

(fθ(x)) (1)

where |Sc| counts the number of Sc, Pc is the prototype
vector with speaker embedding dimensions of class c and the
fθ(·) is the model for speaker embedding extraction. Consider
the characteristic of ASV, the cosine similarity of each query
example with prototypes is compute as the distance metric :
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d(x̂i,Pc) =
fθ(x̂i) ·Pc

‖fθ(x̂i)‖‖Pc‖
(2)

Each query example is classified as N speakers based on a
Softmax function over distances to each speaker prototype, and
final loss of meta learning is the combination of the Softmax
and cross-entropy loss:

Lmeta = − 1

|Q|
∑

(x̂∈Q)

log
ed(x̂i,Pc)∑N

c′=1 e
d(x̂i,Pc′ )

(3)

where the c and c′ denote as the class that x̂i belong to and
any class in a mini-batch, respectively.

2) Global classification: The proposed meta-learning
scheme can make the far-field embedding closer to the close-
talking embedding. However, if only considering a limited
number of speakers N according to the mini-batch com-
position, it is difficult to exclude the influence brought by
speaker-unrelated factors. This makes it difficult to achieve a
discriminative embedding space as the centroids of the speaker
embeddings are unstable. Inspired by [57], [60], we introduce
a global classification strategy to make the speaker embedding
distributed on a hypersphere. In this experiment, the ArcFace
[62], a modified Softmax with angle margin, is adopted as
global classification. The loss function follows,

Lg = −
1

|Q|+ |S|

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n
j=1,j 6=yi e

s cos θj

(4)
where cos(θyi) =

WT
yi
f(xi)

‖Wyi
‖‖f(xi)‖ and {xi, yi} ∈ Q∪S denotes

the speaker embedding feature of the i-th sample from the
yi-th class. m is the angular margin penalty between xi and
Wyi .

The total loss combines the loss in meta learning in Equation
3 with the global loss in Equation 4:

Ltotal = Lmeta + Lg (5)

C. Semi-supervised learning

In this part, we investigate scenarios where the in-domain
far-field data is unlabeled. Such situation often occurs in
recordings of unregistered participants. To make use of un-
labeled data in training, we need to adopt strategies that
involves unsupervised learning. One of the strategies is the
semi-supervised learning, which generate pseudo-labels using
another labeled dataset. Most semi-supervised algorithms,
including temporal ensembling [63] and mean-teachers [64],
are used under the closed-set protocol – the unlabeled training
data belongs to the classes within the labeled training data.
In our case, we adopt a large-scale dataset as the out-of-
domain labeled data and treat the FFSVC dataset as the in-
domain unlabeled data. The labeled data is used to pre-train a
model for pseudo-labeling. To apply semi-supervised learning
in the transfer learning phase, the speaker embedding from
unlabeled data is extracted by using the pre-train model, and
the followed clustering algorithms to generate pseudo-labels

for the unlabeled data. Pseudo-labels are generated by the
following algorithm:
• Step 1. Extract all speaker embeddings Z ∈ RN×d

from the FFSVC20 dataset using the pre-trained speaker
model.

• Step 2. Run a clustering algorithm with different number
of clusters K to obtain centroid matrix C ∈ Rd for each
K.

• Step 3. Calculate the within-class cosine similarity
(WCCS) and observe the ‘elbow’ of the WCCS curve
to determine the number of clusters K .

• Step 4. Create the pseudo labels for the FFSVC20 dataset.
• Step 5. Use the pseudo-labels data together with the

labeled data into speaker model to fine-tune the model.
• Step 6. Repeat Step 1 with the fine-tuned model from

Step 5 as the pre-trained model.
Generating pseudo label by clustering. We adopt the K-

means algorithm as the clustering algorithm to generate the
pseudo labels. The learning objective of K-means is set to
minimize the within-cluster sum-of-squares criterion:

min
C

1

N

N∑
i=1

min
k
‖zi −Ck‖2 (6)

where zi ∈ Rd is the d-dimensional speaker embedding of
the ith sample. The cluster with the closest controid to zi in
terms of the L2-norm distance is assigned as the pseudo-label
for sample i.

Determine the number of clusters. Inspired by the works
of Cai et al. [65], [66], we determine the number of clusters by
the ‘elbow’ method. Given zk,a, the assigned ath embedding
of the kth cluster. The total WCCS of N elements is:

WCCS =

∑K
k=1

∑A
a=1 cos(zk,a,Ck)

N
, (7)

Since the cosine similarity and euclidean similarity are
connected linearly for normalized vectors, the WCCS linearly
connects with learning objective of K-means. Fig. 4 shows
the curve of WCCS results under different Ks. The WCCS
monotonically increases as number of clusters K increases.
WCCS tends to flatten with some K onwards and forming an
‘elbow’ of the curve. Such ‘elbow’?indicates that the intra-
cluster has little variation and increasingly over-fitting. From
Fig. 4, the ‘elbow’ is distributed between 400 and 600.

