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Abstract
A reliable voice anti-spoofing countermeasure system needs to
robustly protect automatic speaker verification (ASV) systems
in various kinds of spoofing scenarios. However, the perfor-
mance of countermeasure systems could be degraded by chan-
nel effects and codecs. In this paper, we show that using the
low-frequency subbands of signals as input can mitigate the
negative impact introduced by codecs on the countermeasure
systems. To validate this, two types of low-pass filters with
different cut-off frequencies are applied to countermeasure sys-
tems, and the equal error rate (EER) is reduced by up to 25%
relatively. In addition, we propose a deep learning based band-
width extension approach to further improve the detection accu-
racy. Recent studies show that the error rate of countermeasure
systems increase dramatically when the silence part is removed
by Voice Activity Detection (VAD), our experimental results
show that the filtering and bandwidth extension approaches are
also effective under the codec condition when VAD is applied.
Index Terms: anti-spoofing, bandwidth extension, low-pass fil-
ters, band trimming, channel robustness, transmission codec

1. Introduction
Automatic speaker verification (ASV) [1, 2] has achieved good
performance and is widely used in real life. As a biometric
method, however, ASV systems are vulnerable against vari-
ous spoofing attacks, e.g. speech synthesis, voice conversion,
record and playback, etc. [3, 4]. Anti-spoofing countermeasure
systems contribute to enhance the reliability of ASV systems by
determining whether the input signal is genuine or spoofed.

Since 2015, the ASVspoof community has initiated and or-
ganized four consecutive biennial challenges to support the de-
velopment of anti-spoofing countermeasure methods for ASV
systems [5, 6, 7, 8]. Through this series of challenges, the
ASV anti-spoofing field has established two main anti-spoofing
countermeasure research scenarios and databases: logical ac-
cess (LA) considers spoofing attacks from text-to-speech syn-
thesis (TTS) and voice conversion (VC), physical access (PA)
refers to attacks produced by recording replay [9, 10]. In this
paper, we focus on the LA scenario. A typical countermeasure
system consists of a front-end feature extractor and a back-end
spoofing classifier. For the LA task, the most intuitive solution
is to find the artifact traces existing in the speech from TTS
and VC through the front-end operations, which can be used
as a marker or cue to distinguish genuine speech from artifacts
and help train the back-end detection network better. Previous
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works show that artifacts of synthetic speech exist in multiple
specific subbands [11, 12]. More and more studies focus on the
impact of subbands in countermeasure systems [13].

The current strategies for using frequency subbands in
countermeasure systems can be broadly classified into two cat-
egories. One uses transformations, trimming, fusion or other
methods in the front-end feature extractor to transform the fea-
tures to a specific domain, which emphasize the information in
target subbands [11, 13, 14, 15]. The other one directly adopt
the spectrogram as the features, use SpecAugment [16] or sim-
ilar data augmentation techniques to randomly or specifically
block a portion of the frequency bands or time frames to reduce
the overfitting of the back-end classifier [17, 18].

Zhang et al. point out that the high-frequency part of the
spectrogram may lead to overfitting of the back-end neural net-
work, increasing it’s risk of making incorrect judgments in the
face of unknown spoofing attacks [13]. Moreover, Tomilov et
al. find that a data augmentation such as feeding training data
into a filter to emulate the magnitude responses of codecs can
yield better anti-spoofing countermeasure performance [19].

However, it’s not clear that whether low pass filtering
is always useful with different bandwidths or scenarios, and
whether the re-estimated high frequency information from a
deep learning based up-sampling approach could bring some
additional gain. This paper investigates the optimal cutoff fre-
quency in terms of low pass filters against the codec variabili-
ties. Moreover, inspired by Tomilov et al’s work [19], we use a
conventional low-pass filter to obtain a subband signal instead
of trimming the spectrogram directly. In addition, we further
demonstrate the gain when using a deep learning based band-
width extension technique to restore the wide band signal from
the low pass filtered narrow band speech.

