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Abstract
This paper describes a conditional neural network architecture
for Mandarin Chinese polyphone disambiguation. The system
is composed of a bidirectional recurrent neural network compo-
nent acting as a sentence encoder to accumulate the context cor-
relations, followed by a prediction network that maps the poly-
phonic character embeddings along with the conditions to cor-
responding pronunciations. We obtain the word-level condition
from a pre-trained word-to-vector lookup table. One goal of
polyphone disambiguation is to address the homograph problem
existing in the front-end processing of Mandarin Chinese text-
to-speech system. Our system achieves an accuracy of 94.69%
on a publicly available polyphonic character dataset. To fur-
ther validate our choices on the conditional feature, we investi-
gate polyphone disambiguation systems with multi-level condi-
tions respectively. The experimental results show that both the
sentence-level and the word-level conditional embedding fea-
tures are able to attain good performance for Mandarin Chinese
polyphone disambiguation.
Index Terms: Grapheme-to-phoneme conversion, polyphone
disambiguation, text-to-speech, sentence encoding

1. Introduction
The grapheme-to-phoneme (G2P) conversion is a fundamental
front-end procedure in the Chinese Text-to-Speech (TTS) syn-
thesis system, either the traditional HMM-based speech syn-
thesis system [1, 2] or the End-to-End speech synthesis sys-
tem [3, 4, 5, 6]. G2P typically generates a sequence of phones
from a sequence of characters or graphemes [7]. According
to the characteristics of Mandarin Chinese, there are at least
13000 commonly used Chinese characters. However, the num-
ber considerably declines to 1300 when converting the charac-
ters into phonologically allowed syllables, and even less when
using Latin alphabet representation. It appears to be a suitable
choice of using phonemes or syllables as units for a TTS synthe-
sis system in a way for effective and better performance [8, 9].
While the G2P system in English TTS synthesis system aims to
produce the phoneme sequences for the out-of-lexicon words,
The target of a G2P system in Chinese TTS synthesis system is
to convert Chinese characters to pinyins (phoneme representa-
tions with Latin alphabet in Mandarin Chinese) [10]. Yet one
single Chinese character could have several different pronun-
ciations in terms of different usages in a sentence. This kind
of characters is called polyphonic characters. Therefore, other
than the G2P system, the polyphone disambiguation system is
developed to choose the correct pronunciation of a polyphonic
character from several candidates based on the context. This is-
sue is also considered to be a homograph problem, which has

important applications in speech synthesis and is still not solved
today [11].

Rule-based algorithms [12, 13, 14] and data-driven methods
[15, 16, 17] are two frequently used approaches for polyphone
disambiguation. The rule-based system normally chooses the
pronunciation of a polyphonic character depending on the seg-
mental text and a well-designed dictionary. However, this
method requires language expertise to produce an elaborate
text-analysis system for sentence segmentation as well as a ro-
bust dictionary. The dictionary today still cannot cover all the
polyphonic cases. As for data-driven approaches, mostly the
polyphone disambiguation is considered as a classification task.
Inspired by the approaches for G2P in English[7, 18], in recent
years more research works on polyphone disambiguation using
statistical machine learning techniques, like Decision Tree [16]
and Maximum Entropy Model [16, 19].

In this paper, we introduce a data-driven approach using the
conditional neural network architecture [20] for polyphone dis-
ambiguation. Besides using the polyphonic character embed-
ding feature as the network input, we obtain auxiliary features
from the corresponding sentence as a condition for predicting
the correct pronunciation. Previous research works in poly-
phonic character show that: 1) The utilization of context is an
effective way to solve the pronunciation disambiguation of Chi-
nese polyphonic characters; 2) Most polyphonic word, which
comprises by polyphonic character, could be used to determine
the pronunciation of the polyphonic character [12]. In the light
of these two characteristics, we first design an encoder module
using a recurrent neural network (RNN) structure to extract the
sentence-level encoding feature as the context condition. Basi-
cally, we embed each character in the sentence and adopt the
bi-directional long short-term memory (BLSTM) structure to
accumulate the forward context information and backward con-
text information as the conditional feature in the sentence-level.
Besides, we use a publicly released and pre-trained word-to-
vector dictionary for word-level conditional vector lookup. The
prediction network maps the polyphonic character embedding
features and the auxiliary features to their unique pronuncia-
tion. We investigate three systems under different combina-
tions of conditional features on a publicly available dataset. Re-
sults show that either the word-level conditional feature or the
sentence-level conditional feature yields significant improve-
ment on polyphone disambiguation.