V. MULTI-CHANNEL FAR-FIELD SPEAKER VERIFICATION

In this section, we will introduce the far-field multi-channel
system. The 3D convolution (3D Conv) operation and 3D
Squeeze-and-Excitation module will be applied to replace 2D
convolution (2D Conv) operation and learn spatial information
in this section. First, we introduce our previous work [27]
on Section V-A, V-B and V-C. Then, to further explore the
channel dependencies for the far-field multi-channel training
framework, the squeeze-excitation (SE) attention module is
extended to 3D ConvNet. The channel-wise 3D squeeze-
and-excitation ConvNet and spatial-wise 3D SE ResNet are
proposed in Section V-D.
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Fig. 4. Within-Cluster Cosine Similarity versus the number of clusters K
employed.

Given the microphone array with M microphone channels,
the spectro-temporal feature for recording channel m can be
represented as xm ∈ RF×T , where F is the feature dimension,
and T is the number of time frame. The features of multi-
channel microphone array utterance can be seen as either a
multi-channel 2D feature or a 3D feature representation X ∈
RM×F×T . The multi-channel feature representation is then
fed into the speaker embedding network.

A. 2D Conv with multi-channel 2D features

Given the multi-channel 2D features, the convolution layer
with 2-dimensional kernel takes X as M 2D feature planes and
produces the output feature maps of Y ∈ RC×H×W , where
C denotes the number of convolution output channels, H and
W indicate the high and wide of the feature maps. Formally,
the cth feature map after the convolution operation can be
described as

Yc =

M∑
m=0

K(c,m)⊗Xm (8)

where K(c,m) is the 2D filter weights for input channel
m and convolution output channels c, and the ⊗ indicates
2D convolution operation. In this study, the first convolution
layer of the speaker verification model is designed to receive
multiple channel features. With 2D convolution, how multi-
channel training works is the same as processing three color
channel pictures in computer vision. In this case, the model is
denoted as 2D-ResNet (multi-channel).

B. 3D Conv with 3D features

The second scheme for multi-channel training is the use
of 3D convolution layers. 3D Conv has been applied for
far-field multi-channel speech recognition in [67]. The 3D
convolution layer receives 4-dimensional input feature maps
with size C ×D×H ×W , where C is the number of feature
maps, D,H,W are the depth, height and width of the feature
map respectively. For the multi-channel input model, there is
more spatial information focused on the recording channels
(corresponds to depth dimension in feature maps). The output
Y can be defined as
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Fig. 5. 2D and 3D convolution operation for multi-channel data.

Yout,c =

Cin∑
k=0

K(c, k)⊗Yin,k (9)

where K(c, k) is the 3D filter weights for input channel k and
convolution output channels c, the ⊗ is the valid 3D cross-
correlation operator, Yout,c is the cth feature map of the output
feature and Yin,k is the kth feature map of the input feature.

Fig. 5 shows the difference between the 2D and 3D
convolution layer. Multi-Channel 2D Conv only learns the
information between channels on the first layer. Since the
2D convolution aggregates the channel information together
into the 2D feature maps after the first convolution layer,
the feature map after passing through the first layer does
not contain the information between channels. But the 3D
convolution retains the channel axis and keeps the channel
information in the whole ConvNet. On the other hand, since
the kernel size of multi-channel 2D Conv must equal the
number of the input feature map, multi-channel 2D Conv can
not slide along the channel axis. Therefore, only by fixing the
sound source and microphone array position, the first 2D Conv
layer could effectively learn the channel information. But in
real scenarios, the location of the sound source is dynamic.
Conversely, 3D Conv could slide along the channel axis, thus
3D could learn the information between adjacent microphone
channels. We think 3D Conv could capture the relationship
of time, frequency and channel, and implement beamformer
performance implicitly by learning 3D information.

In this case, all the 2D convolution operations in the original
ResNet are replaced by the 3D convolution layers. We thus
modify the global statistical pooling (GSP) layer to aggregate
the mean and std statistics along with the time-, frequency-
and depth-axis.

According to [68], the 3D Convolution Network (ConvNet)
is more suitable for learning multi-channel spatio-temporal
features than the 2D ConvNet. In terms of the far-field
multi-channel data, convolution and pooling operations are
performed in a spatio-spectral-temporal manner using 3D
ConvNet, while 2D ConvNet operates only along the temporal
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and frequency dimensions. Fig. 5 illustrates the difference,
2D Conv applied on an image will output an image, 3D
Conv applied on multiple images (treating them as different
channels) also results in an image. Hence, 2D Conv loses
information of the input signal spatially right after every
convolution operation. In contrast, 3D Conv preserves the
spatial information of the input signals resulting in an output
volume. The model is denoted as 3D-ResNet in this paper.

C. Incorporate 3D Conv with 2D Conv

As stated before, the 3D convolution retains the channel
axis in the whole ConvNet, while the 2D convolution drops
the channel axis after the first convolution layer. However,
using 3D convolution layers in ResNet may greatly increase
the model size. This motivates us to incorporate 3D Conv with
2D Conv. To match the dimension between the 3D convolution
feature maps (4D tensor) and 2D convolution feature maps
(3D tensor), a 3D Conv layer with kernel size of Din× 1× 1
is adapted to convert the 4-dimensional feature maps into a 3
dimensional feature maps, where Cin is designed to match the
channel size of the input feature maps. In this way, the channel
axis of the 4-dimensional feature maps output has length 1,
and it is then reshaped to 3-dimensional feature maps and fed
into the 2D Conv layers. In this case, the model is denoted
as 3D2D-ResNet. Fig. 7 show the structures of the 3D-ResNet
and 3D2D-ResNet models.