As shown in Figure 1, we investigate the performance of
countermeasure systems based on four front-end feature extrac-
tion methods and two convolutional neural networks (CNN)
back-end classifiers. We also explore the performance of our
countermeasure systems after applying a Voice Activity Detec-
tion (VAD) module. Our contributions are mainly threefold:

• We investigate the differences when using low-frequency
subbands at the system’s input features in two different
databases and find out that high frequency subbands are
more vulnerable against the codecs.

• We use extensive experimental results to validate the op-
timal cutoff frequency for our countermeasure systems.

• We first utilize a deep learning based bandwidth exten-
sion technique on the down-sampled signal in the coun-
termeasure system, and suggest that the additional band-
width extension module can be effective on the valid
speech part when a VAD is applied.
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Figure 1: The overview of the proposed front-end signal processing methods.

Table 1: Number of utterances in ASVspoof 2019 and 2021 LA
database.

19LA 21LA

Subset Bona-fide Spoof Bona-fide Spoof
Training 2,580 22,800 - -
Development 2,548 22,296 - -
Evaluation 7,355 63,882 14,816 166,750

2. Database and Methodology
This section describes the database and illustrates the detail of
our front-end signal processing methods shown in Figure 1.

2.1. Databases

The experiments in this work are mainly conducted on the
ASVspoof2019 LA database [7] and the ASVspoof2021 LA
database [8]. Both databases are based upon the Voice Cloning
Toolkit (VCTK) corpus [20]. The ASVspoof2019 LA database
was created using utterances from 107 speakers (46 male, 61
female). The set of 107 speakers is partitioned into three
speaker-disjoint sets for training, development, and evalua-
tion. The spoofed utterances were generated using four TTS
and two VC algorithms in the training and development sets,
while 13 TTS/VC algorithms are used in the evaluation subset,
11 of which are unknown for training and development. The
ASVspoof2021 LA database remains the training and develop-
ment data unchanged and only proposes a new evaluation subset
that contains attacks using the same simulation methods as the
ASVspoof2019 LA evaluation subset. The ASVspoof2021 LA
evaluation subset consists of the data in various telephone trans-
mission systems, including Voice over Internet Protocol (VoIP)
and the Public Switched Telephone Networks (PSTN), thus ex-
hibiting real-world signal transmission channel effects. These
effects could generate artifacts different from spoofing data that
affect the accuracy of the countermeasure system. These con-
ditions make the ASVspoof2021 LA evaluation subset an ex-
cellent platform for evaluating countermeasure systems’ gener-
alization capability and robustness against channel effects and
codec variabilities. The contents of the two databases are sum-
marized in Table 1.

2.2. Baseline

We adopt the log Mel-filter bank energy (FBANK) as the acous-
tic feature in all our experiments. The Fast Fourier Transform
(FFT) spectrogram is extracted with 1024 window length and
128 hop length while the Blackman window is used. Then we
set the number of Mel-filters to 80 dimensions. Due to the dif-
ferent speech lengths, each spectrogram’s length is truncated or

Table 2: The architecture of ResNet18, C denotes the convolu-
tional layer, S denotes the shortcut convolutional layer.

Layer Output Size Structure(kernal size, stride)

Conv1 16×D × L C(3× 3, 1)

Residual
Layer 1 16×D × L

[
C(3× 3, 1)
C(3× 3, 1)

]
× 2

Residual
Layer 2 32× D

2
× L

2

C(3× 3, 2)
C(3× 3, 1)
S(1× 1, 2)

[
C(3× 3, 1)
C(3× 3, 1)

]
× 2

Residual
Layer 3 64× D

4
× L

4

C(3× 3, 2)
C(3× 3, 1)
S(1× 1, 2)

[
C(3× 3, 1)
C(3× 3, 1)

]
× 2

Residual
Layer 4 128× D

8
× L

8

C(3× 3, 2)
C(3× 3, 1)
S(1× 1, 2)

[
C(3× 3, 1)
C(3× 3, 1)

]
× 2

Pooling 128× D
8

Attentive Statistics Pooling
Linear 128 Fully Connected Layer
Linear 2 Fully Connected Layer

Table 3: The architecture of LCNN.