A similar approach presented in [15] treats polyphone dis-
ambiguation as a sequence tagging task and uses BLSTM as the
sequence-to-sequence generation model. However, the BLSTM
structure in our proposed architecture serves as a sentence-level
conditional feature extractor. Our system performs better as the
accuracy reaches 94.69% on a same evaluation set.



Figure 1: The network architecture of our proposed system

2. Chinese Polyphonic Characters
Except for the monophonic characters in Mandarin Chinese,
there are polyphonic characters that refer to those with more
than one pronunciations. Specifically, we use a mapping func-
tion to formulate the conversion from a character to its corre-
sponding pronunciations. Function f is defined as follows:

f : C → P (1)

where C denotes the set of all Chinese characters and P
denotes the set of all possible pinyins (the official romanization
system for Standard Mandarin Chinese with tone information).
The number of all Chinese characters is more than 80000 while
the number of all pinyins is about 300. Given a character c, the
output pc would be:

pc = {p1, p2, ..., pn} (2)

The character c belongs to a polyphonic character when
|pc| > 1. For example, the Chinese character “背” can be pro-
nounced as either “bei1” or “bei4”. The number 1 to 5 denotes
the tone marks since Mandarin Chinese is a tonal language.
Therefore, “bei1” and “bei4” are two different pronunciations.

The pronunciation of a Chinese polyphonic character can-
not be determined unless providing its context. In most cases,
the pronunciation of a polyphonic character corresponds to the
word that comprises the polyphonic character. The characteris-
tics or properties of a certain word relates to the pronunciation
of the polyphonic character. For example, the character “将” is
pronounced “jiang1” in a word where it is used as a verb or ad-
verb, while it is pronounced “jiang4” when the word is a noun.
Specifically, “将” is pronounced “jiang1” in the word “将要”,
which is an adverb; “将” is pronounced “jiang4” in the word
“大将”, which is a noun. Sometimes the meaning of a word
also determines the pronunciation of a polyphonic character. So
we can rewrite formula 1 and 2 with:

f : C,WC → P (3)

f(c|wc) = {p1, p2, ..., pn} (4)

where WC is the Chinese word set containing polyphonic char-
acters. Normally, the pronunciation of a character c given the

word wc is unique. These words are called monophonic char-
acter words.

With a well-done segmentation, we could find a unique pro-
nunciation of the polyphonic character from word pieces except
53 special words that satisfy |f(c|wc)| > 1. The pronunci-
ation of these polyphonic character words, for example, “朝
阳” (zhao1yang2 or chao2yang2), could only be determined in
a given sentence with word-level context. Moreover, when a
polyphonic character stays a single character as segmental piece
after a well-done segmentation, we could only utilize the con-
text information for polyphone disambiguation. For example,
in sentence “我不注重得与失” (Gains and losses mean noth-
ing to me) and “我得关注相关动态” (I have to pay attention
to the relevant news), where the segmentations are “我\不注
重\得\与\失” and “我\得\关注\相关\动态”, the polyphonic
word “得” is pronounced “de2” and “dei3” respectively only
depending on its context.

Therefore, the pinyin of a polyphonic character is unique
given its corresponding word and sentence. Which can be de-
fined as:

f : C,WC , TC → P (5)

where TC denotes the context and WC could be ∅ if the poly-
phonic character word only contains a single character.

3. Method
Different from the traditional grapheme-to-phoneme (G2P)
conversion, the polyphone disambiguation is considered as a
classification problem. Specifically, the polyphone disambigua-
tion system converts a polyphonic character to its corresponding
pinyin. Our proposed system is shown in Figure 1. In terms of
the characteristics and properties of the polyphonic character
outlined in the previous section, we explore the word-level con-
ditional feature and sentence-level conditional feature from the
input sentence to help predict the pinyin.

3.1. Embedding

It is a typical case to convert the characters and sentence into
vectors when applying the neural network approaches. First, we
initialize an embedding table with size Nc ×Dc for character-
to-vector lookup, where Nc is the number of all characters and
Dc denotes the character embedding size. Before sentence em-



Table 1: Detailed network structure and configurations of our proposed three systems

Input Size System CW System CC System CWC
character B × 1

√ √ √

sentence B × L -
√ √

segmented word B × 1
√

-
√

Layer Input size Output size Configurations
char-embedding B × 1 B × 100 -

√ √ √

text-embedding B × L B × L× 100 - -
√ √

word2vec B × 1 B × 200 -
√

-
√

BLSTM encoder B × L× 100 B × L× 512
dropout rate: 0.1
fw-lstm size: 256
bw-lstm size: 256