D. 3D Squeeze-and-Excitation module

The application of the attention mechanism in speaker
verification has achieved significant success, especially the
usage of Squeeze-and-Excitation Networks (SENet) [28]. In-
spired by SENet, we introduce two modules, the channel-
wise 3D squeeze-and-excitation (C3D-SE) module and the
spatial-wise 3D squeeze-and-excitation (S3D-SE) module. The
attention mechanism acts on the channel dimension and depth
dimension of feature maps, respectively.

1) Channel-wise 3D squeeze-and-excitation module: In-
spired by the success of SENet in the single-channel ASV
task [4], [65], we adopt the C3D-SE module for the far-field
speaker verification. Fig. 6 shows the normal modified SE
module that is learning the channel weight for each convo-
lution channels of 3D Conv. Fig 6 (a) present the common
SE module [28]. Since the SE operation is performed along
the channel level on the 2D feature map, the attention weight
e ∈ RC of conventional SE is 1D vectors, and this SE module
is named the channel-wise 2D SE (C2D-SE) in this paper.
The C3D-SE is similar to C2D-SE, we also adopt the global
average pooling at the channel level and generates a 1D weight
vector. We calculate a vector e ∈ RC containing the mean
descriptor for each convolution channel of the intermediate
feature maps in the following manner:

ec =
1

D ×H ×W

D∑
i=1

H∑
j=1

W∑
k=1

xci,j,k (10)

with xci,j,k the elements of Xc ∈ RD×H×W , the component
of input feature map X ∈ RC×D×F×T corresponding with

GAP 2d FC1 FC2

(a) 2D SE block

(b) C3D-SE block

GAP 2d

…………
…………

Concat

GAP 3d FC1 FC2

…………

…………

FC1 FC2

(c) S3D-SE block

Fig. 6. 2D and 3D Squeeze-and-Excitation operations. Fig. 6 (a) describes
the 2D-SE, Fig. 6 (b) describes the C3D-SE module, Fig.6 (c) describes the
S3D-SE module.

convolution channel position c. After the squeeze operation,
the followed excitation operation is:

s = σ(W2f(W1e+ b1) + b2) (11)

where W and b indicating the weights and bias of a linear
layer, f(.) the ReLU activation function and σ(·) the sigmoid
function. Finally, Xc is scaled with the corresponding scalar
in s. The proposed C3D-SE blocks are inserted at the end of
each residual module before the additive skip connection. The
model is denoted as C3DSE-ResNet.

2) Spatial 3D squeeze-and-excitation module: The existing
attention modules are usually operated on the channel or
frequency dimensions [28], [69]. Those methods generate 1-
D weights following the channel dimension, which means
the various recording channels in one feature map channel
share the same weight. However, the quality of multiple
recording channel is different, attention weights may need
more refinement and we could assign different weights for
different recording channels. Therefore, we introduce S3D-SE
for 3D ConvNet, which performs SE with 2D weights. Since
the C3D-SE with 2D weight (channel-wise and deep-wise
attention weights) will additionally increase the parameters,
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TABLE I
THE DATA USAGE OF SINGLE-CHANNEL AND MULTI-CHANNEL MODEL. K DENOTES THE SPEAKER NUMBER AFTER CLUSTERING OF SEMI-SUPERVISED

LEARNING.

Model Strategy Pre-train Fine-tuning

Dataset Num. Spk & Num. Utt Dataset Num. Spk & Num. Utt

Single-Channel

Baseline FFSVC20+HIMIA 447 & 208300 - -

Meta-Learning FFSVC20+HIMIA 447 & 208300 - -

Mix VoxCeleb 1&2 + OpenSLR + 11001 & 805285 - -FFSVC20+HIMIA

FT-Mix VoxCeleb 1&2 + OpenSLR 10554 & 596985 VoxCeleb 1&2+OpenSLR+ 11001 & 805285FFSVC20+HIMIA

FT-domain VoxCeleb 1&2 + OpenSLR 10554 & 596985 FFSVC20+HIMIA 447 & 208300

SSL VoxCeleb 1&2 + OpenSLR 10554 & 596985 VoxCeleb 1&2+OpenSLR+ 10554+K & 805285FFSVC20+HIMIA

Multi-Channel FT-Mix VoxCeleb 1&2 + OpenSLR 10554 & 596985 VoxCeleb 1&2+OpenSLR+ 11001 & 805285FFSVC20+HIMIA
FT-domain VoxCeleb 1&2 + OpenSLR 10554 & 596985 FFSVC20+HIMIA 447 & 208300

Fig. 7. Model structure of 3D-ResNet and 3D2D-ResNet.

we further simplify the attention generative mechanism: the
4D feature maps at various channel levels are flattened and
concatenated to transform into 3D feature maps as shown in
Fig. 6 (c). Therefore, the final S3D-SE function is given by:

ec,d =
1

H ×W

H∑
j=1

W∑
k=1

xc,dj,k (12)

To further improve the performance and reduce the model

size, we propose the jointly S3D-SE attention and C2D-
SE attention model (denoted S3C2SE-ResNet) for far-field
speaker verification. The backbone is structured to follow the
3D2D-ResNet framework. We adopt the S3D-SE module in
the first block to learn spatial information, and the C2D-SE
module is integrated into the remaining blocks.