Layer Structure(kernal size, stride) Output Size

Same as the first 28 layers of LCNN [17]

Pooling BiLSTM 80 + 80
Pooling Attentive Statistics Pooling 320
Linear Fully Connected Layer 128
Linear Fully Connected Layer 2

concatenated into 3 to 5 seconds. Finally, the 80 ∗ frames-
dimensional FBANK features are obtained.

For the backend classifier, we investigated two main CNN
networks, ResNet18 [21] and LCNN [17]. Then we add the
attentive statistics pooling layer (ASP) [22, 2] at the end of
the models to make the model more effective in capturing
utterance-level acoustic feature changes. The ResNet18 and the
LCNN are commonly and widely used systems in anti-spoofing
tasks [23]. We use softmax cross entropy as the loss function
of the classifier. The architectures of the models are shown in
Tables 2 and 3, respectively.

2.3. Band trimming

Band trimming means cropping a particular dimension of the
Mel-filter bank from the complete FBANK to make it consis-
tent with the spectrogram subbands. According to the Nyquist
frequency characteristic, the spectrogram of the speech with a



sampling rate of 16k covers a bandwidth of 0-8k Hz, and we
need to select the low-frequency subband cover 0-F Hz for
training and testing the countermeasure system, which F here
denotes the subband frequencies corresponding to 20%, 30%,
40%, 50%, 60%, 70% Nyquist frequencies. The equation de-
scribing the correlation between the number of low- and full-
frequency FBANK dimensions [24] is shown as follows

⌊NL⌋ = ⌊NF ∗ log(1 + fL/700)

log(1 + fF /700)
⌋. (1)

Where ⌊∗⌋ indicates rounding down an element ∗. If the op-
eration of band trimming is considered to be low-pass filtering
of the signal, then fL denotes the cutoff frequency of this filter
and fF refers to the Nyquist frequency. NL and NF repre-
sent the number of filter banks for the low- and full-frequency
FBANK feature, respectively. For instance, when we need to
select the low-frequency subband up to 50% of the Nyquist fre-
quency, the corresponding value of fF , fL, sample frequency,
and NF are 8, 000, 4, 000, 16, 000, and 80 respectively. There-
fore, according to Equation 1, we get NL = 60.45. The feature
dimension must be an integer, so we floor NL to be 60 and set
fL to 3,933.55 Hz. In other words, the spectrogram information
from 3,933.55 Hz to 4,000 Hz is dropped out. With respect to
Equation 1, 20%, 30%, 40%, 50%, 60%, 70% of Nyquist fre-
quencies corresponds to the FBANK indices 37, 47, 54, 60, 65,
and 69.

2.4. Low-pass filtering

Considering the response curve shape, the computational com-
plexity, and the consistency of the filter in the bandwidth ex-
tension front-end, the Chebyshev type I filter is chosen as the
low-pass filter in our experiments. We set the order of filter to
8, the maximum ripple of the Chebyshev type I low-pass filter
to 0.05, and the critical frequencies to F Hz, which F is the same
as the one mentioned in the last subsection.

2.5. Bandwidth extension

Bandwidth extension is also known as audio upsampling or au-
dio super-resolution. It usually aims to enhance speech audibil-
ity and improve audio fidelity by generating a wideband (WB)
signal from a narrowband (NB) signal. In order to use exten-
sion models to enhance the performance of the countermeasure
system in this study, we investigate some bandwidth extension
methods [25, 26, 27]. Among them, Viet-Anh Nguyen et al.
proposed a Transformer-aided UNet (TUNet)1 by employing
a low-complexity transformer encoder on the bottleneck of a
lightweight UNet [28]. Their experimental results on the VCTK
corpus show that the TUNet achieves state-of-the-art perfor-
mance in intrusive and non-intrusive metrics.