-
√ √

concatenation - B × C - C = 300 C = 612 C = 812

fc-layer1 B × C B × 512
activation: RELU
dropout rate: 0.1

C = 300 C = 612 C = 812

fc-layer2 B × 512 B × 1024
activation: RELU
dropout rate: 0.1

√ √ √

fc-layer3 B × 1024 B × 285
activation: None
dropout rate: 0

√ √ √

bedding, we pad the character sequence to the max length of the
sentences in each batch with the symbol ”|” , which does not
originally appear in the Chinese text to avoid any possible con-
flicts, without affecting the performance of the encoder module.
Hence, the sentence embedding size would be B×Lmax×Dc.
B refers to the batch size in the network training phase and
evaluation phase.

As for word-level conditional feature, we segment the in-
put sentence into word pieces and obtain a word sequence from
a pre-trained word-to-vector lookup table. We only choose the
word that comprises the polyphonic character from the segmen-
tal sentence for table lookup.

3.2. Bidirectional LSTM Encoder

The Recurrent Neural Network (RNN) architecture has an el-
egant way of dealing with sequential problems since it is able
to embody correlations between samples in the sequence[21,
22, 23] . In order to address the exploding and vanishing gra-
dient problems in RNN, the long short-term memory (LSTM)
structure was proposed and successfully kept track of arbitrary
long-term dependencies between the elements in the input se-
quences [24]. The LSTM structure is widely used in addressing
sequence-to-sequence problems since the fundamental module
of Encoder-Decoder architecture has been proven to be very ef-
fective. Encoder and decoder are the two main modules in this
kind of architecture. The encoder aims to encode the input se-
quence to a fixed-length vector for the decoder to map the vector
back into an output sequence. The Encoder-Decoder architec-
ture demonstrated state-of-the-art performance in researches on
the sequential problem including text translation, speech recog-
nition, speech synthesis [6, 25, 26].

In our case, we adopt the encoder component to extract the
sentence-level conditional feature from the character sequence.
One problem of the LSTM is that it is unidirectional. The
LSTM can only accumulate the information of the sequence in
one direction. This paper uses the bi-directional LSTM [27] to
accumulate the character correlations in both directions. Differ-
ent from [15], which uses BLSTM as a sequence-to-sequence
generator to obtain the pinyin of a polyphonic character, we
use BLSTM as an encoder to extract the sentence-level con-

ditional feature. Suppose the character embedding sequence
is Tc = [c>1 , c

>
2 , c
>
3 , · · · c>t , · · · , c>L ], we obtain the sentence-

level conditional feature Cc
sentence as follows:

Cc
sentence = ztc ·BLSTM(Tc) (6)

= ztc · concat(fw, bw) (7)

where ztc is the one-hot vector that denotes the polyphonic
character position in the character sequence, fw is the out-
put sequence of the forward LSTM given input Tc and bw is
the output sequence of backward LSTM. Operation concat()
means concatenation. The size of ztc is 1 × L and the size of
BLSTM(Tc) is L× (Dfw +Dbw), where Dfw and Dbw are
the output size of forward LSTM and backward LSTM.

3.3. Prediction Network

After concatenating the word-level conditional feature,
sentence-level conditional feature and the polyphonic character
embedding vector, we use several fully-connected layers
following a softmax layer for classification to predict the
corresponding pinyin. The length of output vector equals the
number of all possible pinyins in our polyphonic character
database.

4. Experimental Results
4.1. Polyphonic Character Database

For training and evaluating our proposed polyphone disam-
biguation systems, we use a publicly available dataset from Bei-
jing Data-Baker Science and Technology Ltd which contains
150 frequently used polyphonic characters and their 151585
corresponding sentences. We divide the corpus into a training
set with 140794 sentences and an evaluation set with 10791 sen-
tences [28]. The evaluation set is 7% of most character-pinyin
pairs and well split in with all samples concerning every differ-
ent character-pinyin pair. However, some character-pinyin pairs
are less than 15 samples and 20% of those pairs are split for
evaluation set.