VI. EXPERIMENTAL SETTING

A. Dataset and data usage

Table.I shows the details of the data usage for our experi-
ments. The training phases are divided into two parts: pre-train
and fine-tuning.

1) large-scale out-of-domain training dataset: VoxCeleb
1&2. The VoxCeleb 1&2 [70], [71] are widely used large-
scale speaker verification datasets including 7323 speakers.
Those audios include multiple languages (mainly English)
under different kinds of realistic scenarios.

OpenSLR. The OpenSLR platform is a free and open
speech resource website. We add some Chinese datasets
listed on OpenSLR into the training set to reduce the lan-
guage mismatch and obtain better performance for ASV. The
aforementioned Chinese databases listed on OpenSLR are
AISHELL-1 (SLR33) [72], Free ST Chinese Mandarin Corpus
(SLR38) [73],Primewords Chinese Corpus Set (SLR47) [74],
aidatatang 200zh (SLR62) [75] and MAGICDATA (SLR68)
[76], with in total 3231 speakers.

The whole VoxCeleb dataset with 7323 speakers and s-
elective datasets from OpenSLR are employed to train the
out-of-domain model. To balance the data and avoid biasing
the model towards any dataset, finally we randomly select 60
utterances from each speaker to refine the large-scale out-of-
domain datasets.

2) in-domain dataset: Since the HIMIA3 [30] database
shares the same recording environment as FFSVC20, we
consider both HIMIA and FFSVC20 as the in-domain datasets.
The HI-MIA database includes two sub-datasets, which are

3https://openslr.org/85/
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the AISHELL-wakeup1 with 254 speakers and the AISHELL-
2019B-eval with 86 speakers. Since, there is some overlapping
between the HIMIA dataset and the FFSVC20 training data,
we also release the list4 of overlapped speaker with its
corresponding relationship. Finally, we have in-domain data
from 447 speakers for training, and for each device and each
speaker, 50 single or multi-channel audio files are randomly
selected.

B. Model training and setting

1) Data Augmentation: We perform offline data augmenta-
tion using the MUSAN dataset [77] and the pyroomacoustic
toolkit [78]. pyroomacoustic is adopted to generate the
reverberated and noisy data as a simulation of the far-field
condition. We randomly set the width and length of the acous-
tic room between 3 meters and 8 meters, and the height of the
room is 3 meters. The distance between the source speaker and
the recorded microphone array is randomly selected between
0.5 and 8 meters. The distance between the noisy source
loudspeaker and the recorded microphone array is 4 meters.
The microphone array we designed is a circular device with
a 5cm radius and four channels (same with the setting of the
FFSVC20 microphone array).

2) Single channel training setting: The acoustic features
are 80-dimensional log Mel-filterbank energies with a frame
length of 25ms and hop size of 10ms. The extracted features
are mean-normalized before feeding into the deep speak-
er network. In this experiment, a strong baseline system
for speaker embedding extraction, namely SE-ResNet34, is
adopted. For the SE-ResNet34 module, we adopt the same
structure as the one in [5]. The network structure contains three
main components: a front-end pattern extractor, an encoder
layer, and a back-end classifier. The ResNet34 [79] model
with Squeeze-and-Excitation Module (SE) [28], and different
residual blocks [32, 64, 128, 256], is employed as the front-end
pattern extractor, the 256-dimensional fully connected layer
following the global statistic pooling (GSP) based encoder
layer is adopted as the speaker embedding layer. The ArcFace
[62] (s = 32,m = 0.2) is used as the classifier.

Adam optimizer is used to update model parameters, and
we adopt the MultiStepLR as the learning rate (LR) decays
strategy that decays the learning rate of each parameter group
by 0.1 once the number of epoch reaches one of the mile-
stones. The milestone epochs are 10, 20, and 30. In the pre-
train stage, LR decreases from the initialized 0.001 to 0.00001
until its performance no longer decreases on the development
set. In the fine-tuning stage, the initialized LR is set to a fixed
constant of 0.00001.

We divided our experiments into three scenarios based on
the availability of in-domain and out-of-domain data.
• Scenario 1. Given zero out-of-domain data and few in-

domain labeled data;
• Scenario 2. Given large-scale out-of-domain labeled data

and few in-domain labeled data;
• Scenario 3. Given large-scale out-of-domain labeled data

and few in-domain unlabeled data.
4http://2020.ffsvc.org/HIMIA FFSVC2020 overlap.txt

Scenario 1. Given zero out-of-domain data and few in-
domain labeled data, the speaker model directly trained with
in-domain data (FFSVC and HIMIA) is viewed as the baseline
system. For the proposed meta-learning method, 80 speakers
are randomly sampled in each mini-batch. S = 2 examples
and Q = 1 example are randomly selected for each speaker
as the support set and the query set, respectively.

Scenario 2. Given large-scale out-of-domain labeled data
and few in-domain labeled data, the mix-training (MIX) s-
trategy that integrates both out-of-domain and in-domain data
together to train the model is used as the baseline.

Scenario 3. Given large-scale out-of-domain labeled data
and few in-domain unlabeled data, the pre-trained model
is adopted to extract speaker embeddings, perform cluster-
ing, and generate pseudo-labels. Those in-domain data with
pseudo-labels are employed to fine-tune the pre-trained model
in a semi-supervised manner.