The workflow of the bandwidth extension front-end is
shown on the left below of Figure 1, where a Chebyshev Type
I lowpass filter is used to preprocess the original 16k Hz sig-
nal into a low pass filtered signal but still at a sampling rate
of 16k Hz. After that, the filtered signal is used as the input
of the TUNet extension model [28], and the extended signal
containing 0-8k Hz spectrogram can be restored after network
inference. Finally, the output of the extension model is changed
to FBANK features and as the input of the back-end classifier.

1Source code: https://github.com/NXTProduct/TUNet.
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Figure 2: Performance comparison of two subband front-ends
(band trimming and low-pass filtering) with the baseline front-
end countermeasure system at different cut-off frequencies.

3. Experimental Setup
3.1. Data Augmentation

As shown in Figure 1, in order to improve the robustness of
the countermeasure classifier, we implemented data augmenta-
tion to add noise before FFT in the front-end. Motivated by the
data augmentation methods used in the ASV system with the
VoxCeleb database [29, 30, 31], reverberation and background
noise are added randomly to two-thirds of the input data. The
noise data are obtained from the MUSAN [32] and RIR [33]
databases.

3.2. Metric and training strategy

The evaluation was performed in terms of Equal Error Rate
(EER) as a metric, which indicates that the proportion of false
acceptances is equal to the proportion of false rejections.

For training the countermeasure systems, Adam [34] was
used as the optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8,
and weight decaying 10−4. For the CNN classifiers, the learn-
ing rate increase linearly for the first four warm-up epochs
and then is initialized to 0.001 starting from the fifth epoch.
The learning rate is scheduled as the PyTorch ReduceLROn-
Plateau function2, reducing the learning rate when the metric
has stopped improving for ten epochs. Each experiment uses
one NVIDIA RTX A6000 GPU, and for efficiency, we set the
batch to 400, with 100 epochs of training per model.

4. Experimental Results and Discussion
4.1. Countermeasure systems with different front-end

From Figure 2, it seems a cutoff frequency of 0.5 is a good can-
didate for comparison experiments. The experimental results of
all eight countermeasure systems are shown in Table 4, in which
the cutoff frequencies were set to 0.5 times the Nyquist fre-
quency. In addition, since some studies have shown that the per-
formance difference caused by different random seeds may even
be more significant than that caused by different countermea-
sure system constructions [35], we repeat the experiment three
times for each case of the system using three random seeds, then
we calculate the average EER. Table 4 suggests that at 0.5 times
the Nyquist frequency, the countermeasure systems based on

2https://pytorch.org/docs/stable/generated/torch.optim.lr sched
uler.ReduceLROnPlateau.html



Table 4: The EER% of countermeasure systems, when choosing 0.5 Nyquist frequency as the cutoff frequency. Bold number indicates
the best performing result among the countermeasure systems corresponding to each back-end network in the 19LA or 21LA database.

back-ends front-ends ASVspoof2021 LA ASVspoof2019 LA

seed1 seed10 seed100 Average seed1 seed10 seed100 Average

ResNet18

baseline 3.23 3.35 3.38 3.32 1.76 1.48 1.15 1.46
band trimming 2.65 2.32 2.44 2.47 1.37 1.66 1.46 1.5
low-pass filtering 3.05 3.03 3.05 3.04 1.34 1.7 1.57 1.53
low pass + bandwidth extension 2.35 2.57 2.72 2.54 1.37 1.38 1.6 1.45

LCNN

baseline 3.95 4.37 3.38 4.26 2.36 2.36 2.5 2.41
band trimming 3.23 2.72 2.76 2.90 2.03 1.75 1.72 1.83
low-pass filtering 3.51 2.84 3.07 3.14 2.31 1.89 2.14 2.11
low pass + bandwidth extension 2.94 2.97 3.01 2.91 2.05 2.05 1.84 1.98
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Figure 3: Performance comparison of low-pass filtering and
bandwidth extension front-end countermeasure systems.