Table 2: Experimental performance of six individual systems

polyphonic
character

high-fre
pinyin

low-fre
pinyin

high-fre
pinyin rate

[15]
0 word

accuracy

[15]
1 word

accuracy

[15]
2 words
accuracy

Our
System CW

accuracy

Our
System CC
accuracy

Our
System CWC

accuracy
传 chuan2 zhuan4 86.11% 88.89% 88.89% 88.89% 94.44% 91.67% 94.44%
只 zhi3 zhi1 70.59% 93.38% 93.38% 94.12% 86.03% 94.12% 93.38%
处 chu4 chu3 81.58% 91.67% 86.11% 91.67% 94.44% 88.89% 94.44%
少 shao3 shao4 93.98% 96.24% 95.49% 96.24% 96.24% 93.23% 96.99%
为 wei2 wei4 59.28% 59.58% 82.38% 82.9% 62.69% 81.35% 86.53%
藏 zang4 cang2 54.55% 80% 79.09% 85.45% 80% 76.36% 81.82%

overall - - 86.77% 89.13% 91.96% 91.6% 92.44% 92.44% 94.69%

4.2. Word-level Embedding

The text segmentation tool we used for obtaining the word and
phrase pieces is Jieba1 Python package. We use the released
Tencent AI Lab Embedding Corpus for Chinese Words and
Phrases as the pre-trained word vector lookup table. This cor-
pus provides 200-dimensional vector representations for over 8
million Chinese words and phrases embedding. This pre-trained
model was trained with large-scale text collected from news,
webpages, and novels using directional skip-gram [29, 30].

4.3. System Setup

Our experimental setup is shown in Table 1. In this paper, we
propose three different systems according to different combina-
tions of sentence-level conditional feature and word-level con-
ditional feature:

• System WC: concatenate the word-level conditional fea-
ture and polyphonic character embedding vector for pre-
dicting the corresponding pinyin.

• System CC: concatenate the sentence-level conditional
feature and polyphonic character embedding vector for
predicting the corresponding pinyin.

• System CWC: adopt both the word-level and sentence-
level feature as the condition for polyphonic character
embedding vector to predict pinyin.

As shown in Table 1, we adopt a single BLSTM encoder with
input size B × L × 100, where B denotes the batch size and
L denotes the length of the padding character sequences in a
batch. Both the forward LSTM size and backward LSTM size is
256. The dropout rate of LSTM is set to 0.1 to avoid overfitting
[31]. For the prediction module, we adopt three fully connected
layers with size 512, 1024 and 285 respectively. The output
size 285 is equal to the number of all possible pinyins in this
polyphonic character database. The activation function of the
first two fully connected layers is RELU. We use dropout layers
with 0.1 dropout rate after the first two fully connected layers
in the training phase. Depending on different input conditional
features, the input size C of prediction network can be 300, 612
and 812, respectively. The concatenated feature comprises the
100-dimensional polyphonic character embedding feature and
the conditional feature (200-dimensional word-level embedding
vector, 512-dimensional sentence-level encoding feature). We
adopt the stochastic gradient descent (SGD) algorithm with an
initial learning rate 0.1 for the training phase. The learning rate
decays every 600 epochs exponentially to 10−4.

We also implement three baseline systems following [15]
for comparison. We strictly follow the approach describes in

1https://github.com/fxsjy/jieba

[15] which adopts two LSTM layers with size 512 and the
NLPIR toolkit [32] for POS tagging on the text. We use the
polyphonic character database described in section 4.1 for train-
ing and evaluating since we do not have the personal labelled
data used in [15]. The approach presented in [15] had compared
with other polyphone disambiguation approaches and shown
that it reaches a better performance. Three systems regarding
the different length of context inputs are implemented for com-
parison in our experiment:

• 0 word, not using the context information
• 1 word, using the past and future context information in

1 word, 3 words in total
• 2 words, using the past and future context information in

2 words, 5 words in total

4.4. System evaluation results

Table 2 gives the performance regarding six systems illustrated
in Section 4.3. We list several polyphonic characters for com-
parison. Both the word-level conditional feature and sentence-
level conditional feature help improve the disambiguation sys-
tem as the performance of System CW and System CC reach
92.44%. By concatenating the word embedding conditional fea-
ture and sentence-level conditional feature as auxiliary condi-
tion, our approach achieves the best performance with 94.69%
accuracy, which is 2.73% higher than the best system in [15].

5. Conclusions
In this paper, we propose a data-driven approach using condi-
tional neural network architecture for Mandarin Chinese poly-
phone disambiguation. We explore sentence-level encoding
vector as a condition as well as the word-level vector ob-
tained from a pre-trained word-to-vector lookup table. Re-
sults show that the sentence-level conditional feature obtained
from a single bi-directional long short-term memory structure is
very useful for polyphone disambiguation. Both the word-level
conditional feature and sentence-level conditional feature help
improve the disambiguation system as the accuracy reaches
92.44%. Finally, The final system achieves significant improve-
ments with 94.69% accuracy on the evaluation set.
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