3) Multi-channel training setting: 80-dimensional log Mel-
filterbank energies extracted with a frame length of 25ms
and a hop size of 10ms are adopted as the acoustic features.
We adopt the ResNet34 model as a basic backbone network
for all multi-channel experiments. Considering the extensive
computational consumption and memory requirement, the
residual block channels are scaled down to [32,64,128,256],
the kernel size of the 3D Conv is (3× 3× 3) and the kernel
size of the 2D Conv is (3 × 3). For the C3SE-ResNet34SE
and S3C2SE-ResNet34 model, the reduction ratio of SE-
module is 4. Finally, we expand the channel of S3C2SE-
ResNet34 to [64,128,256,512] to explore the best single system
performance.

Considering the channel number difference between single-
channel close-talking enrollment data and multi-channel far-
field test data, we adopt the following approach to feed our
acoustic features into a multi-channel model:
• For single-channel data, the 2D acoustic feature map is

replicated three times and viewed a 3D input feature map.
• For both simulated and real multi-channel data, the 3D

feature map is constructed by the 2D acoustic features of
all channels according to the channel order.

Other training settings are the same as the single-channel
experiments, including the optimizer, the LR schedule, and the
classifier.

We also conduct three scenario experiments for multi-
channel training. Results of scenario 2 will be reported first.
The best speaker embedding model in Scenario 2 will be
selected to perform the remaining scenarios experiment.

C. Evaluation metrics

The speaker verification systems are measured by Equal
Error Rate (EER) and minimum normalized Detection Cost
Function (mDCF) with CMiss = CFA = 1 and Ptarget =
0.01.

VII. EXPERIMENTAL RESULTS

A. Single-channel training

This section presents the experimental results of three differ-
ent training scenarios and strategies. Since the test data were
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TABLE II
THE PERFORMANCE OF VARIOUS SINGLE-CHANNEL SPEAKER EMBEDDING SYSTEMS ON THE FFSVC20 EVALUATION SET. SINGLE- MEAN±STD

INDICATES THAT THE MEAN AND STANDARD DEVIATION OF ALL RECORDING CHANNELS, AND MULTI- FUSION INDICATES THAT MULTI-CHANNEL
EMBEDDING-LEVEL FUSION.

Strategy Task 1 Single- mean±std Task 1 Multi- fusion Task 2 Single- mean±std Task 2 Multi- fusion

EER[%] mDCF0.01 EER[%] mDCF0.01 EER[%] mDCF0.01 EER[%] mDCF0.01

Scenario 1. with SE-ResNet34 (C=32)
Baseline 11.87±0.17 0.94±0.00 10.86 0.92 14.31±0.13 0.989±0.00 13.56 0.99

+ WPE 11.32±0.16 0.93±0.00 10.31 0.92 13.71±0.14 0.987±0.00 12.73 0.98
+ Delay-and-Sum - - 10.46 0.93 - - 13.32 0.99
+ MVDR - - 10.24 0.93 - - 12.57 0.98
+ GEV - - 10.23 0.93 - - 12.49 0.98

Meta-Learning (S=2,Q=1) 9.36±0.05 0.88±0.00 8.84 0.86 11.76±0.06 0.97±0.00 10.63 0.97

Scenario 2. with SE-ResNet34 (C=32)
MIX 6.78±0.06 0.62±0.01 6.18 0.58 7.44±0.06 0.66±0.01 6.84 0.62
Pre-train 11.49±0.05 0.84±0.00 10.68 0.82 15.34±0.06 0.97±0.00 14.33 0.94

+ FT-domain 6.71±0.10 0.66±0.01 6.07 0.62 7.41±0.06 0.78±0.01 6.96 0.75
+ FT-Mix 6.35±0.09 0.60±0.01 5.77 0.56 6.27±0.11 0.67±0.01 5.76 0.63

(a) Pre-train (b) Semi-supervised Learning (c) FT-Mix

Fig. 8. The visualization of t-SNE for different training strategies under scenario 3. The figure 8(b) describes the embedding description of semi-supervised
learning under the best performance. Each color corresponds to a different speaker. The × and • are indicated that far-field data and close-talking data,
respectively.

TABLE III
THE PERFORMANCE OF METRIC-LEARNING AND META-LEARNING ON

THE VOXCELEB 1 ORIGINAL EVALUATION SET (CLEANED)

Training set Loss EER[%] mDCF0.01

Vox1 Dev Arcface 2.56 0.219
Vox1 Dev Prototype + Arcface 1.89 0.140

Vox2 Dev Arcface 0.79 0.084
Vox2 Dev Prototype + Arcface 1.80 0.110

collected by the microphone array with multiple recording
channels, we report the performance on a) the mean and
standard deviation of all recording channels and b) multi-
channel embedding-level fusion in Table II.