Table 5: The EER% of 4 different front-ends and ResNet18
back-end countermeasure systems after VAD operation.

back-ends front-ends 21LA 19LA

ResNet18

baseline 20.17 13.06
band trimming 19.91 18.24
low-pass filtering 19.08 16.64
low pass + bandwidth extension 15.23 15.08

band trimming and bandwidth extension front-ends have sim-
ilar performance on the ASVspoof2021 LA database. How-
ever, the best performance on the ASVspoof2019 LA database
is achieved by the baseline front-end system.

Under the six cutoff frequencies specified in this experi-
ment, Figure 2 provides the results of the countermeasure sys-
tem based on band trimming and conventional low-pass filter
front-end as well as the baselines. It can be found that all coun-
termeasure systems composed of low-frequency subband front-
ends outperform the baseline system in the ASVspoof2021 LA
database when the cutoff frequency is greater than 0.3 times
the Nyquist frequency. As this observation is consistent on two
baseline systems, we think it because low-frequency subbands
can reduce the variabilities of channel effects and codecs as hu-
man ears are less sensitive on high frequency regions which
might be more distorted in transmission. The results on the
ASVspoof2019 LA database show that low-frequency subbands
improve the LCNN backend systems performance significantly
more than the ResNet18 system. Combined with the conclu-
sion of Zhang et al. [13], we suggest that the low pass filter-
ing or down-sampling to narrow band spectrograms is effec-

tive when there is relative large channel effects or codec vari-
abilities, however, it might not be useful when there is little
high frequency variability on speech. In that case, dropping
out high frequency information would result in degraded per-
formance. Figure 3 compares the system’s performance be-
fore and after the bandwidth extension module. It can be found
that the bandwidth extension operation on the low pass filtered
signal improves performance in most cases. Combining Fig-
ure 2 and Figure 3, we determine the optimal cutoff frequency
for band trimming/filtering/bandwidth extension as 0.5/0.4/0.5
times Nyquist frequency.

4.2. The effect of VAD operation

Some studies have shown that since the countermeasure system
focuses on silent segments to distinguish spoofed speech from
genuine speech, the data after VAD processing will be difficult
to classify [13, 19]. We want to further test our proposed meth-
ods on the silence removed speech signals after VAD.

We use the librosa.effects.trim function3 of the open source
toolkit Librosa to implement the VAD function. We set the
top db parameter to 40, which means that the part of each data
with a maximum energy below 40 dB is considered as silence.
The performance of each system is shown in Table 5 with their
own optimal cutoff frequency condition, and it can be found that
the EER of all systems increased substantially compared to the
ones without VAD. The model with the baseline front-end in-
crease the least on the 2019 database, but the most on the 2021
database; while the EER of systems with the bandwidth exten-
sion front-end increased less in both databases. It suggests that
bandwidth extension can improve the system performance on
speech part of the signal significantly. It also suggest that the
original silence signal contains large portion of spoofing arti-
facts, applying additional signal processing methods on it might
distort the silence part artifacts.

5. Conclusions
This work validates the countermeasure systems on the
ASVspoof2019 LA and the ASVspoof2021 LA databases and
shows that low-frequency narrow band can reduce the distur-
bance caused by channel effects and codec variabilities. In
addition, bandwidth extension can significantly reduce the per-
formance degradation after VAD. Moreover, we compared dif-
ferent front-ends and determined the optimal cut-off frequency
for those systems. Our future work will focus on exploring the
cases that low pass filtering and bandwidth extension are only
applied on the speech part of the signal and leave the silence
part unchanged.

3http://librosa.org/doc/latest/generated/librosa.effects.trim.html
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