1) Scenario 1. zero out-of-domain data and few in-domain
labeled data: The result of the baseline system directly trained
by the in-domain data without any training strategy is shown
in Table II. Other than that, speech enhancement technologies
based on signal processing are employed in training and test
phase for multi-channel data. In this scenario, Delay-and-Sum
(DS), MVDR [80] and GEV [81] beamformer are adopted
to enhance the speech quality, and WPE [46] technology is
used for de-reverberation5. Since the multi-channel signal is

5We implement DS, MVDR, GEV and WPE methods following the
https://github.com/funcwj/setk toolkit.

converted to single-channel data after beamforming, we only
reported the beamformer results in the column of Multi- fusion.
From Table II, we can observe that the performances of speech
enhanced signals has little improvement than the original
signal. Therefore, we will not report the speech enhancement
results in the following experiments.

For the proposed meta-learning method, we first conduct
experiments on VoxCeleb to verify the effectiveness. Accord-
ingly, the performances of models trained by the VoxCeleb1
dev set (Vox1Dev) and those trained by the VoxCeleb2 dev
(Vox2Dev) set are shown in Table III. In the limited training
data (Vox1 Dev) scenario, the meta-learning with global clas-
sification (with Prototype and ArcFace loss) approach shows
significant improvements over the performance of Metric-
Learning baseline method (with ArcFace loss). Since the role
of meta-learning is to find a good initialized model under the
limited data scenarios, meta-learning does not improve the
performance with large-scale training datasets (Vox2 Dev).

As shown in Table II, the proposed meta-learning training
strategy achieves a 20% relative improvement compared to the
baseline system for far-field speaker verification. Therefore,
the proposed meta-learning method, which uses far-field and
close-talking prototypes and makes cross-channel embedding
closer together, enables domain adaptation.
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TABLE IV
THE PERFORMANCE OF THE SEMI-SUPERVISED LEARNING APPROACH ON

THE FFSVC20 EVALUATION SET UNDER SCENARIO 3.

Model Cluster Task 1 Task 2

EER[%] mDCF EER[%] mDCF

Pre-train - 10.675 0.817 14.325 0.940

Round 1
K=400 7.858 0.730 9.350 1.000
K=500 7.867 0.702 11.223 1.000
K=600 7.892 0.707 10.124 1.000

Round 2
(K=400)

K=400 7.218 0.691 8.010 0.812
K=450 7.192 0.683 7.968 0.801
K=500 7.201 0.688 7.997 0.809

Round 2
(K=500)

K=450 7.190 0.695 8.367 0.833
K=500 7.213 0.701 8.456 0.823
K=550 7.224 0.701 8.478 0.835

Round 2
(K=600)

K=550 7.214 0.712 8.356 0.835
K=600 7.242 0.732 8.468 0.843
K=650 7.301 0.738 8.432 0.838

Round 3 K=450 7.193 0.699 7.674 0.767

Round 4 K=450 7.448 0.690 7.817 0.757

Pre-train + - 5.768 0.555 5.760 0.630FT-Mix

Fig. 9. Within-Cluster Cosine Similarity versus the number of cluster K
employed in Round 2 under scenario 3.

2) Scenario 2. large-scale out-of-domain labeled data and
few in-domain labeled data: From Table II, we can observe
that adopting transfer learning strategy achieves better results
compared to the MIX training strategy. The FT-Mix system
has 15% relative improvement against the MIX baseline.

Moreover, compared with the lightweight model (ResNet18)
we adopted previously [25], the SE-ResNet34 structure has
stronger modeling abilities but is also easy to overfit. There-
fore, the FT-Mix performance is better than FT-domain in
this experiment. In addition, by comparing the performances
of the mean and standard deviation of single-channel and
embedding-level fusion of multi-channel, the embedding fu-
sion with average weight has 10% relative improvement over
the scoring with single-channel only. The result indicates
that multi-channel embedding have certain complementary
characteristics.

3) Scenario 3. large-scale out-of-domain labeled data and
few in-domain unlabeled data: Finally, we discuss the perfor-
mance of semi-supervised learning. Table IV reports the result
of our semi-supervised learning method. In this experiment,

TABLE VI
THE PERFORMANCE OF DIFFERENT MULTI-CHANNEL DATA AVAILABILITY

SCENARIOS ON THE FFSVC20 EVALUATION SET BASED ON THE
S3C2SE-RESNET34(C=32) MODEL.

Strategy Task 1 Task 2

EER[%] mDCF0.01 EER[%] mDCF0.01

Scenario 1.
Baseline 9.734 0.896 11.323 0.969
Meta-Learning 8.012 0.813 9.125 0.876(S=2,Q=1)

Scenario 3.
Pre-train 9.358 0.770 15.200 0.998
Round1 (K=500) 7.313 0.697 7.418 0.701
Round2 (K=500) 6.572 0.588 6.636 0.653
Round3 (K=500) 6.632 0.596 6.598 0.657
Pre-train + 5.298 0.494 5.017 0.602FT+mix

the performance of the fully supervised FT-Mix strategy is
also provided for reference.

After the first round of clustering by the K-means algorithm,
the curve of within-cluster cosine similarity is shown in Fig.
4, where the ‘elbow’ is around 400 to 600. Therefore, we
chose the 400, 500, 600 as the number of centroids in the
first semi-supervised learning training. In fact, there are 447
speakers in the in-domain training set. The verification results
of the first round are close in Task 1. All EER of K=400,
K=500, and K=600 achieve about 30% relative improvement
compared with the pre-train model. The WCCS curve of the
second-round clustering is presented in Fig. 9, the curves of
‘elbow’ have the same trend. In this case, we select 3 clusters
with 50 intervals based on the centroid of the first round. There
is about 8% relative improvement compared to the first round,
and the system achieves the best performance in task 1 and
task 2 when K=450. In addition, we also observe that the
verification results with different centroids are relatively stable.
Therefore, we keep the number of centroids unchanged for the
third round and the forth round while using the best model of
the second round for the next clustering. Finally, after multiple
iterations of semi-supervised learning, the final performance of
semi-supervised learning has 30% relative improvement than
the pre-trained model.

By observing Fig. 8, we can find that the main challenge
of the far-field scenario is the domain mismatch, as the close-
talking data and far-field data are naturally divided into two
categories (Fig. 8(a)). However, as shown from the embedding
distributions obtained by the semi-supervised learning model
(Fig. 8(b)) and the fully supervised learning model (Fig. 8(c)),
the embeddings of far-field and close-talking are aggregated
more compact than the pre-trained one. On the other hand,
since the number of clusters cannot accurately match the real
speaker quantity, each cluster inevitably contains noisy data
that affects the performance.

B. Multi-channel training

1) Scenario 2. large-scale out-of-domain labeled data and
few in-domain labeled data: Table V reports the performance
of different far-field models and where the training condi-
tion indicates that training model with single-channel/multi-



12

TABLE V
THE PERFORMANCE OF VARIOUS MULTI-CHANNEL MODEL UNDER FFSVC20 EVAL SET. MULTI-FUSION INDICATES THAT MULTI-CHANNEL

EMBEDDING-LEVEL FUSION.

Model ID Training Condition Model Strategy Task 1 Eval Task 2 Eval

EER[%] mDCF0.01 EER[%] mDCF0.01

1 Single-Channel
2D ResNet34 (C=32)

(Multi- fusion)

Pre-train 12.238 0.956 13.531 0.971
+FT-mix 6.212 0.627 6.534 0.638
+FT-domain 7.172 0.690 7.441 0.815

2 Single-Channel
2D ResNet34 (C=32)

(MVDR based Beamforming)

Pre-train 11.778 0.901 12.113 0.963
+FT-mix 6.113 0.619 6.411 0.637
+FT-domain 7.076 0.676 7.304 0.808

3 Single-Channel
2D SE-ResNet34 (C=32)

(Multi- fusion)

Pre-train 10.675 0.817 14.325 0.940
+FT-mix 5.768 0.555 5.760 0.630
+FT-domain 6.073 0.617 6.957 0.750

4 Multi-Channel 2D ResNet34 (C=32)
Pre-train 9.913 0.832 12.995 0.951

+FT-mix 6.274 0.605 7.001 0.737
+FT-domain 7.285 0.735 8.003 0.812

5 Multi-Channel 3D-ResNet34 (C=32)
Pre-train 9.315 0.763 12.115 0.877

+FT-mix 5.485 0.532 6.042 0.649
+FT-domain 6.675 0.652 7.983 0.800

6 Multi-Channel C3DSE-ResNet34 (C=32)
Pre-train 9.324 0.792 11.792 0.943

+FT-mix 5.433 0.503 5.085 0.604
+FT-domain 8.159 0.707 7.785 0.805

7 Multi-Channel 3D2D-ResNet34 (C=32)
Pre-train 9.983 0.808 12.192 0.914

+FT-mix 5.492 0.504 5.542 0.599
+FT-domain 6.883 0.624 8.207 0.805

8 Multi-Channel S3C2SE-ResNet34SE (C=32)
Pre-train 9.358 0.770 15.200 0.998

+FT-mix 5.298 0.494 5.017 0.602
+FT-domain 7.275 0.666 7.476 0.759

9 Multi-Channel S3C2SE-ResNet34SE (C=64)
Pre-train 9.127 0.736 12.010 0.887

+FT-mix 4.928 0.447 4.481 0.532
+FT-domain 6.957 0.634 7.064 0.721

Zhang et al. [82] (single model best) 5.78 0.57 - -
Gusev et al. [18] (single model best) - - 5.61 0.564

TABLE VII
MODEL SIZE AND RUNNING TIME UNDER THE MULTI-CHANNEL TEST

SCENARIO. ×4 INDICATES THAT SINGLE-CHANNEL INPUT MODEL NEED
COST 4 TIMES TO HANDLE THE 4-CHANNEL TEST DATA.

Model Parameters (M) Inference Time (ms)

2D ResNet34 (C=32) 5.45 18.93 ×4
2D SE-ResNet34 (C=32) 5.53 19.00 ×4
3D-ResNet34 (C=32) 16.00 51.54
CD3SE-ResNet34 (C=32) 16.08 56.19
3D2D-ResNet34 (C=32) 5.57 41.21
S3C2SE-ResNet34 (C=32) 5.66 45.59
S3C2SE-ResNet34 (C=64) 22.36 118.29

channel input data. The 2D ResNet model with multi-channel
(SectionV-A) and single-channel input are the baseline systems
here. The 2D ResNet model with MVDR indicates that the
multi-channel input data apply MVDR and subsequently 2D
ResNet model.

First, all experiment models conduct with FT-domain and
FT-mix training strategies. The results present that FT-mix
outperforms than FT-domain. With the stronger modeling
ability of the model, the easier it is to overfit under the FT-
domain strategy. Therefore, we only discuss the results of FT-
mix in the following model performance discussion.

Second, we compare all single-channel input models. 2D
ResNet with MVDR (Model ID 2) is slightly improved than
2D ResNet with multi-channel embedding fusion (Model ID
1). But the compute cost MVDR is much greater than the
embedding fusion. The 2D SE-ResNet model with multi-
channel embedding fusion (Model ID 3) outperforms other
single-channel input models, which means that the benefits of
the attention mechanism are larger than other methods.

Then, we take a comparison of the performances of single-
channel 2D ResNet with MVDR (Model ID 2), multi-channel
2D ResNet34 (Model ID 4) and multi-channel 3D ResNet34
(Model ID 5). Although 2D ResNet with MVDR and multi-
channel 3D ResNet34 explicitly or implicitly use spatial infor-
mation, the performance of 3D ResNet34 is much better than
2D ResNet with MVDR. The input of 2D ResNet with MVDR
is spatial filtering preprocessed, and the raw signal inevitably
suffers. While the 3D ResNet input is the raw signal, the
original information is preserved without damage. In addition,
the convolution operation of the multi-channel 2D ResNet34
between channels is independent of multiple channels spatial
location, the advantage of multi-channel is not reflected.

From Table V, we observe that all 3D ConvNet models
outperform the 2D ConvNet. Although the 2D ResNet34 with
multi-channel input has the same input size as 3D ConvNet,
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the 2D convolution kernel only slides along the time and
frequency axis. Thus the spatial information between channels
can not be learned by 2D Conv. Moreover, although all multi-
channel pre-train data are simulated, the 3D ConvNet model is
also better than the 2D ConvNet model in the pre-train phase.
Therefore, 3D ConvNet is better than 2D one in multi-channel
training.

In addition, as shown in Table V, the 3D2D-ResNet model
(Model ID 7) outperforms the 3D ResNet (Model ID 5) model
in most case. However, the parameter size of the 3D2D-ResNet
in Table V is smaller than the size of the 3D-ResNet model.
This indicates that the first 3D convolution residual block of
the 3D2D-ResNet provides enough spatial information as the
fully 3D model 3D-ResNet. Therefore, the 3D2D-ResNet is
more efficient, which achieves better performance while using
less parameter size.

Regarding the 3D attention module, the ResNet with C3DSE
module (Model ID 6) has about 6% relative performance im-
provement over the 3D-ResNet model (Model ID 5) in the term
of mDCF. Compared with the 3D channel-wise SE module,
the proposed S3C2SE-ResNet34 module (Model ID 8), which
focus on more spatial information (e.g., speaker location,
locations of noise sources), achieves the best performance with
a similar parameters size. In order to further explore better
performance, we expand the channel to [64,128,256,512], and
the model has 10% relative improvement but with 3 times
additional parameters.

Finally, we discuss the model performances based on the
parameter size and the inference time. Since the memory
subsystems, internal subsystems, compute cores, and caches
will influence the inference time, we infer the network over a
certain amount of examples and then average the results. We
randomly choose 100 examples to test the inference time for
each model under the Intel(R) Xeon(R) Gold 5215
CPU @ 2.50GHz. Results are shown in Table VII. The
inference time of all models are close. If we consider the
factors of model performance, model size, and inference time
together, the S3C2SE-ResNet model performs the best in our
far-field scenarios.

2) Scenario 1 and 3: : Table VI reports the Scenario 1 and
3 results. The proposed Meta-Learning method achieves about
15% related improvements to the baseline system in Scenario
1. For Scenario 3, we adopt the K = 500 cluster to perform
semi-supervised learning. The results indicate that the model
performances tend to be stable in Round 2. The final model
obtains the 30% related improvement to the pre-trained model.

VIII. CONCLUSION

This paper proposes multiple training strategies and models
for far-field speaker verification regarding the different in-
domain data availability scenarios. First, given large-scale
out-of-domain labeled data and few in-domain labeled data,
transfer learning is adopted to fine-tune the in-domain data. In
this case, the FT-Mix strategy achieves the best performance
in far-field speaker verification. Second, given zero out-of-
domain data and few in-domain labeled data, we use the
proposed meta-learning training strategy to perform domain

adaptation. Moreover, when given large-scale out-of-domain
labeled data and few in-domain unlabeled data, the semi-
supervised approach is adopted to generate pseudo labels
for unlabeled data before fine-tuning. The final performances
of the models trained by pseudo labels are close to the
supervised learning method. For the multi-channel training
models, we conduct experiments comparing the 3D ConvNet
with the 2D ConvNet. Results show that the 3D ConvNet
outperforms the 2D ConvNet. In addition, compared with the
fully 3D ConvNet, the model incorporating 3D Conv with
2D Conv achieves 60% relative parameter reduction while
moderately improving the performance. To further explore
the channel dependencies, we extend the SE attention module
and propose the channel-wise 3D SE module and spatial-wise
3D SE module. Finally, with the proposed spatial-wise 3D
SE attention module, the model incorporating 3D Conv with
2D Conv obtains the best performance with a few additional
parameters. In future works, we will further explore semi-
supervised learning in cross-domain scenarios and enhance
the robustness of ASV systems in the far-field multi-channel
scenarios.
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